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It is known that a nonlinear Schrödinger equation describes the self-modulation of a large
amplitude circularly polarized wave in relativistic electron–positron plasmas in the weakly
and strongly magnetized limits. Here, we show that such an equation can be written as a
modified second Painlevé equation, producing accelerated propagating wave solutions for
those nonlinear plasmas. This solution even allows the plasma wave to reverse its direction
of propagation. The acceleration parameter depends on the plasma magnetization. This
accelerating solution is different to the usual soliton solution propagating at constant
speed.
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1. Introduction

One of the nonlinear effects present in a relativistic hot magnetized electron–positron
plasma is the self-modulation of circularly polarized electromagnetic waves or Alfvén
waves. The large amplitude of the electromagnetic wave, and a background magnetic
field, can modify the relativistic motion of particles in a significant way. Thus, the
self-modulation depends on the magnetization of the plasma. This nonlinear process
has been thoroughly studied for the weakly magnetized plasma and strongly magnetized
plasma cases in Asenjo et al. (2012) and López et al. (2013), respectively.

Interestingly, the self-modulation gives origin to soliton plasma wave solutions,
propagating at constant speed (Asenjo et al. 2012; López et al. 2013). However, there
exists another kind of accelerating plasma wave solution that deserves to be explored for
relativistic plasmas. This work is devoted to showing that there are nonlinear plasma waves
that accelerate due to the self-modulation of the magnetized plasma system.

Relativistic plasma wave modes, presenting accelerating behaviour, have been recently
introduced in Li, Li & Wang (2016), Winkler, Vásquez-Wilson & Asenjo (2023)
and Minovich et al. (2014). Differently to those works, here, we study the case of
self-modulation of a circularly polarized electromagnetic or Alfvén wave in a weakly
or strongly magnetized relativistic electron–positron plasma with finite temperature. For
these cases, the nonlinear Schrödinger equation that models such systems has been found
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to be (Asenjo et al. 2012; López et al. 2013)

i
∂a
∂t

+ P
∂2a
∂z2

+ Q|a|2a = 0, (1.1)

where a = a(t, z) is the time- and space-dependent complex modulational amplitude
of the circularly polarized electromagnetic wave, under the approximation of a slowly
time-varying modulation (Asenjo et al. 2012; López et al. 2013). Here, P = c2/(2ω) is
independent of the magnetization, where c is the speed of light, and ω is the frequency of
the wave. Differently, Q depends on the limit case of magnetization of the plasma. In the
weakly magnetized case, when ω � Ωc (where is Ωc is the plasma cyclotron frequency),
we have that (Asenjo et al. 2012)

Q = 3λω2
pΩ

2
c

ω3f 5
, (1.2)

where λ = e2/m2c4 (with the electron charge e and mass m), ωp is the plasma frequency
of the electron–positron plasma and f is the thermodynamic function relating the plasma
density enthalpy per unit of mass and unit of number density (being a function of
temperature). On the other hand, for the strongly magnetized plasma case, when ω � Ωc,
we find that (López et al. 2013)

Q = fλω2
pω

3

4Ω4
c

. (1.3)

It is clear that it is the background magnetic field, through the cyclotron frequency, the
physical quantity that induces the nonlinear behaviour of the waves.

Furthermore, any other intermediate case for plasma magnetization (when ω is of the
same order as Ωc) does not produce a simple nonlinear Schrödinger equation such as (1.1).
In these cases, the nonlinear effects cannot be straightforwardly analysed from relativistic
factors of the plasma fluid velocities. Thus, the plasma system is more difficult to study as
there are no analytical solutions for the plasma velocities (Asenjo et al. 2012; López et al.
2013).

