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FLAT LAGUERRE PLANES OF KLEINEWILLINGHOFER TYPE E
OBTAINED BY CUT AND PASTE

GiJNTER F. STEINKE

We provide examples of flat Laguerre planes of Kleinewillinghofer type E, thus com-
pleting the classification of flat Laguerre planes with respect to Laguerre translations
in B. Polster and G.F. Steinke, Results Maths. (2004). These planes are obtained by
a method for constructing a new flat Laguerre plane from three given Laguerre planes
devised in B. Polster and G. Steinke, Canad. Math. Bull. (1995) but no examples
were given there.

1. INTRODUCTION

Kleinewillinghofer [3] classified Laguerre planes with respect to central automor-

phisms, that is, permutations of the point set of the Laguerre plane such that generators
are mapped to generators and circles are mapped to circles, and such that at least one
point is fixed and central collineations are induced in the derived projective plane at
one of the fixed points. In [10] flat Laguerre planes were considered and their so-called
Kleinewillinghofer types were investigated, that is, the Kleinewillinghofer types with re-
spect to the full automorphism group. In order to complete the determination of all
possible types of flat Laguerre planes with respect to Laguerre translations we provide
examples of such planes of Kleinewillinghofer type E.

In type E one has precisely one tangent pencil of circles for which the group of La-
guerre translations is linearly transitive. Hence the flat Laguerre plane has a distinguished
point and tangent pencil of circles. The strategy is to use Laguerre planes of translation
type, which admit all translations in all possible directions at the distinguished point,
and paste different ones of these planes together so that in the end only translations in
one direction remain; see [5] or the following section for a description of flat Laguerre
planes of translation type.

There are, of course, many ways to combine different flat Laguerre planes to form a

new flat Laguerre plane; see [6, 7, 8, 11 , 12], or [9, Section 5.3] for a survey. In fact,

many of the familiar Laguerre planes can be interpreted in this way. We are interested in

one particular and promising method described in [6], which combines sets of circles of

Received 14th March, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 SA2.00+0.00.

213

https://doi.org/10.1017/S0004972700035024 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035024


214 G.F. Steinke [2]

up to three different flat Laguerre planes to circle sets of new Laguerre planes. However,
no examples were given in [6] for different flat Laguerre planes satisfying the conditions
of the construction.

In order to be more precise, let £ — (Z,C) be a flat Laguerre plane and let Co € C.
Consider the collection Cl of all circles that touch Co- Note that C1 includes the circle
Co- Clearly, Co separates the cylinder Z into two connected components Z+ and Z~.
We define C* to be the collection of all circles that are completely contained in Z±.
Finally, let C2 be the set of all circles that intersect Co in precisely two points. Obviously,
C1 U C2 U C+ U C~ is a partition of the circle set. With this notation the following result
was proved in [6, Proposition 6].

PROPOSITION 1 . Let d =. (Z,d), i = 1.2,3, be three flat Laguerre planes.
Suppose that Cx n C2 n C3 D Cl for some circle Co. Let C := C1 U C\ U C£ U C3". Then
£ = (Z, C) is a Bat Laguerre plane.

Note that the circles in C2 cover all of Z and their describing functions can be
convex as well as concave so that the usual methods of construction cannot be applied.
Furthermore, one can apply the construction in two steps, say first using only £2 and £3

(and replacing C\ by £2 in the construction) to obtain a flat Laguerre plane £', and in a
second step using C\ and £' (thus replacing £2 and £3 by £' in the construction). In that
respect it is a matter of debate whether two or three flat Laguerre planes are involved.

Certain semi-classical Laguerre planes pasted along a circle appear to be of this
form; see [11]. (The planes £(ip,id) with one of the describing homeomorphisms being
the identity.) Here C1, C+ and C~ are as in the classical flat Laguerre plane, but C2 is
not. However, no other embedding of C2 except the one in the semi-classical planes is
known so that these planes do not really qualify as examples for Proposition 1.

