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It is commonly accepted that the breakup criteria of drops or bubbles in turbulence is
governed by surface tension and inertia. However, also buoyancy can play an important
role at breakup. In order to better understand this role, here we numerically study
two-dimensional Rayleigh–Bénard convection for two immiscible fluid layers, in order
to identify the effects of buoyancy on interface breakup. We explore the parameter space
spanned by the Weber number 5 � We � 5000 (the ratio of inertia to surface tension)
and the density ratio between the two fluids 0.001 � Λ � 1, at fixed Rayleigh number
Ra = 108 and Prandtl number Pr = 1. At low We, the interface undulates due to plumes.
When We is larger than a critical value, the interface eventually breaks up. Depending on
Λ, two breakup types are observed. The first type occurs at small Λ � 1 (e.g. air–water
systems) when local filament thicknesses exceed the Hinze length scale. The second,
strikingly different, type occurs at large Λ with roughly 0.5 < Λ � 1 (e.g. oil–water
systems): the layers undergo a periodic overturning caused by buoyancy overwhelming
surface tension. For both types, the breakup criteria can be derived from force balance
arguments and show good agreement with the numerical results.
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1. Introduction

Liquid can break up or fragment in multiphase turbulence (Deane & Stokes 2002;
Villermaux 2007; Wang, Mathai & Sun 2019; Villermaux 2020). This physical
phenomenon is very important for raindrops (Josserand & Zaleski 2003; Villermaux &
Bossa 2009), for ocean waves and the resulting spray (Veron 2015), and even for the
transmission of virus-laden droplets during coughing or sneezing (Bourouiba 2020; Chong
et al. 2021). Once the physical mechanisms governing this important phenomenon are
understood, one can deduce quantitative criteria for the breakup to occur. In turbulence,
for drops or bubbles, the breakup criteria can be deduced from the balance of inertial and
surface tension forces, as developed in the Kolmogorov–Hinze theory (Kolmogorov 1949;
Hinze 1955). This theory well predicts the breakup criteria in experimental and numerical
results in various flow systems, e.g. homogeneous isotropic turbulence (Martínez-Bazán,
Montañés & Lasheras 1999; Perlekar et al. 2012; MuKolmogorov-Hinzeerjee et al. 2019),
shear flows (Rosti et al. 2019), pipe flows (Hesketh, Etchells & Russell 1991) and ocean
waves (Deane & Stokes 2002; Deike, Melville & Popinet 2016).

While the classical Kolmogorov–Hinze theory considers only surface tension and
inertial forces, in many multiphase turbulent flows also buoyancy can play an important
role. Examples of multiphase buoyant turbulence include the hotspots and superswells in
the Earth’s mantle (Davaille 1999; Tackley 2000) and even flows during sneezing and
exhalation (Bourouiba, Dehandschoewercker & Bush 2014). In such flows, the breakup of
the interface between the fluids is the key phenomenon. Yet, the exact mechanisms that
drive interface breakup when buoyancy is crucial are unknown.

The objective of the present work is to shed light on these mechanisms. As examples
for turbulent flow where buoyancy is important and at the same time can easily be
tuned, we take thermal convection, namely Rayleigh–Bénard (RB) convection (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012) of two
immiscible fluids. We numerically investigate the breakup mechanisms of the interface
between the two immiscible fluids. The immiscible fluids are first arranged in two layers
according to their densities and then heated from below and cooled from above. Most
previous studies of such two-layer RB convection were conducted in the non-turbulent
regime (Nataf, Moreno & Cardin 1988; Prakash & Koster 1994; Busse & Petry 2009;
Diwakar et al. 2014). Experimental studies in the turbulent regime were reported by Xie
& Xia (2013), who focused on the flow structures in each layer and the coupling modes
between the flows in the two layers, including viscous coupling and thermal coupling.
Besides the classical rectangular/cylindrical configuration, the two-layer RB convection
in spherical-shell geometry was also numerically studied by Yoshida & Hamano (2016).
However, these previous studies only considered the case for strong surface tension, where
the interface between the layers does not break up. In this study, we will for the first time
explore the case with interface breakup, which happens when surface tension is sufficiently
small.