2. Non-accelerating soliton

Equation (1.1) is usually solved in terms of a soliton amplitude propagating with
constant speed v. This solution can be found by requiring that the amplitude of the
electromagnetic wave has the form |a(t, z)| = |a(z − vt)|. Straightforwardly, it is found
that such solution has the form of a soliton (Asenjo et al. 2012; López et al. 2013)

a(t, z) = sech

(√
Q
2P

(z − vt)

)
exp

(
i

v

2P
z − i

(
v2

4P
− Q

2

)
t
)

. (2.1)

3. Accelerating solution

However, (1.1) can be also solved for an accelerating wave, i.e. we look for solution with
amplitude in the form |a(t, z)| = |a(z − vt − βt2/2)|, where v and β play the roles of an
initial velocity and the acceleration of the propagation.
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Similar to the case of the previous section, this kind of solution can be studied by
assuming the form of the plasma wavepacket as

a(t, z) = f (ξ) exp (iη(t, z)) , (3.1)

where f is a function to be determined through (1.1), and depending on the accelerated
argument

ξ =
√

Q
2P

(
z − vt − β

2
t2

)
. (3.2)

Notice that we have assumed, in analogy with the constant velocity soliton solution, the
same factor

√
Q/2P for the argument. Also, the phase function η(t, z) must be determined.

Using (3.1) in (1.1), we can find that when the acceleration is

β = Q

√
QP
2

, (3.3)

and the phase is

η(t, z) = Q
2

√
Q
2P

(
tz + v

Q

√
2

QP
z − v2

Q2

√
Q
2P

t − vt2 − Q
3

√
QP
2

t3

)
, (3.4)

then, the function f fulfils a modified second Painlevé equation (Clarkson 2003)

d2f
dξ 2

− ξ f + 2f 3 = 0. (3.5)

Solutions of this equation can be generally studied numerically, but they are no
longer solitons. For the current case, they describe an accelerated propagation of a
electromagnetic plasma wave train, with non-constant amplitude and with acceleration
β = √

Q3P/2 along its direction of propagation (the velocity v is arbitrary). The
acceleration of this nonlinear plasma wave depends on the magnetization of the plasma
through Q, given in (1.2) and (1.3). We emphasize that this kind of accelerated behaviour
for the plasma is only possible in the weakly and strongly magnetized limits.

3.1. Case for v = 0
In order to show the accelerating behaviour of this nonlinear plasma solution, we display in
figure 1 the density plot for the numerical solution of (3.5) for f (ξ = 0) = 1, dξ f (ξ = 0) =
0 and v = 0. This plot shows the magnitude of function f in the t − z space, in terms of
normalized time t′ = Qt/

√
2, and normalized distance z′ = √

Q/2Pz. The solution shows
curved (parabolic) trajectories for any part of the wave (maxima or minima). This can
be explicitly seen through the red dashed lines, that are used as examples. Those lines
correspond to ξ = z′ − t′2/2 = ξ0, for ξ0 = −10, −4, 0, 5, 10. All the red dashed parabolic
curves coincide with the dynamics of the plasma wave. Therefore, we conclude that the
whole plasma wave propagates with acceleration β given by (3.3).

3.2. Case for velocity v parallel to the acceleration
In this case, the velocity v produces only a modification of the initial behaviour of the
solution, accelerating along the same direction. As acceleration (3.3) is positive, we
graphically display this solution with v > 0. In figure 2, we show a numerical solution
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FIGURE 1. Density plot for f (ξ), with f (ξ = 0) = 1 and dξ f (ξ = 0) = 0, in terms of time t′
and distance z′, for v = 0. Red dashed lines correspond to parabolic trajectories z′ − t′2/2 = ξ0,
with ξ0 = −10, −4, 0, 5, 10.

of (3.5) for f (ξ = 0) = 1, dξ f (ξ = 0) = 0, in terms of normalized time t′ = Qt/
√

2,
normalized distance z′ = √

Q/2P z and normalized velocity v′ = v/
√

PQ = 2. Any part
of the solution follows accelerated curved parabolic trajectories in the t − z space. We
display those curved trajectories as dashed lines for ξ = z′ − v′t′ − t′2/2 = ξ0, with ξ0 =
−10,−4, 0, 5, 10.