The aim of this paper is twofold. Firstly, to give examples of three different, in fact,
non-isomorphic, flat Laguerre planes C\, £2, £3 satisfying the conditions in Proposition 1
so that the construction can be applied thus validating this paste-and-cut method. This is
done in Section 2. The second goal is to obtain flat Laguerre planes of Kleinewillinghofer
type E with respect to Laguerre translations, see [4, 10] for Kleinewillinghofer types.
This is achieved in the last section by determining the Kleinewillinghofer types of the flat
Laguerre planes obtained previously.

2. THE EXAMPLES

A flat Laguerre plane £ = (Z, C) is an incidence structure of points and circles
whose point set is the cylinder Z = S ' x l (where the 1-sphere S1 usually is represented
as R U {00}), whose circles C 6 C are graphs of continuous functions S1 —> R such that
any three points no two of which are on the same generator {c} x R of the cylinder can be
joined by a unique circle and such that the circles which touch a fixed circle K at p G K
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[3] Flat Laguerre planes of type E 215

partition the complement in Z of the generator that contains p. For more information

on flat Laguerre planes we refer to [1, 2] or [9, Chapter 5]. Two points are said to be

parallel if they are on the same generator.

The examples we are going to construct are based on the so-called Laguerre planes

of translation type; see [5] or [9, Section 5.3.6]. In order to introduce this kind of planes

we need the following definition.

A function / is called strongly parabolic if it satisfies the following conditions:

(a) / is differentiate and its derivative is a homeomorphism R —¥ R;

(b) / is normalised, that is, /(0) = / '(0) = 0 and / ( I ) = 1;

(c) / is twice differentiable on R \ {0};

(d) logl/'l is strictly concave on the open intervals (—oo,0) and (0, +oo);

(e) lira (f{x + b)/f(x)) = 1 for each b G R.
X—>±OOV /

Let / and g be two strongly parabolic functions and for a, b, c G R let

{[x, bx + c) | x G R} U {(oo,0)} for a = 0,

Ca,b,c = < {(x>af(x - 6) + c) 11 G RJ U |(oo,a)} for a > 0,
I (x, ag(x - b) + c) | x G RJ U {(oo,a)} for a < 0.

Then

is the circle set of a flat Laguerre plane £ ( / , g) represented on the cylinder Z. We say

that a flat Laguerre plane is of translation type if it is isomorphic to one of the planes

C{f,g). For simplicity we abbreviate £ ( / , / ) by £ ( / ) .

Note that a strongly parabolic function / is convex and attains its absolute minimum

at i = 0. Hence the circles in £ ( / , g) that touch Co,o,o are precisely the circles Co,o,c for

c G R and Ca<bt0 f°r a , 6 e K , a / 0 , that is,

Cl(f, g) = {Co,o,c | c G R} U {Co A 0 | a, b G R, a # 0}.

Furthermore,

C2(/, g) = {CaAc I a, b, c G R, ac < 0} U {C0 A c | b, c G R, b ± 0}

and

C+(f,g) = {CaAc | a,b,c G R , a , c > 0},

C~(f, g) = {Ca,b,c | a, 6, c G R, a, c < 0}.

Our first goal is to find two Laguerre planes of translation type that share the set

C1 for the circle Co,o,o-
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As a first step in that direction let h be an increasing homeomorphism of R that
fixes 0. We obtain a homeomorphism h of the cylinder Z by defining h(x, y) = (x, h(y))
for x € R U {oo),y € R. Clearly, h fixes the points on Co,o,o- Of course, applying ~h
to C(f,g) we obtain a flat Laguerre plane Ch(f,g) which is isomorphic to the original
Laguerre plane C{f,g) and which again contains the circle Co,o,o- But then Ch(f,g) also
contains the circles

Q),0,c = M^O.O.c) = Co,0,/i(c)

for c € R. This shows that £>{f,g) and Ch(f,g) share one touching pencil of circles. In
order to obtain more common touching pencils, however, we have to take special kinds
of functions / , g and h.

