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Abstract

A complete Sylow sequence, P = P1, . . . , Pm , of a finite group G is a sequence of m Sylow pi -subgroups
of G, one for each pi , where p1, . . . , pm are all of the distinct prime divisors of |G|. A product of the
form P1 · · · Pm is called a complete Sylow product of G. We prove that the solvable radical of G equals
the intersection of all complete Sylow products of G if, for every composition factor S of G, and for every
ordering of the prime divisors of |S|, there exist a complete Sylow sequence P of S, and g ∈ S such that
g is uniquely factorizable in P . This generalizes our results in Kaplan and Levy [‘The solvable radical of
Sylow factorizable groups’, Arch. Math. 85(6) (2005), 490–496].
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1. Introduction

Let G be a finite group1 and let π(G)= {p1, . . . , pm} denote the set of all distinct
prime divisors of |G|. If A is a subgroup or a quotient group of G, and τ is
a permutation of 1, . . . , m, then a complete Sylow sequence of A of type τ is a
sequence of the form P = Pτ(1), . . . , Pτ(m), where each Pj is a Sylow p j -subgroup
of A and trivial Sylow subgroups of A (those for which p j does not divide |A|) are
ignored. Note that the length of such a sequence is |π(A)|. The corresponding product
5(P)= Pτ(1) · · · Pτ(m) (which is a subset of A) is called a complete Sylow product
of A of type τ . Whenever the precise ordering is immaterial, we just use the term
complete Sylow sequence (product), and P = P1, . . . , Pm will refer to a fixed but
otherwise arbitrary ordering of the primes in π(G). We denote by C SS(A) (C SSτ (A))
the set of all complete Sylow sequences of A (of type τ ).

The earliest reference known to us that considers complete Sylow products is
a paper by Miller [10]. Miller proves that if G is solvable, then 5(P)= G for
every complete Sylow sequence P of G, and raises the question whether the reverse

1 All groups considered in this paper are assumed to be finite.
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implication is also true. The same claim and question are also discussed, much
later and independently, by Hall in [5]. Thanks to the work of Thompson on the
classification of N -groups [11, Corollary 3] the following solvability criterion is
established: A group G is solvable if and only if5(P)= G for every complete Sylow
sequence P of G [1, Theorem 1], [8, Theorem A]. A closely related result already
appears in [3] (see also [7, 17.14]).

In [8, 9] we found a connection between complete Sylow products of an arbitrary
group and its solvable radical. For a given group G, we denote by Hτ (G) the
intersection of all complete Sylow products of G of type τ , and by H(G), the
intersection of all complete Sylow products of G (obviously H(G)⊆ Hτ (G)). Let
R(G) denote the solvable radical of G. We proved that Hτ (G) and H(G) are
characteristic subgroups of G, and that R(G)≤ H(G). We have also given certain
sufficient conditions for equality. It is still an open question whether H(G)= R(G)
for every group G, or equivalently, whether H(G) is always solvable.

In the present paper we consider these issues using the concept of multiplicity of an
element in a Sylow sequence. This concept also appears in [10] under a different name.

DEFINITION 1.1. Let G be a group and let P = P1, . . . , Pm be a complete Sylow
sequence of G. A factorization of g ∈ G in P is a sequence g1, . . . , gm where gi ∈ Pi
such that g = g1 · · · gm . When convenient, we shall refer to an expression of the form
g = g1 · · · gm as a factorization of g ∈ G. The multiplicity of g in P is the number of
distinct factorizations of g in P . This nonnegative integer will be denoted mP(g).

Observe that, for any complete Sylow sequence P of G, we have
∑

g∈GmP(g)
= |G|. Hence,5(P)= G if and only if mP(g)= 1 for all g ∈ G. If such a P exists we
say that G is Sylow factorizable. In [9] we have proved that if G is Sylow factorizable
then R(G)= H(G). However, it is known (see [6] and Proof of Proposition 1.5 here)
that not all groups are Sylow factorizable. This motivates the examination of weaker
conditions on multiplicities in Sylow sequences.

