VOL. 34 (1986) 127-132.

EVENTUALLY REGULAR SEMIGROUPS THAT ARE GROUP-BOUND

P.M. EDWARDS

Necessary and sufficient conditions are given for certain classes of eventually regular semigroups to be group-bound or even periodic.

1. Introduction and Preliminaries.

Wherever possible the notation and conventions of Clifford and Preston [1,2] will be used.

An element of a semigroup S is called *group-bound* if it has some power that is in a subgroup of S and is called *eventually regular* if it has some power that is regular. A semigroup S is *group-bound* [eventually regular] if all of its elements are group-bound [eventually regular]. Thus the class of eventually regular semigroups includes all regular semigroups and all group-bound semigroups. For more properties of eventually regular semigroups see [3].

It is of interest to know whether a semigroup under consideration is group-bound. For example it is well known that $\mathcal{D}=J$ for a group-bound semigroup. This follows for instance from the conjuction of [6], Theorem 1.2 (vi)] and [6], Remark 1.7]. There exist regular semigroups for which $\mathcal{D}\neq J$. In Section 2 necessary and sufficient conditions for certain classes of eventually regular semigroups to be group-bound or

Received 10 October 1985. The author wishes to thank the referees for remarks concerning the paper's presentation.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

even periodic are given whence $\mathcal{D} = \mathcal{J}$ for these semigroups.

Recall from [3] or [4] the idempotent-separating congruence on a semigroup S, $\mu = \mu(S)$ defined by,

 $\mu = \{(a,b) \in S \times S | \text{ if } x \in S \text{ is regular then each of } x R xa , \\ x R xb \text{ implies } xa \text{ } H xb \text{ } \text{ and each of } x L ax, x L bx \text{ } \text{ implies } ax \text{ } H bx\}.$

The congruence μ is the maximum idempotent-separating congruence on any eventually regular semigroup [3, Theorem 11]. In this paper we use the generalized meaning of fundamental given in [4]; thus a semigroup S is called fundamental if the only idempotent-separating congruence on S is I_S . Alternatively, by a result of D. Easdown, we may view a semigroup S as fundamental if and only if $\mu(S)=I_S$. Since μ is the identity relation on S/μ [4, Theorem 8] it follows that S/μ is always fundamental.

2. Eventually Regular Semigroups that are Group-Bound.

Theorems 3, 4 and 6 indicate when certain classes of eventually regular semigroups are group-bound or even periodic. Theorem 5 [Theorem 7] indicates when certain classes of eventually regular semigroups have the property that for each member S the semigroup S/μ is periodic [finite]; thus any member of such a class if fundamental is periodic [finite].

LEMMA 1. If the H-class of a^k , H say, is a group then $a^n \in H$ for all $n \ge k$.

Proof. Suppose the identity element of H is e and let y be the group inverse of a^k in H. It follows easily that ea = ae and that $ay = aey = eay = ya^kay = yaa^ky = yae = yea = ya$. Let r be an integer such that kr > n and let $v = a^{kr-n}y^r$. Then since ay = ya, $va^n = a^nv = a^na^{kr-n}y^r = a^{kr}y^r = (a^ky)^r = e^r = e$. Because $n \ge k$ it is clear that $ea^n = a^ne = a^n$. Thus $a^n \in H_e = H$ as required.

COROLLARY 2. If $a^k H a^{k+r}$ with r > 0, then the H-class of a^k is a group.

Proof. Choose $p \ge 0$ such that r divides $k\!+\!p$ with say $rq = k\!+\!p$. Then since a^k H $a^{k\!+\!r}$ it follows easily that a^k H $a^{k\!+\!ri}$ for all $i \ge 1$. In particular when i = q, a^k H $a^{k\!+\!rq}$ and so also $a^{k\!+\!p}$ H $a^{k\!+\!rq\!+\!p}$, whence a^{rq} H a^{2rq} . It follows from Green's theorem that the H-class of a^{rq} is a group. From Lemma 1, a^n H a^{rq} for all $n \ge rq$ and so a^k H $a^{k\!+\!rq}$ H a^{rq} whence the H-class of a^k is a group.

