BULL. AUSTRAL. MATH. SOC. VOL. 18 (1978), 475-480.

Duality in topological algebra

B.J. Day

Aspects of duality relating to compact totally disconnected universal algebras are considered. It is shown that if P is a "basic" set of injectives in a variety of compact totally disconnected algebras then the category \overline{P} of P-copresentable objects is in duality with the class of all G-copresentable algebras on P, where $G: P \rightarrow Ens$ is the forgetful functor and an algebra is taken to mean a finite-product-preserving functor from P to Ens.

Introduction

Let \mathcal{U} be the category of Hausdorff topological algebras for a given algebraic theory over the category of compactly generated Hausdorff spaces (see Schubert [6] for the concept of an algebraic theory, and see Borceux and Day [1] for its relative enrichment). We denote by $K_0\mathcal{U} \subset \mathcal{U}$ the category of compact totally disconnected algebras and we denote by $F\mathcal{U}$ the category of all finite discrete algebras; thus $K_0\mathcal{U} \supseteq S(P(F\mathcal{U}))$ formed in \mathcal{U} (where P denotes the formation of products and S denotes the taking of strong subobjects).

Given a small "basic" category $P \subseteq FU$ of injectives in P' = S(PP)formed in U, we consider the functor category [P, Ens] of actions of Pon the category Ens of small sets. Adjointness between P' and [P, Ens] is examined and a duality is derived between the category of Pcopresentable objects in U and the category of all G-copresentable algebras in [P, Ens], where $G: P \rightarrow Ens$ is the forgetful functor.

Examples of varieties which yield such dualities include:

Received 4 May 1978.

475

- (1) boolean rings;
- (2) abelian torsion groups generated by \mathbb{Z}_n ;
- (3) vector spaces over a finite field;
- (4) any equational class of rings generated by finitely many finite fields of different characteristics (see Choe [3], Example 3).

We also recall from Choe [2, 3] that if the given algebraic theory is associative and distributive, then an injective in FU is an injective in K_0U , hence in $P' \subseteq K_0U$. It will be seen that most of our examples lie in this direction.

The basic references for category theory are Mac Lane [5] and Schubert [6], and powers A^X are denoted $\{X, A\}$.

1. The limit closure of P

With the notation of the Introduction we first observe that P' = S(PP) in U, is closed under products and strong subobjects in U. Moreover, $A \in P'$, iff the canonical map $A \neq \prod_p \{U(A, P), P\}$ is a strong mono in U and the epireflection $U \neq P$ is given by factoring the canonical map $A \neq \prod_p \{U(A, P), P\}$ into an epi followed by a strong mono in U.

PROPOSITION 1.1. In P' the composite of two regular monos is regular.

Proof. By Kelly [4], Proposition 5.10, it suffices to verify that the pushout of a regular mono in P' is a mono. But this follows from the fact that P is a cogenerating set of injectives in P'. //

Let \overline{P} be the full subcategory of P' determined by those A for which there exists a regular mono $A \to \Pi P_{\lambda}$ in P'.

PROPOSITION 1.2. \overline{P} is reflective in P'.

Proof. \overline{P} is closed under limits in P' by Proposition 1.1. Moreover, P is a small set of cogenerators of P', hence of \overline{P} , so the special adjoint functor theorem applies. //

COROLLARY 1.3. \overline{P} is the limit closure of P in U.

Proof. Suppose $A \to \Pi P_{\lambda} \stackrel{2}{\to} \Pi P_{\mu}$ is an equaliser presentation in U. Then it is an equaliser in \overline{P} by Proposition 1.2. Conversely, if $A \in \overline{P}$, then there is a regular mono $A \to \Pi P_{\mu}$ in P', hence there is a presentation $A \to \Pi P_{\mu} \stackrel{2}{\to} \Pi P_{\mu}$ in U. //

2. The duality

Now define $T : \overline{P}^{OP} \to [P, Ens]$ by TA(P) = P(A, P) and define $S : [P, Ens]^{OP} \to \overline{P}$ by $SF = \int_{P} \{FP, P\}$. Then

 $(\varepsilon, \eta) : S^{\operatorname{op}} \to T : \overline{P}^{\operatorname{op}} \to [P, \operatorname{Ens}],$

and $P \cong STP$ for all $P \in P$, because

$$STP = \int_{Q} (TP(Q), Q) = \int_{Q} \{P(P, Q), Q\} \cong P$$

by the representation theorem.

DEFINITION 2.1. The small category P, of injectives in P', is said to be *basic* if it is closed under finite products and each map $f : \Pi P_{\lambda} \rightarrow P$ in \overline{P} , with $P_{\lambda}, P \in P$, factors through a finite subproduct.

REMARK 2.2. The category P is always basic if it is closed under products and U is uniformly pointed in the sense that each regular epimorphism f in U is the coequaliser of ker f and 0 (for example, groups, rings, finitely complete and cocomplete additive categories, and so on).

PROPOSITION 2.3. If P is a basic set of injectives in \overline{P} then $n: 1 \cong ST : \overline{P} \Rightarrow \overline{P}$ or, in other words, $P \subset \overline{P}$ is a codense inclusion (that is, $A \cong \int_{\overline{P}} {\overline{P}(A, P), P}$ for all $A \in \overline{P}$).