A special class of strongly parabolic functions are the skew parabola functions. These
functions are of the form

f {*\ / %d f o r x ** 0 >

fdAx) = \ r|z|« forx^O,

where d > 1 and r > 0. Note that the graph of the skew parabola function with d = 2,
r = 1 is a Euclidean parabola and that C(f2t\) is just the classical flat Laguerre plane,
that is, the geometry of all intersections of the cylinder with non-vertical planes in R3.

We start from a flat Laguerre plane £(/<(,.) of translation type over a skew parabola
function fd,T and let the homeomorphism h = hk where k > 0 be given by

hk(x)=x\x\k-\

Note that hk is multiplicative and that

hk O fd<T = fkd,hk(r)

is again a skew parabola function provided that kd > 1. In this case, the circles of

£h*(/*r) are

[ \(x,hk(bx + c)) I x € R)u{(oo,0)} for a = 0,

^ ~\{(X'hhia)hk(/d>r(x " &) + c)) I ^ e R} U {(oo,hk(a))} for a ̂  0,

where a,b,c € R. In particular,

Coke = COflMlc) = {(x, hk(c)) I x G R} U {(oo,0)}

Ca.6,0 = Cafifl = { (X, hk(a) fkdMr)(x - 6)) | X 6 R} U { (oo, hk(d)) }

where the bar refers to the circles of C(hk o/rfr) = C(fkd,hk(r))- Hence we proved the
following result.
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LEMMA 2 . The flat Laguerre planes C{fkd,hk(r)) and Chk(fd,T) of translation type
where k,d,r > 0 and d,kd > 1 Lave in common the set C1 of all circles touching the
circle Co = S1 x {0}.

In order to obtain a situation as in Proposition 1 all we have to do is to choose
ki,di,ri, i = 1,2,3, such that fcjd, = d\ and hki(Ti) = rj. This is easily achieved: Let
d\,d2,d3 > 1 and rx > 0 and define kt — d\/di and u = rf1 for i = 1,2,3. We then use
the skew parabola functions ft = fdiiTi and the multiplicative homeomorphisms hki for
i = 1,2,3. Then the flat Laguerre planes £ht. (/j) for i = 1,2,3 have the set C1 of circles
in common.

Applying Proposition 1 we thus obtain the following Laguerre planes.

PROPOSITION 3 . Let dud2,d3 > 1 and rx > 0 and let C(di,r1;d2,d3) be the
collection of all sets of the form

Ca,b,c =

{{x,bx + c) |xeR}u{(oo,0)} fora = 0,

x,a(/ i(x-6)+c)) |xeMJu{(oo,a)} foro^O, c ̂  0,

x,a(f2(x-b)+c)ai/a2) | i 6 E U{(oo,a)} fora.oO,

x,a(/3(x-fc)+c)dl/d3) |z€R}u{(oo,a)} for a < 0 < c,

w/ierea,6,c 6 Randfc = fdiiTi, rt = rf/dl fori = 1,2,3. ThenC{d1,r1;d2,d3) is thecircle
set of a flat Laguerre plane C(di, rx; d2, d3) represented on the cylinder Z = (Ku{oo})xK.

For example, for d\ — 2 and rt = 1 we obtain rt — 1 and fi(x) = fdi,i(x) = |x|* for
i = 2,3. Then C1 U C2 is as in the classical flat Laguerre plane; these circles are graphs
of polynomials of degree at most 2. Depending on the values of d2 and d3 we replace
the sets C* of the classical flat Laguerre plane by the corresponding circle sets of other
Laguerre planes. For example, if d2 — 4 and d3 = 2 we obtain the following circles

{(x,ax2 + 6x + c) | xe K} u{(oo,a)} for o ^ O o r ac < 0,

{(x, ay/(x - by + c) | x e R} U {(oo, a)} for a, c > 0.