The control parameters of two-layer RB convection are the density ratio Λ between
two fluids and the Weber number We, which is the ratio of inertia to surface tension.
We will keep the Prandtl number Pr (a material property) and the Rayleigh number Ra
(the dimensionless temperature difference between the plates) fixed, at values allowing
for considerable turbulence. Our main result will be the phase diagram in the parameter
space (We,Λ), in which we identify the non-breakup and breakup regimes. At increasing
We, we observe two distinct types of interface breakup. At small Λ � 1, the mechanism
is well-described by the Kolmogorov–Hinze theory. However, at large 0.5 < Λ � 1, the
breakup is dominated by a balance between buoyancy and surface tension forces, leading
to a periodic overturning-type breakup.
913 A9-2
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The organization of this paper is as follows. The numerical methodology is introduced
in § 2. Then in § 3, we validate our code by studying droplet fragmentation in thermal
turbulence and favourably compare the results to the Kolmogorov–Hinze theory. The main
results on the interface breakup in two-layer RB turbulence are presented in § 4, including a
discussion of the first and second types of interface breakup in §§ 4.1 and 4.2, respectively,
and the analysis of the critical Weber number for interface breakup in § 4.3. We finalize
and further discuss our findings in § 5.

2. Methodology: Cahn–Hilliard approach coupled to finite difference scheme

In this study, we performed the simulations in a two-dimensional (2-D) rectangular domain
with aspect ratio Γ = 2 (width divided by height). Although 2-D RB convection is
different from a three-dimensional (3-D) one, it still captures many essential features
thereof (van der Poel, Stevens & Lohse 2013). The direct numerical simulations solver
for the Navier–Stokes equations is a second-order finite-difference open source solver
(Verzicco & Orlandi 1996; van der Poel et al. 2015), namely AFiD, which has been
well validated and used to study various turbulent flows (Stevens et al. 2018; Zhu et al.
2018b; Blass et al. 2020; Wang et al. 2020a,b). To simulate multiphase turbulent flows, we
combine AFiD with the phase-field method (Jacqmin 1999; Ding, Spelt & Shu 2007; Liu
& Ding 2015), which has also been successfully applied to the interfacial (Zhu et al. 2017;
Chen et al. 2018; Liu et al. 2018; Chen et al. 2020) and turbulent flows (Roccon, Zonta &
Soldati 2019; Soligo, Roccon & Soldati 2019a).

We consider two immiscible fluid layers of the same volume placed in the domain,
named fluid H for the heavier fluid initially at the bottom and fluid L for the lighter fluid
initially at the top. The mathematically sharp interface between two fluids is modelled by
a diffuse interface with finite thickness, and can be represented by contours of the volume
fraction C of fluid H. The corresponding volume fraction of fluid L is 1 − C. The evolution
of C is governed by the Cahn–Hilliard equations,

∂C
∂t

+ ∇ · (uC) = 1
Pe

∇2ψ, (2.1)

where u is the flow velocity, and ψ = C3 − 1.5C2 + 0.5C − Cn2∇2C is the chemical
potential. The Cahn number Cn = 0.75h/D, where h is the mesh size and D the domain
height, and the Péclet number Pe = 0.9/Cn are set the same as in Liu, Gao & Ding (2017)
and Li, Liu & Ding (2020). To overcome the mass loss in the phase-field method, a
correction method as proposed by Wang et al. (2015) is used. This correction method
resembles that used in Soligo, Roccon & Soldati (2019b) and exhibits good performance
(see § 3).

The motion of the fluids is governed by the Navier–Stokes equation, heat transfer
equation and continuity,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P +
√

Pr
Ra

∇ · [μ(∇u + ∇uT)] + F st +
(
ρθ − ρ

Fr

)
j, (2.2)

∂θ

∂t
+ u · ∇θ =

√
1

PrRa
1
ρCp

∇ · (k∇θ), (2.3)

∇ · u = 0, (2.4)

here given in non-dimensionalized form. We have used the material properties of fluid
H, the domain height D, the temperature difference Δ between plates, and the free-fall
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velocity U = √
αgDΔ to make these equations dimensionless, where α is the thermal

expansion coefficient of fluid H and g the gravitational acceleration. Then we define
ρ = C +Λ(1 − C) as the dimensionless density, P the dimensionless pressure, μ the
dimensionless dynamic viscosity, Cp the dimensionless specific heat capacity, k the
dimensionless thermal conductivity, F st = 6

√
2ψ∇C/(Cn We) the dimensionless surface

tension force, θ the dimensionless temperature, j the unit vector in vertical direction. The
superscript T stands for the transpose. Note that ρ, μ, Cp and k in general vary in space.