THEOREM 3. Let S be an eventually regular semigroup such that each regular D-class of S contains at most m L-classes of S, for some integer m. Take any $a \in S$ and let k be the least integer greater than or equal to m such that a^k is regular. Then there exists a subgroup H of S such that $a^n \in H$ for all $n \geq k$. In particular S is group-bound.

Proof. Let S, m, and k be as stated in the theorem. The integer k exists since for example $(a^m)^p$ is regular for some $p \ge 1$. Since a^k is regular there is an idempotent e such that $e \ R \ a^k$. For all $0 \le i \le k$, $ea^i(a^{k-i}) = a^k$ and $a^k ua^i = ea^i$ where u is such that $a^k u = e$, whence $ea^i \ R \ a^k$. By definition of m, and because $k \ge m$, there exist $0 \le s < t \le k$ such that $ea^s = ea^t$. Since L is a right congruence, it follows that $ea^k = a^k \ L \ ea^{k+t-s}$ and that $ea^{k-t+s} \ L \ ea^k = a^k$. Because $0 < t-s \le k$, $ea^{k-t+s} \ R \ a^k$ follows from above. Since $ea^{k-t+s} \ R \ a^k$ and a^k is equal to the right translation of ea^{k-t+s} by a^{t-s} and $a^k \in L_{ea}^k - t+s$, Green's lemma yields that $a^k \ R \ a^k a^{t-s}$ whence $a^k \ R \ a^{k+t-s}$. It is now clear that $a^k \ H \ a^{k+t-s}$. It follows that the H-class of a^k is a group by Corollary 2 and so $a^n \ H \ a^k$ for all $n \ge k$ by Lemma 1.

When applied to regular semigroups Theorem 3 reduces to Theorem 15 of Hall [5]. The next result gives a condition that is necessary and

sufficient for a certain class of eventually regular semigroups to be group-bound.

THEOREM 4. Let S be an eventually regular semigroup with only finitely many regular D-classes. Then S is group-bound if and only if S contains no copy of the bicyclic semigroup.

Proof. Necessity is clear since the bicyclic semigroup is not group-bound and any eventually regular subsemigroup of a group-bound semigroup is group-bound. Suppose that S contains no copy of the bicyclic semigroup. Thus no pair of distinct comparable idempotents are \mathcal{D} -related. Take $a \in S$. Since there are only finitely many regular \mathcal{D} -classes and infinitely many powers of a are regular it follows that there exists distinct positive integers m and n such that $a^m \mathcal{D} a^n$ with a^m regular. Since L and L are regular L-classes there exist idempotents $e \in L$ and $f \in L$. Without loss of generality n < m and so L and $f \in L$ and $f \in L$ and $f \in L$ and $f \in L$ butting $f \in L$ and $f \in L$ and $f \in L$ and $f \in L$ butting $f \in L$ butting f

THEOREM 5. Let S be an eventually regular semigroup and let m be an integer such that each regular D-class of S contains at most m idempotents. Then S/μ is periodic. Thus if S is fundamental then S is periodic.

Proof. The following representation of an arbitrary semigroup T will be used. Let X be the set of regular L-classes of T and let Y be the set of regular R-classes of T. Define $\phi: T \mapsto PT_X \times PT_Y^*$ by $s\phi = (\rho_S, \lambda_S)$, where $\rho_S: L_X \to L_{XS}$ if x is regular and xRxs and is undefined otherwise and $\lambda_S: R_X \to R_{SX}$ if x is regular and xLsx and is undefined otherwise. Here PT_Y^* denotes the dual of the semigroup PT_Y . Then ϕ is a representation of T and $\mu(T) = \ker \phi$ (see [3, page 30]). Now put T = S, $Z = \{1, 2, \ldots, m\}$ and let n be an integer

such that b^n is idempotent for each b in PT_Z . Take $c \in S$, choose $k \geq 1$ such that $(c^m)^k$ is regular and put $a = c^k$. It will suffice to show that $a\mu$ is periodic in S/μ . Note that a^m is regular.