In particular, this shows that there is a flat Laguerre plane that agrees with the
classical flat Laguerre plane in all circles but those that are completely above a given
circle (the circle S1 x {0} in the above example). Note that from the flat Laguerre
plane above we can obtain different embeddings of the circle set C2 in the semi-classical
Laguerre planes C(ip,id). Furthermore, by using these semi-classical Laguerre planes on
C2 instead of the classical flat Laguerre plane we can generalise the planes £(2,1;d2,d3)
from Proposition 3. This shows that Proposition 1 can, in fact, be applied to a great
variety of flat Laguerre planes.

The Laguerre planes £(/,) involved in the construction of the planes £(di, r^; d2, d3)
as in Proposition 3 can be chosen to be mutually non-isomorphic. For example, this is the
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case if the skew parabola functions /< are not equivalent under affine transformations. As
mentioned in the introduction one can however obtain the same flat Laguerre planes from
Proposition 3 by using just two planes, the flat Laguerre planes £(/i) and Ch{h, /3) where
h is the homeomorphism given by h(x) = xdi/d2 for x ^ 0 and h(x) = -\x\dl'd3 for x < 0.
This indicates that by using the more general setting of flat Laguerre planes of translation
type with two different skew parabola functions we can generalise Proposition 3 slightly.
This involves a plane £(/d,r, fd'y) and the isomorphic model £hk-'(fd+,r+, /rf_,r_) of the
Laguerre plane £(/d+,r+,/<i_,r_) of translation type where hk,i is the homeomorphism of
R given by

\xk forx^O,

-\x\' fo rx<0,

for k, I > 0. The circles of £(/d+,r+,/<*_,>•_) touching Co,o,o are the sets

Co,o,c = {(x,c) | x € R} U {(oo,0)},

Co,6,0 = {(x,afd+,r+(x - b)) | x € R } U {(OO, a)}, where a > 0,

CaA0 = {(x,a/d_,r_(x-b)) | x e RJ U {(oo,a)}, where a < 0.

Applying hk,i we then obtain

x € R} U {(oo,0)},

Ca,6,o = { (*.a" fkd+,ri (x - 6)) | x e R} U {(oo, a*)}, where a > 0

Ctjffl = {(*> - l ar( /«- ,rL (x - 6)) | x € R } U { (oo, - | a | ' ) } , where a < 0

We therefore have to match /fcd+)r* and /w_>ri with skew-parabola functions /dir and
/d/>r' from the other flat Laguerre plane. Again this can be easily achieved.

PROPOSITION 4 . Let d,d',d+,d_ > 1 andr.r ' > 0 and letC{d+,d^;d,r;d',r')
be the collection of all sets of the form

{(x,6x + c) |xeK}u{(oo,0)} for 6,cGR,

x,a(/d,r(x-6) + c)) | x eRJu{(oo,a)} for a,b,c e R, a > 0,c ̂  0,

^ xGRJu{(oo,a)} for a,6,c G R, a < 0,c < 0,

j | x e R J U{(oo,a)} for a,6,c e R, a,c> 0,

x,a(/d_,r_(x-6)+c)d'/d~) | X € R } U { ( O O , O ) } for a,b,c € R, a < 0 < c

wiere r+ = rd+/d, r_ = (r')d-/*. Then C(d+,d-;d,r;d',r') is the circle set of a Rat
Laguerre plane C(d+, d_; d,r; d', r') represented on the cylinder Z = .(KU {oo}) x R.