In thermal flows, the density also depends on the temperature, so the dimensional
density is defined as ρ̂ = ρ̂H(T)C + ρ̂L(T)(1 − C), where the subscripts H and L represent
fluid H and fluid L, respectively, and ρ̂i(T) = [1 − α(T − Tc)]ρ̂i(Tc) with Tc being the
temperature on the top cold plate. Then we rewrite the dimensional density as ρ̂ =
[ρ − α(T − Tc)ρ]ρ̂H(Tc). Further considering the Oberbeck–Boussinesq approximation
in the Navier–Stokes equation (2.2), we have the dimensionless density ρ in the inertia
term, ρθ , as the buoyancy term, and ρ/Fr as the gravity term, which cannot be ignored as
in the single phase simulation, due to the different densities of the fluids. Furthermore, we
only consider the case without phase transition.

The properties of fluid H and fluid L are set as follows: their density ratio is Λ =
ρL/ρH � 1. Except for the density ρ, all other properties of the two fluids are the
same. The other dimensionless parameters are We = ρHU2D/σ , Ra = αgD3Δ/(νκ),
Pr = ν/κ , the Froude number Fr = U2/(gD) (the ratio of inertia to gravity). Here σ is
the surface tension coefficient, ν = μ/ρ the kinematic viscosity, and κ = k/(ρCp) the
thermal diffusivity. We fix Ra = 108, Pr = 1, Fr = 1 and Γ = 2 (these values chosen to
both ensure flows in the turbulent regime and simplify the simulations), and only vary We
from 5 to 5000 and Λ from 0.001 (e.g. air–water system) to 1 (e.g. oil–water system).

The boundary conditions at the top and bottom plates are set as ∂C/∂j = 0, j · ∇ψ = 0,
no-slip velocities and fixed temperature θ = 0 (top) and 1 (bottom). Periodic conditions
are used in the horizontal direction. All the simulations begin with the same initial velocity
and temperature fields, which originate from a well-developed turbulent flow at We = 5
and Λ = 1. Uniform grids with 1000 × 500 gridpoints are used, which are sufficient for
Ra = 108 and Pr = 1, consistent with the grid resolution checks in Zhang, Zhou & Sun
(2017). The details of the discretizations can be found in Ding et al. (2007), Verzicco &
Orlandi (1996), and Dodd & Ferrante (2014).

3. Droplet fragmentation in turbulent flow

We have verified our code against the existing theory from the literature. In this section,
RB convection with drops are simulated. Initially, the temperature field has a linear profile,
the velocity field is set to 0, and a big drop of fluid H with a diameter of 0.5D is placed at
the centre of the domain. The plates are superhydrophobic for fluid H, i.e. C = 0 is used
on both plates in the verification cases. We setΛ = 1 and We from 2000 to 16 000, and use
uniform grids with 2000 × 1000 gridpoints. Note that the value of We is large because it is
a system Weber number, and the local Weber number of drops calculated from simulations
is of the order of 1.

From the snapshot with the advecting drops in figure 1, we observe the large-scale
circulation, which is well known from single phase convection (Krishnamurti & Howard
1981; Xi, Lam & Xia 2004; Xie, Ding & Xia 2018; Zhu et al. 2018a). Figure 2(b) displays
the distribution of the drop size S, which follows the scaling law (S/D)−10/3 (Garrett,
Li & Farmer 2000; Yu, Hendrickson & Yue 2020) valid for large drops. This scaling
is consistent with experimental and other numerical results where the breakup of waves
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Two-layer thermally driven turbulence

Figure 1. Snapshot with the advecting drops in RB convection at density ratio Λ = 1 and the system Weber
number We = 16 000. Drops are in grey, and the red and blue lines denote the plates with non-dimensional
temperature θ = 1 and 0, respectively. The corresponding movie is shown as supplementary material available
at https://doi.org/10.1017/jfm.2021.14.