DEFINITION 1.2. Let G be a group and let τ be an arbitrary ordering of π(G). Then
G is τ -unique1 if there exists a complete Sylow sequence P of type τ such that
mP(g)= 1 for some g ∈ G. We shall say that G is unique1 if1 it is τ -unique1 for
all τ .

Our first result shows that the R(G)= H(G) question is related to the question of
which simple groups are unique1.

THEOREM 1.3. Let G be a group such that all composition factors of G are unique1.
Then R(G)= H(G).

The question of whether a group G is unique1 is itself related to the question of
whether its composition factors are unique1.

THEOREM 1.4. The group property unique1 is closed under extensions.

1 The trivial group is defined to be unique1.
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Determining which simple nonabelian groups are unique1 (simple abelian groups
are trivially unique1) does not seem to be a particularly easy problem, and we shall not
attempt to address it here in its general form. Nevertheless, the following very limited
result may serve as an appetizer.

PROPOSITION 1.5. All simple nonabelian groups G such that |G| is divisible by
exactly three primes, are unique1.

Now we turn our attention to transformations which preserve the multiplicity of an
element in a Sylow sequence.

DEFINITION 1.6. Let G be a group and let τ be some ordering of π(G). Then

Mτ (G)
def
= {g ∈ G | mP(gx)= mP(x), for all x ∈ G, for all P ∈C SSτ (G)}

M(G)
def
= {g ∈ G | mP(gx)= mP(x), for all x ∈ G, for all P ∈C SS(G)}.

REMARK 1.7. It is easy to verify that replacing gx by xg in Definition 1.6 yields the
same two sets.

As a first application we rephrase the solvability criterion mentioned above.

THEOREM 1.8. A group G is solvable if and only if G = Mτ (G) for some ordering τ
of π(G).

PROOF. If G is solvable then mP(x)= 1 for all x ∈ G and all P ∈C SSτ (G), and
therefore G = Mτ (G). In the other direction, let P be an arbitrary Sylow sequence of
G of type τ . Then 5(P) is not an empty set and hence mP(x) > 0 for some x ∈ G.
Now G = Mτ (G) implies mP(x) > 0 for all x ∈ G and hence 5(P)= G. By [8,
Theorem A], G is solvable. 2

THEOREM 1.9. Let G be a group and let τ be some ordering of π(G). Then Mτ (G)
and M(G) are characteristic subgroups of G. Moreover, R(G)≤ Mτ (G)≤ Hτ (G)
and R(G)≤ M(G)≤ H(G).

We call a subgroup of M(G) a Sylow multiplicity preserving subgroup of G. Thus,
Theorem 1.9 allows us to view the solvable radical of G as a Sylow multiplicity
preserving subgroup of G. Moreover, it is immediate from Theorem 1.9 that if
G is such that R(G)= H(G) then R(G) is the unique maximal Sylow multiplicity
preserving subgroup of G. Our last theorem shows that this already follows from
assuming that G is τ -unique1.

THEOREM 1.10. Let G be a group and let τ be some ordering of π(G). If G is
τ -unique1 then Mτ (G)= M(G)= R(G).

REMARK 1.11. Note that the conclusion of Theorem 1.10 follows from the
assumption of Theorem 1.3 (use Theorems 1.3 and 1.9). However, the assumption of
Theorem 1.3 implies the assumption of Theorem 1.10, while we do not know whether
the reverse implication holds.
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2. Proofs

2.1. Basic properties We summarize some useful concepts and results concerning
multiplicities of elements in Sylow sequences, which will be used in the proofs of the
main theorems.

DEFINITION 2.1. Let G be a group and let P = P1, . . . , Pm be a complete Sylow
sequence of G. Let b = b1 · · · bm be a factorization of b in P . We define the complete
Sylow sequence P b−1

m · · · b
−1
1 by

P b−1
m · · · b

−1
1

def
= P1, P

b−1
1

2 , . . . , P
b−1

i−1···b
−1
1

i , . . . , P
b−1

m−1···b
−1
1

m .