3. KLEINWILLINGHOFER TYPES

Similar to the Lenz-Barlotti classification of projective planes and the Hering clas-
sification of Mobius planes Kleinewillinghofer classified Laguerre planes with respect to
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[7] Flat Laguerre planes of type E 219

linearly transitive groups of central automorphisms; see [4]. She obtained a multitude
of types depending on the kinds of central automorphisms involved. In particular, with
respect to Laguerre translations Kleinewillinghofer obtained 11 types of Laguerre planes,
labelled A to K; see [4, Satz 2] or [9, 5.5.2]. A Laguerre translation of a Laguerre plane
£ is an automorphism of £ that is either the identity or fixes precisely the points of one
generator and induces a translation in the derived affine plane at one of its fixed points.
The derived affine plane at a point p comprises all points of £ that are not parallel to
p and has lines the circles passing through p (minus the point p) and the generators
not containing p. Let G and C be the generator and a circle that contains p and let
B{p,C) denote the tangent pencil with support p, that is, B(p,C) consists of all circles
that touch the circle C at the point p. In the derived affine plane at p the tangent pencil
represents a parallel class of lines and we can look at translations in this direction. Then
a (G,B(p,C)) -translation of £ is a Laguerre translation that fixes each point on G and
each circle in B(p, C) globally.

Of the 11 Kleinewillinghofer types with respect to Laguerre translations one type,
type E, has precisely one tangent pencil B(jp, C) with support p for which the automor-
phism group is [G, B{p, C))-transitive, that is, the group of all (G, B(p, C))-translations
acts transitively on C \ {p}. We shall see that this type can be realised with the flat
Laguerre planes C(di, n ; d2, d3) from Proposition 3. We keep the notation for circles from
Proposition 3. Note that for t e R the transformations

(oo, y) for x = oo

are (Goo, 5((oo, 0).Co,o,o) )-translations of C(d\,r\\d2,d3) where Goo denotes the genera-

tor that contains (oo,0), and the collection of all these Laguerre translations is transitive

on Co,o,o \ {(oo, 0)}. So, for type E, we just have to make sure that the automor-

phism group of C{d\, ri; d2, d3) is not (G, B(p, C))-transitive for any other tangent pencil

B(p,C). Note that, in general, the point (oo, 0) is fixed by all automorphisms of a flat

Laguerre plane of translation type. Indeed, (oo, 0) is fixed by each automorphism in a

flat Laguerre plane C(f,g) of translation type unless f(x) = g(x) = x2; see [5, Theorems

5 and 9]. Furthermore, two Laguerre planes £(/dl in) and £(/d2lr2) ^e isomorphic if and

only if d\ = d2 and either rx = r2 or r\r2 = 1; compare [5, Theorem 10]. Also note

that the circle Go in the construction of the pasted Laguerre planes in Proposition 1 is

distinguished. Therefore, in general, we can expect that the flag ((oo, 0),G0,o,o) is fixed

by each automorphism of a flat Laguerre plane C{d\,ri,d2,d3).

LEMMA 5 . A Bat Laguerre plane C(dx,r\\ d2, d3) admits the automorphisms

Usx + t,ry) forxeR

(oo, rs~aiy) for x — oo
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where r,s,teR,r,s> 0, so that the automorphism group of C(di, rx; d2, d3) is at least
3-dimensional. Furthermore, the transformation

(x,y+l) forxeR

(oo, y) for x — oo

is an automorphism of C{d\, rx; d2, d3) if and only ifdi = d2 — d3. In this case the plane
C(di,ri;d2, d3) = C(fdUTl) is is of translation type.

PROOF: For the first statement note that a skew parabola function fd,T is semi-
multiplicative, that is, fd,r(sx) = sdfd,r(x) = fdAs)fdAx) f°r aU s, x e K, s > 0.

For the second statement consider the circle

r(C1>0,0) = {(x,/i(x) + 1) | x € R } U{(oo,l)}.