(Deane & Stokes 2002; Deike et al. 2016) or of a big drop (MuKolmogorov-Hinzeerjee
et al. 2019) was studied. Moreover, the maximal size of drops Smax (see figure 2c) well
agrees with the Kolmogorov–Hinze scaling law Smax/D ∼ We−3/5, which originates from
Hinze (1955),

SHinze ∼
(
σ

ρ

)3/5

ε−2/5, (3.1)

where SHinze is the Hinze length scale and ε the energy dissipation rate of the turbulent
flow. In the Kolmogorov–Hinze theory, one assumption is that the local Weber number
defined by the size and velocity of the drops adjusts such that it is Welocal ∼ O(1). Indeed,
in our simulations, the local drop size adjusts correspondingly, so this assumption is
fulfilled. The second assumption is that the flow exhibits inertial subrange scaling in the
region of wavelengths comparable to the size of the largest drops. The spatial location
where this assumption holds in RB convection is in the bulk region of convection (Lohse
& Xia 2010). Therefore, the Kolmogorov–Hinze theory can indeed also be reasonably
applied to 2-D RB convection. At the same time, the results show that the code and the
approach give consistent results. Besides, figure 2(a) shows the temporal evolution of mass
error Emass = |Mt − M0|/M0, where Mt is the mass of fluid H at time t and M0 the initial
mass. The results indicate good mass conservation.

4. Interfacial breakup in two-layer turbulent thermal convection

In two-layer RB convection with an initially smooth interface between the two fluids (Xie
& Xia 2013), the densities of the fluids depend on both Λ and the local temperature. At
small Λ, for example, the air–water system with Λ = 0.001, fluid H (water) is always
heavier than fluid L (air) even if fluid H, as the bottom layer, is hotter. In contrast, at large
Λ, e.g. an oil–water system withΛ ≈ 1, fluid H (water) is hotter than fluid L (oil), so it can
be lighter. So, depending on the value ofΛ, two distinct types of flow phenomena emerge.

4.1. First type of interface breakup occurring for small Λ � 1
At small Λ, fluid H forms the bottom layer and fluid L the top one, and large-scale
circulations are observed in each layer between the interface and the respective plate,
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Figure 2. (a) Temporal evolution of mass error Emass and (b) probability density function (PDF) of the drop
size S/D at We = 16 000, where D is the domain height and S = 2

√
A/π with A being the drop area. (c)

Maximal drop size Smax/D as function of We, where Smax is measured in the same way as in Hinze (1955), that
is, the diameter of the equivalent drop occupying 95 % of the total dispersed area.

as seen in figure 3(a). With increasing We, i.e. decreasing effects of surface tension
compared with inertia, the interface becomes more unstable. At low We (figure 3a),
the interface only slightly deforms because the surface tension is large enough to resist
the inertia, such that the convection rolls are well-ordered. The temperature profile is
similar to that obtained from two-layer RB convection experiments (Davaille 1999). As
We increases (figure 3b), the interface undulates due to the plumes. Each crest and trough
on the interface is caused by a rising, or, respectively, settling plume in the heavier fluid
H. In this situation, inertia is resisted by gravity together with surface tension. When We
keeps increasing (figure 3c), the interface eventually breaks up and drops detach from the
interface between two layers.

This ‘first type of interface breakup’ (as we call it) occurs at small Λ. The process
of the breakup begins from a settling plume in fluid H thanks to which the interface is
pulled downwards, leading to a filament (or trough) on the interface (see figure 4a). If the
filament length Sfila (defined in figure 4a) grows larger than the Hinze length scale SHinze,
the filament will pinch off from the interface. Within the Kolmogrov–Hinze theory (Hinze
1955), the Hinze length scale SHinze in (3.1) is determined by the energy dissipation rate ε
of the turbulent flow. As seen from figure 3(c), more drops of fluid L exist in fluid H than
of fluid H in fluid L. This finding resembles the breakup of the ocean waves (Deane &
Stokes 2002), leading to more bubbles in water than drops in air. The reason is that SHinze
is smaller in fluid H than in fluid L as ρH > ρL.

4.2. Second type of interface breakup occurring for large 0.5 < Λ � 1
We now come to the large Λ ≈ 1 case. Since fluid H carries hotter fluid than fluid L,
due to thermal expansion it can become lighter than fluid L, inverting the original density
contrast at equal temperature. In this situation, buoyancy drives fluid H upwards and fluid
L downwards. This leads to wave crests and troughs, as shown in figure 5. If We is low
(figure 5a), the surface tension can maintain a stable interface, though it is wobbling.
However, if We increases (figure 5b), the wobbling wave on the interface can amplify
more and more until it finally touches the upper and/or lower plate and breaks up. We call
this type of interface breakup the ‘second type of breakup’.