REMARK 2.2. Since each bi above takes any value in the group Pi , P bm · · · b1 is also
well defined. One can verify the equality 5(P b−1

m · · · b
−1
1 )= (5P)b−1. We stress

that the sequence P b−1
m · · · b

−1
1 depends on the particular factorization chosen for b

although its product depends only on b. Also note that a complete Sylow sequence
b−1

m · · · b
−1
1 P can be defined similarly, and that P b−1

m · · · b
−1
1 is of the same type

as P .

LEMMA 2.3. Let G be a group and let P = P1, . . . , Pm be a complete Sylow
sequence of G. Let a, b ∈5(P). Let a = a1 · · · am and b = b1 · · · bm be
factorizations of a and b in P respectively. Then

(P b−1
m · · · b

−1
1 )(a−1

m )b
−1
m−1···b

−1
1 · · · (a−1

2 )b
−1
1 a−1

1 = P(b−1
m a−1

m ) · · · (b−1
1 a−1

1 ).

PROOF. Routine computation. 2

LEMMA 2.4. Let G be a group and let P =P1, . . . , Pm be a complete Sylow sequence
of G. For any x ∈5(P) and y ∈ G, and for any factorization x = x1 · · · xm of x in
P ,

mP x−1
m ···x

−1
1
(yx−1)= mP(y).

PROOF. Let y = y(i)1 · · · y
(i)
m , i = 1, 2, be two distinct factorizations of y in P . Then

yx−1
= (y(i)1 x−1

1 )(y(i)2 x−1
2 )x

−1
1 · · · (y(i)m x−1

m )x
−1
m−1···x

−1
1 , i = 1, 2,

are two distinct factorizations of yx−1 in P x−1
m · · · x

−1
1 . Hence mP x−1

m ···x
−1
1
(yx−1)

≥ mP(y) (including the cases mP(y)= 0, 1). However, since 1G ∈5(P), we have
x−1
∈5(P)x−1

=5(P x−1
m · · · x

−1
1 ). In fact,

x−1
= x−1

1 (x−1
2 )x

−1
1 (x−1

3 )x
−1
2 x−1

1 · · · (x−1
m )x

−1
m−1···x

−1
1

is a factorization of x−1 in P x−1
m · · · x

−1
1 . Hence, we can repeat the argument above

with P replaced by P x−1
m · · · x

−1
1 , y replaced by yx−1 and x replaced by x−1. We get

m
P x−1

m ···x
−1
1 (xm)

x−1
m−1···x

−1
1 ···(x2)

x−1
1 x1

(yx−1x)≥ mP x−1
m ···x

−1
1
(yx−1).

By Lemma 2.3, the left-hand side is mP(y) and this concludes the proof. 2
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COROLLARY 2.5. Let G be a group and let P be a complete Sylow sequence of type
τ of G. Let g ∈ G. If mP(g)= 1 then there exists a complete Sylow sequence Q of G
of the same type τ such that mQ(1G)= 1.

PROOF. Since mP(g)= 1, g ∈5(P) and hence there exists a factorization
g = g1 · · · gm of g in P . Now, by taking in Lemma 2.4 y = x = g, we get

Q= P g−1
m · · · g

−1
1 . 2

LEMMA 2.6. Let G be a group and let P be a complete Sylow sequence of G. Let
g ∈ G and suppose that g = g(i)1 · · · g

(i)
m , i = 1, 2, are two distinct factorizations of g

in P . Then there are at least three distinct values of 1≤ k ≤ m such that g(1)k 6= g(2)k .

PROOF. First observe that if 1G = x1 · · · xm is a nontrivial Sylow factorization of 1G ,
then there are at least three distinct values of 1≤ k ≤ m such that xk 6= 1G . The claim
of the lemma now follows from the fact that

1G = (g
(1)
1 (g(2)1 )−1)(g(1)2 (g(2)2 )−1)(g

(2)
1 )−1
· · · (g(1)m (g(2)m )−1)(g

(2)
m−1)

−1
···(g(2)1 )−1

is a nontrivial Sylow factorization of 1G . 2

2.2. Proof of Theorem 1.3 The key result which relates the R(G)= H(G) question
to the unique1 property is formulated in the following lemma.