This circle in C{du ri,d2,d3) has to be of the form Ci,6,c for some b, c e R, c > 0. But
/i(z) + l assumes its minimum when x = 0, giving a minimum of 1, and (f2(x-b)+c)dl/d2

assumes its minimum when x = b, giving a minimum of c"*1^2. Hence 6 = 0 and c = 1.
We then have that fr(x) + 1 = (f2(x) + l)d'/d2 for all x € R. In particular, for x = 1, one
obtains 2 = 2d'/d2 so that d\ — d2. One similarly finds that rfi = ĉ  by considering the
circle T-l{C-ififi). D

LEMMA 6 . The derived affine plane of a Bat Laguerre plane C(dx, rx\ d2, d3) at the
point (0,0) is Desarguesian if and only ifd\ = 2 and r\ = 1.

PROOF: Let / = fdun- Circles in C(dl,rl;d2,d3) that pass through (0,0) are of
the form Co,m,o for m G R or Ca,-b,-f{b) for o, b E R, o / 0. Let L0>m and La,<, denote
the corresponding lines in the derived affine plane A of C(di,ri;d2,d3) at (0,0). Then
two lines La,b and La>tV for a, a' ^ 0 are parallel if and only if af'(b) = a!f'{b') where / '
denotes the derivative of / , that is,

f>,x) = / r f l X fo r x

| d | | d l - 1 f o r i < 0 .

(The corresponding circles Ca^b,-f(b) and Ca'-u-nv) touch analytically at (0,0).) Two
lines Lo,m and L0>mi are parallel if and only if m = m' and, finally, L0,m and Laf> are
parallel if and only if m = af'(b).

Note that the plane A is the same as the derived affine plane of the flat Laguerre
plane £( / ) of translation type at (0,0). Thus, if dr - 2 and rx = 1, then £( / ) is classical
and A is Desarguesian.

Conversely, assume that A is Desarguesian. We first show that r = 1. To this
end consider the perspective triangles with respective vertices ( - l , r i ) , (1,1), (oo, 0) and
(-1,0), (1,0), (oo,o) where a = - ( 1 + r\ldx)dl-xl{dxrx). The lines through ( - l , n ) ,
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(1,1) and (—1,0), (1,0) are L\$ and LQ,O and thus are parallel in A. The lines through
(1,1), (oo,0) and (1,0), (oo,a) are L0,i and La>b where b = - 1 / ( 1 + r\/dl) and thus are
again parallel. By Desargues' theorem the lines through (—l,r{), (oo,0) and ( -1 ,0) ,
(oo,o) must also be parallel. The former line is Lo,-n and the latter is La<bi where
V = r | / d l / ( l + r\/dl) > 0. Being parallel then implies that af'{b') = -rx and we obtain
(1 + r y * ) * - ^ * - 1 ' / * = dxr?(l + r } ' * ) * - 1 , that is, r^-1)/di = r? or r<d+1)/d = 1.
Hence TX = 1.

Let $ be the translation of A that takes the point (oo, a) to the point (oo, 0) where
a = -2dl~l/di is as above. Then $ induces a homeomorphism on the parallel bun-
dle of lines {Lc<0 | c € R} of the form $(Lc,o) = A?(c).o where <p is a fixed-point-free
homeomorphism of R. From the perspective triangles above we see that tp(a) = 0 and
<p(0) = 1. Furthermore, we have $(oo, y) = (oo, y(y)) and $ ( l , y ) = (l,y?(y)) for all
y € R. From $(L0,/'(u)) = £i,« for u € R we obtain that <p(f'(u)) = / ( I + u) - f(u).

In particular, if u is such that / ' (u) = a (such a u exists because / ' is a homeomor-
phism of R) one finds that 0 — ip(a) = / ( I + u) — f(u). Buth then u = —1/2 and thus
-2dl-1/dx = a = / ' (u ) = - d i / 2 d ' - 1 . Hence 2dl~l1 = dx and dj = 2. (Note that we
always assume d\ > 1.) D

PROPOSITION 7 . A flat Laguerre plane £(di , r i ; d2, d3) is of Kleinewillinghofer

type E unless d\ = d2 = d3 or (dx, ri) = (2,1).