For this second type of interface breakup, the breakup process is strikingly different
from the first type. A periodic overturning is observed both in the fluid dynamics and
in the heat transfer (see figures 5c and 6): after interface breakup at t1, fluid H initially
at the bottom gradually rises above fluid L and finally contacts the upper cold plate.
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Figure 3. First type of interface breakup occurring for smallΛ � 1: temperature field and average temperature
profile of two-layer RB convection at Λ = 0.3 for (a) We = 5, (b) We = 600 and (c) We = 2000. The
corresponding movies are shown as supplementary material.
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Figure 4. (a) Detachment process of a drop at We = 2000. (b) Time-averaged number of the drops of fluid
L emerged in fluid H for various We, where the empty circles denote the non-breakup regime and stars the
breakup regime.

The increased wetted area of the hotter fluid on the upper cold plate causes a strong
enhancement of the Nusselt number Nu, in the shown case five times of Nu without
breakup, as shown in figure 6. Then, fluid H on the top gets cooler and thus heavier,
while fluid L at the bottom gets warmer and thus lighter. Once again, the breakup occurs
after t3 and the fluids swap their positions (see figure 5c). Since fluid L is lighter than fluid
H at the same temperature, it is easier to rise and touch the cold plate. Thus, with fluid L
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Figure 5. Second type of interface breakup occurring for large 0.5 < Λ � 1: snapshots at Λ = 0.8 for two
different We. (a) Wavy interface for We = 20. (b) Breakup and (c) overturning of interface for We = 30 at
different times t1 = 617, t2 = 640, t3 = 661, t4 = 730 and t5 = 803. The ti are also marked in figure 6. The
colour map is the same as in figure 3. The corresponding movies are shown as supplementary material.
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Figure 6. Temporal evolution of the Nusselt number Nu at the bottom plate for We = 20 (black) and We = 30
(blue). The inset shows a zoom of the temporal evolution of Nu for We = 30 and the corresponding wetted
length W normalized by D of fluid H at the top plate.

as the bottom layer, the temperature of the bottom layer during the breakup is lower than
that when fluid H is the bottom layer. This is also reflected in the heat transfer. The peak
of Nu after t3 is smaller, only three times of Nu without breakup, and the preparation time
for breakup from t2 to t3 is shorter than that from t4 to t5.

4.3. Critical Weber number for interface breakup
The full phase diagram in the parameter space (We,Λ) – revealing when and what regime
occurs – is plotted in figure 7. When We is larger than a certain critical value Wec, which
depends on Λ, the interface breaks up. It is noteworthy that the transition between the
non-breakup and breakup regimes shows two distinct trends, which correspond to the two
above identified types of interface breakup, respectively. The natural question that arises
here is then: What sets the critical value Wec at given Λ?
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Figure 7. Phase diagram in the We–Λ parameter space. Empty circles denote the non-breakup regime and
stars the interface breakup regime. Symbols with boldface are the cases shown in figures 3 and 5. The grey
shadow is a guide to the eye. The red and green lines denote the criteria, (4.3) with prefactor 1590 and (4.6)
with prefactor 13.3, for the first and second type of interface breakup, respectively. The solid parts of the lines,
where the theory is supposed to hold, indeed nicely agree with the numerical results.

In the first type of interface breakup (smallΛ � 1), detaching drops are generated from
the initial interface when the filament length Sfila is of the order of the Hinze length scale
SHinze. We estimate Sfila by analysing the force balance: the sum of gravity and surface
tension force counteracts the inertial force,

δρgSfila + σ

Sfila
∼ ρHU2

H, (4.1)

where UH = √
αg(D/2)(Δ/2) and δρ is the density difference from the bottom (fluid H)

to the top (fluid L) of the filament. We define δρ = ρH(TH)− ρL(TL), where Ti is the
temperature of fluid i. We further found that the value of gravity is one order of magnitude
greater than surface tension based on the data of cases near the transition region in the first
type. This indicates that the generation of the filament is dominated by gravity and inertia.
Therefore, we neglect the term σ/Sfila in (4.1). Note, however, that the surface tension
force still plays an important role to determine SHinze in (3.1). Combining (4.1), (3.1) and
the exact relation ε = (ν3/D4)(Nu − 1)RaPr−2 (Shraiman & Siggia 1990; Ahlers et al.
2009), the dimensionless form of Sfila ∼ SHinze yields