LEMMA 2.7. Let G be a group and let τ be an arbitrary ordering of π(G). Let N E G
be such that G = G/N is τ -unique1. Then Hτ (G) ∩ N = Hτ (N ).

PROOF. Observe that Hτ (N )≤ Hτ (G) ∩ N since every complete Sylow product of
type τ of G contains a complete Sylow product of type τ of N . It therefore remains to
prove Hτ (G) ∩ N ≤ Hτ (N ). By assumption there exist a complete Sylow sequence P
of type τ of G and g ∈ G such that mP(g)= 1. By Corollary 2.5 we can assume that
g = 1G . We have P = P1 N/N , . . . , Pm N/N where the Pi are Sylow pi -subgroups
of G. Denote P = P1, . . . , Pm . Let n1, . . . , nm be m arbitrary elements of N (not
necessarily pi -elements). We claim that

(Pn1
1 · · · Pnm

m ) ∩ N = (P1 ∩ N )n1 · · · (Pm ∩ N )nm .

The reason for this is as follows. The subset on the r.h.s. is easily seen to be contained
in the subset on the left-hand side. (Here the assumption that G is τ -unique1 is not
required.) For the reverse inclusion we make use of the assumption mP(1G)= 1.
Let g ∈ (Pn1

1 · · · Pnm
m ) ∩ N . Then g = g1 · · · gm , with gi ∈ Pni

i . Since also g ∈ N ,
its image under the canonical homomorphism G→ G is 1G . Hence g1 · · · gm = 1G
where gi ∈ Pni

i N/N = Pi N/N is the image of gi . The assumption mP(1G)= 1
now implies gi = 1G for all 1≤ i ≤ m. Hence gi ∈ Pni

i ∩ N = (Pi ∩ N )ni for all
1≤ i ≤ m, concluding the proof of the reverse inclusion.

Note that the intersection of (P1 ∩ N )n1 · · · (Pm ∩ N )nm over all choices of
n1, . . . , nm ∈ N is Hτ (N ). On the other hand, the intersection of Pn1

1 · · · Pnm
m ∩ N
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over all choices of n1, . . . , nm ∈ N contains Hτ (G) ∩ N . We obtain Hτ (G) ∩ N
≤ Hτ (N ). 2

PROOF OF THEOREM 1.3. Let τ be an arbitrary ordering of π(G). If G is simple
then Hτ (G)= H(G)= R(G) (see [8, remarks after Theorem B]). Henceforth, we
assume that G is not simple and we prove the claim by induction on |G|. Since
R(G)≤ H(G)≤ Hτ (G), it is sufficient to prove that Hτ (G) is solvable. Let N be
a maximal normal subgroup of G. Then G/N is simple. Hence, either Hτ (G/N )= 1
(if G/N is simple nonabelian) or Hτ (G/N )= G/N (if G/N is cyclic of prime order)
and in both cases Hτ (G/N ) is solvable. One can prove (see [8, Lemma 11]) that

Hτ (G)/(Hτ (G) ∩ N )∼= Hτ (G)N/N ≤ Hτ (G/N ).

Hence Hτ (G)/(Hτ (G) ∩ N ) is solvable. By assumption, the composition factor G/N
of G is τ -unique1. Thus, by Lemma 2.7, Hτ (G) ∩ N = Hτ (N ). However, Hτ (N )
is solvable by induction. Since Hτ (G)/Hτ (N ) is also solvable, we get that Hτ (G)
is solvable. 2

2.3. Proofs of Theorem 1.4 and Proposition 1.5

PROOF OF THEOREM 1.4. Let G be an arbitrary group and let τ be an arbitrary
ordering of π(G). Let N be any nontrivial proper normal subgroup of G such
that N and G = G/N are τ -unique1 for the same τ . We shall prove that G is τ -
unique1. Suppose to the contrary that G is not τ -unique1. Because G is τ -unique1
we have a complete Sylow sequence P= P1, . . . , Pm of G of type τ such that
mP(1G)= 1. Let P = P1, . . . , Pm be a complete Sylow sequence of G of type τ
such that P i = Pi N/N . Let Q= Q1, . . . , Qm be any complete Sylow sequence
of G such that Q1 = Pn1

1 , . . . , Qm = Pnm
m where n1, . . . , nm ∈ N are arbitrary.