The distinguished tangent pencil is the pencil of all circles that touch Co,o,o at (oo, 0).
The transformations (x, y) »-> (x+t, y) for t € R extend to automorphisms of the Laguerre
piane and form a transitive group of (Goo, B((oo, 0), Co,o,o) j-transiations.

PROOF: We assume that (di,ri) ^ (2,1) and that not all dt are equal. Since the
automorphism group of C(d\, rx; d2, ds) is (G, B(p, C))-transitive for at least one tangent
pencil B(p,C), the type of the Laguerre plane is either E, G, H, or K, see [9, Proposition
5.5.8], or [10, Proposition 4.8]. In types G or K, all translations of the derived afHne
plane at (oo, 0) extend to Laguerre translations. In particular, the transformation r from
Lemma 5 is an automorphism of C(d\, r\, d2, d3). But this implies d\ = d2 = d3 by Lemma
5. This shows that types G and K are not possible.

In type H there is a unique circle C such that the automorphism group is
(Gp, B(p, C))-transitive for all p G C where Gp denotes the generator containing p. Since
our Laguerre planes are (Goo,5((°o,0),Co,o,o))-transitive and because Co,o,o is the only
circle fixed under the automorphisms from Lemma 5, we see that C = Co,o,o in type
H. But in type H the automorphism group of £(d!,ri;d2,d3) is transitive on C0,o,o- In
particular, the derived affine plane of C{d\,r\\d2,d3) at (0,0) is isomorphic to the derived
amne plane at (oo, 0), that is, this plane is Desarguesian. Lemma 6 then implies d\ = 2
and ri = 1. This shows that type H is not possible either. Hence, under our assumptions,
a flat Laguerre plane C{d\tr\\ da,d3) must be of Kleinewillinghofer type E. D
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Kleinewillinghofer further considered Laguerre homologies and Laguerre homoth-
eties. A Laguerre homology of a Laguerre plane £ is an automorphism of £ that is either
the identity or fixes precisely the points of one circle. One speaks of a C-homology if C is
the distinguished circle. Of the six possible types of flat Laguerre planes with respect to
Laguerre homologies only types I and II can occur in combination with type E, see [10,
Theorem 6.1]. In types I and II the set of all circles for which the automorphism group
of £ is linearly transitive with respect to Laguerre homologies, that is, the group of all
C-homologies is transitive on each generator minus its point of intersection with C, is
empty or consists of a single circle, respectively.

A Laguerre homothety of £ is an automorphism of £ that fixes two non-parallel
points and induces a homothety in the derived affine plane at each of these two fixed
points. One then speaks of a {p,q}-homothety if p, q are the two fixed points. Of the
seven possible types of flat Laguerre planes with respect to Laguerre homologies only
types 1 and 4 can occur in combination with type E, see [10, Theorem 6.1]. In types 1
and 4 the set of all unordered pairs of distinct points for which the automorphism group
of £ is linearly transitive with respect to Laguerre homotheties is empty or consists of
the set {{p, q} \ q € C \ {p}} for a circle C and a point p € C, respectively.

As in the proof of Lemma 5 it follows by considering the images of the circles Cij0,i
and Ci_o,o that the transformations

<7i : (x, y) H+ (x, -y)

and
a2 : (x,y)^> (-x,-y)

are automorphisms of £(di, r\\ d2, d3) if and only if d2 = d3 or rt = 1, d2 = d3, respectively.
In both cases the transformations (x, y) i-> (x, ry) for r e R, r ^ 0, form a transitive
group of C0,o,o-homologies.

PROPOSITION 8 . Assume that (duri) ^ (2,1) and that di,d2td3 are not all

the same. Then a flat Laguerre plane £(di, n;d2, d3) is of Kleinewillinghofer type

(a) I.E.I if and only ifd2 ^ d3;

(b) II.E.l if and only ifd2 = d3 and rx ^ 1;

(c) II.E.4 if and only if d2 = d3 and n = 1.
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