Proof. We know $A \in \overline{P}$ iff there exists an equaliser presentation $A \to \Pi P_{\lambda} \stackrel{\Rightarrow}{\to} \Pi P_{\eta}$ in U. First consider the product ΠP_{λ} . If this is viewed as a limit $\lim P'_{\nu}$ cofiltered over the finite subproducts of ΠP_{λ} , then we have a bijection colim $P(P'_{\nu}, P) \cong \overline{P}(\lim P'_{\nu}, P)$. This implies $\mathbb{IP}_{\lambda}\cong ST\big(\mathbb{IP}_{\lambda}\big)$. Now consider A in \overline{P} , and look at the following diagram:

The induced map m is a mono, thus is an isomorphism, since $m\eta = 1$. // Let $G : P \to Ens$ denote the forgetful functor and let $G = \{F \in [P, Ens]; \text{ there exist small sets } X \text{ and } Y$ and an equaliser presentation $F \rightarrowtail G^X \stackrel{*}{\to} G^Y\}$. Then we have an induced adjunction $(\varepsilon, \eta) : S^{\mathrm{op}} \to T : \overline{P}^{\mathrm{op}} \to G$, where

 $[P, Ens](-, G) : G^{op} \rightarrow Ens$ reflects isomorphisms. But $[P, Ens](-, G) = US^{op} : G^{op} \rightarrow Ens$, where $U : \overline{P} \rightarrow Ens$ is the forgetful functor; thus S reflects isomorphisms. This implies, by the triangle identity

and the fact that η is an isomorphism, that ε is an isomorphism. To summarise, we have that $(\varepsilon, \eta) : S^{\text{op}} \to T : \overline{P}^{\text{op}} \to G$ is a category equivalence and $G \subset [P, Ens]$ is reflective.

We conclude this section with the following observations about \overline{P} . **PROPOSITION 2.4.** If each $A \in FU$ has a presentation $A \rightarrow IP_{\lambda} \stackrel{\Rightarrow}{\rightarrow} IP_{\mu}$, P_{λ} , $P_{\mu} \in P$, in U, then $\overline{FU} = \overline{P}$.

Proof. Clearly $P \subset FU \subset \overline{P}$, so $\overline{P} \subset \overline{FU}$. Now let A have

478

 $A \rightarrow \Pi V_{\lambda} \stackrel{2}{\rightarrow} \Pi V_{\mu}$ in U where $V_{\lambda}, V_{\mu} \in FU$. Then, since \overline{P} is reflective in U and each $V \in FU$ is in \overline{P} , we have $\overline{P} = \overline{FU}$. //

COROLLARY 2.5. Suppose the algebraic theory under consideration is associative and distributive (in the sense of Choe [2]), and suppose each $A \in FU$ has a presentation $A \neq IP_{\lambda} \stackrel{\neq}{\to} IP_{\mu}$, P_{λ} , $P_{\mu} \in P$, in U. Then $K_{0}U = \overline{FU}$ and, since $K_{0}U \supset S(P(FU)) \supset S(PP) \supset \overline{P} = \overline{FU}$, we have $K_{0}U = \overline{P}$.

3. Examples

EXAMPLE 3.1. Consider the category U of compactly generated Hausdorff boolean rings. We take $P = FU = Ens \int in^{op}$ and observe that $\overline{P} (= K_0 U$ in this case) is equivalent to G^{op} , where G is reflective in $[Ens \int in^{op}, Ens]_{\times} \cong Ens$. Since G contains the non-trivial object $2 (\cong G)$, we must have $G \cong Ens$. Thus $(K_0 U)^{op} \cong Ens$. In other words, the category of compact totally disconnected boolean rings is equivalent to the category of complete atomic boolean algebras.

EXAMPLE 3.2. Let U_n be the category of compactly generated Hausdorff abelian groups A such that na = 0 for all $a \in A$. Then \mathbb{Z}_n is injective in FU_n and is a strong cogenerator; that is, each $P \in FU_n$ has an equaliser presentation $P \rightarrow \mathbb{Z}_n^m \rightarrow \mathbb{Z}_n^p$. Thus, if we take $P = \left\{1, \mathbb{Z}_n^2, \ldots, \mathbb{Z}_n^m, \ldots\right\} \subset FU_n$, we obtain $\overline{P} = K_0 U_n$.

EXAMPLE 3.3. Let U be the category of compactly generated Hausdorff topological vector spaces over a finite discrete field Q. Let $P = \{1, Q, Q^2, \ldots, Q^n, \ldots\}$; then $\overline{P} = K_0 U$.

References

[1] Francis Borceux and Brian J. Day, "Universal algebra in a closed category" (Preprint, Univ. Cath. de Louvain, 1977).

- [2] Tae Ho Choe, "Zero-dimensional compact associative distributive universal algebras", Proc. Amer. Math. Soc. 42 (1974), 607-613.
- [3] Tae Ho Choe, "Injective and projective zero-dimensional compact universal algebras", Algebra Universalis 7 (1977), 137-142.
- [4] G.M. Kelly, "Monomorphisms, epimorphisms, and pull-backs", J. Austral. Math. Soc. 9 (1969), 124-142.
- [5] Saunders Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).
- [6] Horst Schubert, Categories (translated by Eva Gray. Springer-Verlag, Berlin, Heidelberg, New York, 1972).

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.