Let D be any regular $\mathcal{D}\text{-class}$ of S and let D/L denote the (finite) set of L-classes contained in D. Using the method of Hall [5, Theorem 15] it can be shown that ρ_{α}^{m} maps (D/L) \cap range ρ_{α}^{m} one to one onto itself. It follows that ρ_{α}^{m} H ρ_{α}^{n} H ρ_{α}^{nm} in PT_{X} . Put $Z_{D} = (D/L)$ \cap range ρ_{α}^{m} . Since $|Z_{D}| \leq m$, $(\rho_{\alpha}^{m})^{n}$ maps Z_{D} identically to itself, by the choice of n. Thus ρ_{α}^{mm} maps \cup $\{Z_{D}|D\in\mathcal{D}\}=$ range ρ_{α}^{mm} identically to itself, whence ρ_{α}^{mm} is an idempotent of PT_{X} . Dually, λ_{α}^{mn} is an idempotent of PT_{X}^{*} , whence $(\alpha_{X}^{mn}, \alpha_{X}^{mn}) \in \ker \phi = \mu$ and so α_{X}^{mn} is idempotent in S/μ .

Remark 1. [5, page 19] In general a fundamental regular semigroup in which each \mathcal{D} -class contains one \mathcal{L} -class is not necessarily periodic. As an example let \mathcal{G} be a non-periodic group, let $\mathcal{G}'=\{g'|g\in\mathcal{G}\}$ be a disjoint copy of \mathcal{G} and put $\mathcal{S}=\mathcal{G}\cup\mathcal{G}'$. Extend the multiplication from \mathcal{G} to \mathcal{S} be defining, for all $g,g_1,g_2\in\mathcal{G},\ g'_1g=g'_1g'_2=g'_1$ and $gg'_1=(gg_1)'$. Then \mathcal{S} is a fundamental semigroup, $\mathcal{D}=\mathcal{L}$ and \mathcal{S} is of course not periodic.

THEOREM 6. Let $\,\,$ S be an eventually regular semigroup with only finitely many regular elements. Then $\,\,$ S is periodic.

Proof. Take any $a \in S$. Then $a^k 1$ is regular for some $k_1 > 1$ as for example k_1 could be $2k_0$ where k_0 is an integer such that $(a^2)^k 0$ is regular. Similarly there exists $k_2 > 1$ such that $(a^k 1)^k 2$ is regular and $k_3 > 1$ such that $(a^k 1)^k 2$ is regular. Now

 $k_1 < k_1 k_2 < k_1 k_2 k_3$ and by continuing this process it is clear that there exist distinct integers n and m such that $\alpha^n = \alpha^m$. Thus α is periodic, whence S is periodic.

As a final specialization we have the following theorem:

THEOREM 7. [3, Theorem 15]. Let S be any semigroup with only finitely many idempotents. Then S/μ is finite. Thus if S is fundamental then S is finite.

References

- [1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I. (Mathematical Surveys, 7. Amer. Math. Soc., Providence, R. I. 1961).
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II. (Mathematical Surveys, 7. Amer. Math. Soc., Providence, R.I., 1967).
- [3] P. M. Edwards, "Eventually regular semigroups," Bull. Austral.

 Math. Soc. 28 (1983), 23-38.
- [4] P. M. Edwards, "Fundamental semigroups," Proc. Roy. Soc. Edinburgh Sect. A 99 (1985), 313-317,
- [5] T. E. Hall, "On regular semigroups," J. Algebra 24 (1973), 1-24.
- [6] T. E. Hall and W. D. Munn, "Semigroups satisfying minimal conditions II," Glasgow Math. J. 20 (1979), 133-140.

Department of Econometrics Monash University Clayton Victoria 3168 Australia.