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REGULAR AND MERCERIAN GENERALIZED 
LOTOTSKY METHOD 

J. F. MILLER A N D H. B. SKERRY 

ABSTRACT. Necessary conditions and sufficient conditions are 
obtained for the generalized Lototsky summability matrix method 
(F, dn) to be regular and Mercerian. In particular, a set of conditions 
equivalent to being regular and Mercerian is given for real {dn} and 
for complex {dn} eventually in any closed half-plane containing the 
origin. 

1. Introduction. We are concerned with finding conditions under which the 
generalized Lototsky summability method (F, dn) is both regular and Mer
cerian, i.e., is equivalent to the identity matrix method I. We will need some 
background material. 

DEFINITION 1.1. The generalized Lototsky method (F, dn) is defined by the 
triangular matrix A = (a^) which has a00 = 1, ^ok = 0 when k>0, and 

(1.2) * + 4 - v 
j = l 1"»""] k=0 

Here {c^}* is an arbitrary complex sequence with d ^ - 1 . 
To facilitate the notation, we will use (a + c^)! for n?=i ( a + 4f) anc* C(0, R) 

for the circle of radius JR centered at the origin. 
Cauchy's formula, together with (1.2), yields 

1 1 f (z + d n ) ! J 
(L3) ^=ÔT^2^Jc(0,R)^^-dz' 
If A~1 = (bnk), an explicit formula for bnk (see [3]) is 

(1.4) bnfc = (l + d k ) ! ( - l ) n - k ^ L T f (
 Z] ..dz, 

Am JC(O,R) \Z — ak+i)\ 

assuming d, is interior to C(0, JR) for / = 1 , . . . , k + 1 , and d0 = 0. 
A summability method is regular if it sums every convergent sequence to its 

natural limit, and is Mercerian if it sums the convergent sequences but no 
others. Necessary and sufficient conditions for a matrix A = (a^) to be regular 
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are (see [1], p. 8) 
(i) l im^ooIk^oOnk^l , 

(ii) limn_^o Onk = 0 fc>r each fc > 0 , 
(iii) ||A|| = s u p n I ^ o k k | < o o . 

A regular normal (lower triangular with non-zero diagonal elements) matrix A 
is Mercerian if and only if ||A_1||<oo. 

2. Regular and Mercerian (F, dn) methods 

THEOREM 2.1. If (F, dn) is regular and Mercerian, then 
(i) (14-^ ) ! is bounded and bounded away from 0, 

(ii) YA di is bounded, 
(iii) YA df is bounded, 
(iv) | d j < l for each n. 

Proof, (i) From the regularity condition (iii) above, |ann | = 1/|1 + d n | !< | |A| |< 
oo, and, because A is Mercerian, |fenn| = |14-d,^)! ^||y\_1 | |<oo. (ii) arl>n_i = 
Z Ï d j a + djl, so E ï ^ h k . n - i l - l l + dnlî^llAMlA-1!!. (iii) Because 

^ n - 2 (1 + 4.)! 

and |an>„_2|^||A||, it follows that 

£44, l<i</<n, 

(2.2) 144 <||A|H1 + 4,|! = 0(1), l s K j s n . 

Now (see [3], (3.2)), 

l*w2Hi+4,-2|! Z df + Z44 <||A-

with l < i < / < n - l i n the second sum, and this, together with (i) and (2.2) gives 
the result, (iv) Because A is regular and Mercerian, so is A - 1 , whence A - 1 has 
null columns. In particular, bn0 = ( -di ) n —> 0, which implies \dx\ < 1. If N is an 
arbitrary positive integer greater than 1, form the sequence {d^}™ from {d^ by 
interchanging dx and dN, i.e., set 

d'H 
dN, n = l 
dun = N 
dnAînîN. 

From (1.2) it is clear that the matrix A' , defining the (F, d'n) method, agrees 
with A except for possibly the first N—\ rows after row 0, so the two matrices 
sum exactly the same sequences and are consistent. It follows that A ' is also 
regular and Mercerian, and thus so is its inverse, so b'n0 = (-d[)n = (~dN)n —» 0 
and | d N | < l . 
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LEMMA 2.3. Let (i) Y?=i \uj(z)\k+1 converge uniformly on C(0, R), and, if 

vi(z)= i (-D"-iv-i[if,(z)r, 
v = l 

let (ii) Xf=i uj(z) be bounded uniformly in n and z on C(0, !?). Suppose that on 
C(0, # ) , for each n we have ^(z) ^ — 1, |wn(z)| ^ 1, and u^ is continuous. Then 
(l + u^z))! is bounded and bounded away from zero uniformly in n and z on 
C(0, R). 