Note that any such sequence maps, under the canonical homomorphism G→ G, to
P= P1, . . . , Pm of G. Since G is not τ -unique1, there exists a nontrivial factorization
1G = g1 · · · gm in Q for any Q as above. In G = G/N we get g1 · · · gm = 1G where
gi ∈ P i is the image of gi . Now mP(1G)= 1 implies gi = 1G for all 1≤ i ≤ m. Hence
gi ∈ N and gi ∈ Pni

i ∩ N = (Pi ∩ N )ni for all 1≤ i ≤ m. Thus 1G is not uniquely
factorizable in any complete Sylow sequence ((Pi ∩ N )ni )1≤i≤m of N . However, these
are all of the complete Sylow sequences of N of type τ , contradicting the assumption
that N is τ -unique1. 2

Another property of unique1 which is worth observing is given in the following
proposition.

PROPOSITION 2.8. The property unique1 is inherited by normal subgroups.

PROOF. Let G be a group with the property unique1 and let N E G. Let τ be
an arbitrary ordering of π(G). Then, by Corollary 2.5, there exists a complete
Sylow sequence P = P1, . . . , Pm of G of type τ such that mP(1G)= 1. Hence
Q= P1 ∩ N , . . . , Pm ∩ N satisfies mQ(1G)= 1. 2
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REMARK 2.9. Every group property α which is inherited by normal subgroups and
extensions has a residual, namely, for every group G, the set {N E G | G/N is α} has
a unique minimal element. Thus, the property unique1 has a residual.

LEMMA 2.10. Let G be a group such that |G| is divisible by exactly three primes. Let
τ be any ordering of π(G). If G is τ -unique1 then G is unique1.

PROOF. Let P =P1, P2, P3 be a complete Sylow sequence of G of type τ . Suppose
that 1G = abc with a ∈ P1, b ∈ P2 and c ∈ P3 all nontrivial. Then 1G = abc
= cab = bca and 1G = c−1b−1a−1

= a−1c−1b−1
= b−1a−1c−1 are all nontrivial

Sylow factorizations of 1G , corresponding to all possible orderings of the Pi . Thus
mP(1G)= 1 if and only if mQ(1G)= 1 where Q=Pσ(1), Pσ(2), Pσ(3) and σ is any
ordering of π(G). Now the claim follows from Corollary 2.5. 2

PROOF OF PROPOSITION 1.5. There are exactly eight simple nonabelian groups G
such that |G| is divisible by exactly three primes [4]: P SL(2, 5)∼= A5, P SL(2, 7),
P SL(2, 8), P SL(2, 17), P SL(3, 3), A6, SU (4, 2)∼= O(5, 3) and SU (3, 3). The
first seven groups are Sylow factorizable. The Sylow factorizibility of the first six
follows from the results of [6] and from the fact that Sylow factorizibility is inherited
by normal subgroups and by quotient groups. The Sylow factorizibility of SU (4, 2)
can be proved as follows. First note that |SU (4, 2)| = 26

· 34
· 5. SU (4, 2) has a

maximal subgroup M = V o A5 (see [2, p. 26]), where V ∼= Z4
2. Since A5 is equal

to a complete Sylow product where the primes are ordered (3, 2, 5), and V E M ,
we get that M is equal to a complete Sylow product of the same type. Now,
since |G : M | = 33, SU (4, 2)= P M , where P is a Sylow 3-subgroup of SU (4, 2)
containing a Sylow 3-subgroup of M . It follows that SU (4, 2) is Sylow factorizable.
Finally, SU (3, 3) is not Sylow factorizable but it has a complete Sylow sequence P
such that |5(P)|> 1

2 |G| [6]. Clearly, in such P we have at least one g ∈ G for which
mP(g)= 1. Thus, all eight groups are τ -unique1 for some τ . We now use Lemma 2.10
in order to deduce that each of these groups is unique1. 2

2.4. Proofs of Theorems 1.9 and 1.10 Lemmas 2.11 and 2.12 below are part of the
content of Theorem 1.9.

LEMMA 2.11. Let G be a group and let τ be some ordering of π(G). Then Mτ (G)
and M(G) are characteristic subgroups of G.