[(
1
Fr

− θH

)
−Λ

(
1
Fr

− θL

)]−1

∼ We−3/5
c

(
Nu − 1√

RaPr

)−2/5

, (4.2)

with the non-dimensional temperatures θi = (Ti − Tc)/Δ with i being H and L. Note that
θH and θL are both taken as 0.5 given that the filament is generated near the interface,
where the temperature is 0.5. To further simplify (4.2), Nu is regarded as constant because
the simulation data show that Nu varies only within 15 % in the non-breakup regime. Given
that Nu, Ra, Pr and Fr are all constant, the criteria for the first type of interface breakup

913 A9-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.14


H.-R. Liu and others

simplifies to

Wec ∼ (1 −Λ)5/3 . (4.3)

In the second type of interface breakup (large Λ ≈ 1), the hot fluid H is lighter than
the cold fluid L, so the buoyancy caused by the unstable temperature stratification can
overcome the surface tension, leading to waves on the interface. The buoyancy acting on
the wave originates from the density difference between the fluid above and below the
wobbling interface (see figure 5). The balance is described by

[ρL(TL)− ρH(TH)]gD ∼ σ

D
, (4.4)

where Ti is the average temperature in the bulk of fluid i, and the interface deformation
is of the order of D because the breakup occurs when the wave amplitude is larger than
half of the plate distance D, thus that the interface touches the plates (see figure 5b). The
dimensionless form of (4.4) reads

Λ

(
1
Fr

− θL

)
−

(
1
Fr

− θH

)
∼ 1

Wec
. (4.5)

From the temperature profile in figure 3, we estimate θH = 0.75 and θL = 0.25. Then (4.5)
simplifies to

Wec ∼ (Λ− 1
3 )

−1. (4.6)

Figure 7 shows that (4.3) and (4.6) indeed well describe the scaling relations of transitions
between the non-breakup and breakup regimes.

In the breakup regimes at largeΛ ∼ 1, as We increases, the periodic overturning of fluid
layers gradually becomes chaotic with more and more drops generated from the breakup
of the interface. Eventually, the flow pattern is determined by the advection of the small
drops (figure 1). There is no clear boundary in the parameter space for this transition and
it happens over a considerable range in parameter space. Therefore, in this study, we only
focus on when and how the breakup occurs.

5. Conclusions

In summary, we have numerically shown two distinct types of interface breakup in
two-layer RB convection, which result from different dominant forces. At small Λ � 1, a
filament is generated on the interface due to the competition of inertial force and buoyancy.
The interface breaks up in the form of filament detachment when the local filament
thicknesses exceed the Hinze length scale. At large Λ with roughly 0.5 < Λ � 1, the
periodic overturning-type breakup is caused by buoyancy overwhelming surface tension.
From the force balance arguments above, we derive the breakup criteria for the first and
second types, respectively. Our approaches show good agreement with the numerical
results.

The threshold of regimes in this work is derived from a force balance argument, which is
not limited to 2-D. For 3-D, of course, some expressions need to be modified, for example,
surface tension force from Fst = σ/R in 2-D to Fst = σ(1/R1 + 1/R2) in 3-D with R, R1
and R2 being the curvature radii. Besides, we also note that previous studies also showed
that 2-D and 3-D RB convection have similar features for Pr � 1, see van der Poel et al.
(2013). Therefore, we expect our results from 2-D flow could be directly extended to 3-D
flow.
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Our findings clearly demonstrate that interface breakup in multilayer thermally driven
turbulence cannot be solely described by the Kolmogorov–Hinze theory, which is only
applicable when the lower layer is much denser than the upper layer or when thermal
expansion effects do not play a role. Interestingly, when the lower layer is less dense
than the upper layer, the system is unstably stratified, leading to the new breakup type
described in this paper where buoyancy and surface tension are the dominant forces. It
would be interesting to test our predictions of (4.2) and (4.5) for the transitions between
the different regimes in a larger range of the control parameters Ra, Pr and Fr, which were
kept fixed here. More generally, our findings emphasize the role of buoyancy in interfacial
breakup. Clearly, buoyancy will also play a prominent role in the interfacial breakup in
other turbulent flows, such as Bénard–Marangoni convection, and horizontal and vertical
convection. All these phenomena add to the richness of physico-chemical hydrodynamics
of droplets far from equilibrium (Lohse & Zhang 2020).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.14.
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