3.3. Case for velocity v antiparallel to the acceleration
This case is more interesting as it implies that the acceleration of the wave dynamics
can change its direction of propagation. To exemplify this case we consider a negative
initial velocity v < 0. In figure 3, we show what occurs for the specific case of normalized
velocity equal to v′ = v/

√
PQ = −2. In this figure, we display the numerical behaviour

of f in a density plot in terms of the same normalized variables t′ and z′ as above.
Because of its accelerating nature, the whole wavepacket changes its initial direction
of propagation. This occurs for any part of the wave, as is shown by the parabolic
curves in t − z space (in red dashed lines), for ξ = z′ − v′t′ − t′2/2 = ξ0, with ξ0 =
−4, 0, 5, 10, 15. The acceleration, therefore, allows this nonlinear plasma solution to
reverse its propagation direction when the initial velocity has the opposite direction to
the direction of acceleration. It is straightforward to calculate that this change in direction
takes a time equal to

�t = − v

β
> 0. (3.6)
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FIGURE 2. Density plot for f (ξ), with f (ξ = 0) = 1 and dξ f (ξ = 0) = 0, in terms of time t′,
distance z′ and normalized positive velocity v′ = 2. Red dashed lines correspond to parabolic
trajectories z′ − v′t′ − t′2/2 = ξ0, with ξ0 = −4, 0, 5, 10, 15.

FIGURE 3. Density plot for f (ξ), with f (ξ = 0) = 1 and dξ f (ξ = 0) = 0, in terms of time t′,
distance z′ and normalized negative velocity v′ = −2. Red dashed lines correspond to parabolic
trajectories z′ − v′t′ − t′2/2 = ξ0, with ξ0 = −4, 0, 5, 10, 15.
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3.4. Asymptotic behaviour
On the other hand, although a numerical study of the whole solution is possible, the
analytical properties of the solution for f can be found in the case when ξ → −∞. In this
limit, the solution of the modified second Painlevé equation (3.5) behaves as (Clarkson
2003)

f (ξ) ≈ κ Ai(ξ), (3.7)

where Ai is the Airy function, and κ is an arbitrary constant. As the accelerating
propagating properties of this electromagnetic plasma wave are present for any value of
ξ , this solution pertains to the same family of other accelerating Airy solutions already
found in optics and plasmas (Baumgartl, Mazilu & Dholakia 2008; Abdollahpour et al.
2010; Chong et al. 2010; Chávez-Cerda et al. 2011; Jiang, Huang & Lu 2012; Kaminer
et al. 2012; Mahalov & Suslov 2012; Panagiotopoulos et al. 2013; Minovich et al. 2014; Li
et al. 2016; Wiersma et al. 2016; Esat Kondakci & Abouraddy 2018; Efremidis et al. 2019;
Bouchet et al. 2022; Winkler et al. 2023).

4. Final remark

We have presented a new nonlinear plasma solution with accelerating properties. As the
initial velocity of the argument (3.2) is arbitrary, a whole set of a new kind of different
propagations can be obtained. This is achieved in a relativistic plasma regime, depending
on how magnetized the plasma is, producing wavepackets with acceleration (3.3).

As a nonlinear dynamics of electron–positron plasmas can be found in pulsar
magnetospheres (Chian & Kennel 1983; Beskin, Gurevich & Istamin 1993), relativistic
jets (Iwamoto & Takahara 2002), the early universe (Lesch & Bisk 1998) or supernovae
(Hardy & Thoma 2000), these electromagnetic propagation solutions can produce new
mechanisms for plasma acceleration in those regimes. In addition, as the nonlinear
Schrödinger equation also appears in electrostatic plasma propagation (see for instance
Kourakis & Shukla 2004; Misra & Shukla 2011; Rajabi & Mohammadnejad 2023), the
above solution also predicts nonlinear acceleration for such phenomena. In general, it is
expected that the propagation of the wavepacket experiences an acceleration along the
direction of propagation, even having the possibility to reverse such a direction. Those
implications are left for future studies.

Finally, the Painlevé equation has been explored in different realms of plasma physics
(Khater et al. 1997; Khater, Callebaut & Ibrahim 1998; Ibrahim 2003; Rogers & Clarkson
2018; Kumar, Mohan & Kumar 2022). Therefore, this work contributes to showing that
the Painlevé equation is also a straightforward consequence of accelerating solutions in
relativistic nonlinear plasmas.
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