PROOF. Clearly 1 ∈ Mτ (G) so Mτ (G) 6= φ. Let g1, g2 ∈ Mτ (G). Let P be any
complete Sylow sequence of G of type τ , and let x ∈ G be arbitrary. Then
mP((g1g2)x)= mP(g1(g2x))= mP(g2x)= mP(x) and thus g1g2 ∈ Mτ (G). This
proves that Mτ (G) is a subgroup of G. It is characteristic in G since any automorphism
of G defines a bijection C SSτ (G)→ C SSτ (G). The claims about M(G) now follow
from

M(G)=
⋂

τ∈Sym({1,...,m})

Mτ (G). 2
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LEMMA 2.12. Let G be a group and let τ be some ordering of π(G). Then Mτ (G)
≤ Hτ (G) and M(G)≤ H(G).

PROOF. It is sufficient to prove that if g ∈ Mτ (G) and if P is any complete Sylow
sequence of G of type τ , then g ∈5(P). We have 1G ∈5(P). Hence mP(1G) > 0.
Now mP(g)= mP(g1G)= mP(1G) > 0. Therefore g ∈5(P). 2

LEMMA 2.13. Let G be a group, π(G)= {p1, . . . , pm} and let P =P1, . . . , Pm
be an arbitrary complete Sylow sequence of G of type τ . Fix 1≤ j ≤ m, and
1 6= n ∈ Op j (G). Then, for all x ∈ G, one can pair the factorizations of x and xn
in P so that the pair members are identical in all but the j th factors, the j th factors
differ by an element of Op j (G), and each factorization of x and xn belongs to exactly
one pair. It follows that Op j (G)≤ Mτ (G).

PROOF. Let x = x1 · · · x j · · · xm be a factorization of x in P . Then

xn = x1 · · · x j−1(x j n
x−1

m x−1
m−1···x

−1
j+1)x j+1 · · · xm,

is a factorization of xn in P . This factorization differs from the given factorization of
x in P only in the j th factor and the difference between the factors is

x−1
j x j n

x−1
m x−1

m−1···x
−1
j+1 = nx−1

m x−1
m−1···x

−1
j+1 ∈ Op j (G)

(note that 1 6= n implies 1 6= nx−1
m x−1

m−1···x
−1
j+1). We define a pairing of factorizations of x

and xn in P by associating to the factorization of x = x1 · · · x j · · · xm of x in P the
factorization

xn = x1 · · · x j−1(x j n
x−1

m x−1
m−1···x

−1
j+1)x j+1 · · · xm

of xn in P . Since two distinct factorizations of the same element in P must differ by
at least three factors (Lemma 2.6), it is clear that two distinct factorizations of x are
paired with two distinct factorizations of xn. Thus, this pairing defines an injective
function from the set of all factorizations of x in P to the set of all factorizations of
xn in P . Since x = (xn)n−1, we have a bijection. Hence mP(x)= mP(xn), implying
(see Remark 1.7) that n ∈ Mτ (G). 2

DEFINITION 2.14. Let G be a group, π(G)= {p1, . . . , pm}, N E G, and let
P =P1, . . . , Pm be a complete Sylow sequence of G. Set G = G/N . For any
x ∈ G and any A ≤ G denote by x and A, respectively, their images under the
canonical homomorphism from G onto G. Let P=P1, . . . , Pm . Let x = x1 · · · xm
be a factorization of x in P . The image of the factorization x = x1 · · · xm in G is
the factorization x = x1 · · · xm of x in P . Conversely, a preimage of a factorization
x = x1 · · · xm of x in P is any factorization, xn = y1 · · · ym in P , where n ∈ N , such
that yi = xi for all 1≤ i ≤ m.
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LEMMA 2.15. Let G be a group, π(G)= {p1, . . . , pm} and P =P1, . . . , Pm a
complete Sylow sequence of G. Let 1≤ j ≤ m and let N be a normal p j -subgroup
of G. Using the notation of Definition 2.14 we have, for any x ∈ G,

mP(x)= mP(x).

PROOF. If mP(x)= 0 then x /∈5(P). Since 5(P)N =5(P) (see [8, proof of
Theorem B parts (c) and (d)]) we get x /∈5(P) and therefore mP(x)= 0. Now
suppose that mP(x) > 0. The preimage of x is the set x N . Thus, any factorization of
x in P is the image of a factorization in P of an element of x N (the same factorization
of x in P can be the image of more than one factorization of more than one element of
x N ). Let x = x (s)1 · · · x

(s)
m , 1≤ s ≤ mP(x) be all of the mP(x) distinct factorizations

of x in P . By Lemma 2.13, every factorization of xn in P , where n ∈ N , can be paired
with one of the mP(x) factorizations of x in P so that the pair members are identical
in all but the j th factors, and the j th factors differ by an element of N . Thus, when we
vary n over N , the image in P of all factorizations of xn which pair with the same sth
factorization x = x (s)1 · · · x

(s)
m of x in P is the same. On the other hand, two distinct

factorizations of x in P (two distinct s values) must differ by at least three factors
(Lemma 2.6) and hence their images in P are distinct. The claim follows. 2

PROOF OF THEOREM 1.9. It remains to prove (see Lemmas 2.11 and 2.12) that R(G)
≤ Mτ (G) for an arbitrary ordering τ of π(G)= {p1, . . . , pm}. We do this by
induction on |G|. We can assume that R(G) > 1. Hence there exists 1≤ j ≤ m such
that Op j (G) > 1. Let G = G/Op j (G) and, for all x ∈ G, let x denote its image under
the canonical homomorphism G → G. For any A ≤ G let A = AOp j (G)/Op j (G).
Let x ∈ G and let y ∈ R(G). Let P = P1, . . . , Pm be a complete Sylow sequence of
G of type τ . We have to prove that mP(x · y−1)= mP(x). By Lemma 2.15, mP(x)
= mP(x) and mP(x · y−1)= mP(x · y

−1)= mP(x · y
−1). Since R(G)= R(G), we

have y ∈ R(G) and by induction assumption mP(x · y
−1)= mP(x). The claim

follows. 2

PROOF OF THEOREM 1.10. Set N = Mτ (G). By Theorem 1.9 it is sufficient to prove
that N is solvable. By assumption, and by Corollary 2.5, there exists a complete Sylow
sequence P = P1, . . . , Pm of type τ such that mP(1G)= 1. It follows that mP(h)= 1
for all h ∈ N . Now set G = G/N and P = (P1 N )/N , . . . , (Pm N )/N . We claim
mP(1G)= 1. Suppose to the contrary that g1 · · · gm = 1G where gi ∈ (Pi N )/N and at
least one of the gi is nontrivial. Let gi be preimages of the gi in Pi . Then g1 · · · gm = h
for some h ∈ N . Since the gi are not all trivial, there exists some gi which is not in
N . Since mP(h)= 1, the factorization g1 · · · gm = h is the only factorization of h in

P and hence h is not factorizable in the Sylow sequence N ∩ P1, . . . , N ∩ Pm of N .
It follows that there exists some h̃ ∈ N which has at least two distinct factorizations
in N ∩ P1, . . . , N ∩ Pm in contradiction to mP (̃h)= 1. Thus, mP(1G)= 1 and we
can apply Lemma 2.7 and get Hτ (G) ∩ N = Hτ (N ). By Theorem 1.9, we have
N ≤ Hτ (G) and thus N = Hτ (N ) implying [8, Theorem A] that N is solvable. 2
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