Proof (This is essentially problem 5, p. 294, of [2].) Write 

11 + 1^(2)1! = |exp[XLog(l + u,(z))}| 

(2.4) 
= e x p | R e £ L o g ( l + ii,(z))} 

to see that the problem reduces to showing that the last exponent is bounded. 
The first hypothesis implies that |u,.(z)|<l/2 on C(0, JR) for j>N>0. But if 
| w | < l / 2 , we have 

I JL ™V\ 
,|k + l Log(i+w)-z (-ir1— 

V I 
so for / > N it follows that |Log(l + wJ(z))-i;J(z)|<|MI(z)|k"Hl, whence 

XlLogU + u ^ z ) ) - ^ ) ! 
i 

converges uniformly on C(0, R). The continuity of w, and (ii) suffice to insure 
that YA Log(l + Uj(z)) is bounded uniformly in n and z on C(0, R), so the result 
follows from (2.4). 

LEMMA 2.5. Suppose there is a positive integer k such that 
(0 Hn=i d\ is bounded in N for each j (j = 1 , . . . , fc), and 

Then (l + dN/z)! is bounded and bounded away from 0 uniformly in N and z 
on any C(0, R) to which the d^s are interior. 

Proof. Apply Lemma 2.3 with un(z) = dnlz. We have 

t K/z|k+1 = (W)k+1lK|k+1<œ 
and 

n = l 

I | N k / - i \ v —1 

n = l I 

k ( 1 \ v - l N 

, = 1 VZ „ = 1 

;kM, 
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where 

M = mdLx(llRY 
v,N 

so the hypotheses of the lemma are met. 

THEOREM 2.6. If | d j < 1 for every n, and there exists a positive integer fc such 
that Y,n=i\dn\k+1 converges, and Y,n=i d]

n is bounded in N for each j , j = 
1 , . . . , fc, then the (F, dn) method is regular and Mercerian. 

Proof. Choose R so that \dn\<R<l for each n. By Lemma 2.5 there is an 
M such that for every n we have \l + dJz\\^M on C(0, R), i.e., |z + d j ! < 
M|z | n . It is also true that there is an e > 0 such that | l - h d j ! > £ for every n. 
Then, from (1.3) and Cauchy's estimate, follows 

(2.7) | a J < M R n - 7 e , 

whence 

n A/f/p 
||A|| = s u p I | a J = s s u p ( A t f e ) £ R™ <z—L-, 

as well as limn lo^l = 0. It follows that the (F, dn) method is regular. The above 
lemma implies that | l - d n / z | ! > 8 > 0 on C(0,R) for each n, so from (1.4) 
follows 

\bnv\<\l + dv\\R
n-v/8, 

so 

l l A ^ l h sup X \bnv\ = 0(1)/8(1 - R ) . 
n 

v 

Thus (F, dn) is Mercerian. 

This now leads to our main result, 

COROLLARY 2.8. If each dn is real, then necessary and sufficient conditions for 
the (F, dn) method to be regular and Mercerian are that \dn\<l for every n, YX &» 
be bounded, and YA dl<°°. 

Proof. The necessity follows immediately from Theorem 2.1. The sufficiency 
follows from Theorem 2.6 with fc = 1. 

This corollary generalizes Theorem 3.18 in [3]. However., this is not the 
strongest form we can obtain. 

COROLLARY 2.9. If d^ is eventually in the closed upper half-plane or any 
rotation of it, then (F, d») is regular and Mercerian if and only if | d j < 1 for each 
H, Hï dv is bounded, and £ ï d\ is bounded. 

I d± 
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Proof. The necessity follows from Theorem 2.1. To see that the conditions 
are also sufficient, suppose at first that d^ is eventually in the closed upper 
half-plane (UHP), so that if dn = xn + iyn, then y n ^ 0 for all large n. The 
boundedness of Xï^2, implies that of its real part Y,i(xl~~yl)- Similarly, the 
boundedness of Xï dv implies the convergence of XT yv, and hence that of 
XT yl- But then Xï x2, is bounded and XT *l converges. It follows that XT | d j 2 < 

oo. The result now follows from Theorem 2.6 with fc = 1. Now suppose d^ is 
eventually in a rotation of UHP through the angle a. Let d'n = e~lOLdn ; then d'n is 
eventually in UHP. Clearly, the boundedness of Xï d'v and Xï (d'v)

2 follow from 
that of Xï dv and Xï dl, so XT K | 2 = XT k | 2 < ° ° . Theorem 2.6 gives the result. 

A result of a similar nature which substitutes sectors of a circle for a 
half-plane is 

COROLLARY 2.10. Let \dn\<l for each n and suppose that there is a positive 
integer k such that Xv=i à\ is bounded in n for each j , j = 1 , . . . , k. Let 0 < e < 1 
and suppose that if arg d^ = 0n, then 0n eventually lies in the union of the k 
sectors defined by 

(4J-1)TT e A (4/4-1)77 e . „ „ 

(2.11) - J ^ + ^ A r g z ^ L . - - - , J = 0 , l , . . . , k - 1 . 

Then (F, <i„) is regular and Mercerian. The result also holds for any rotation of 
these k sectors. 

Proof. If j = k and dn = rn exp(i0n), then K = i d v H E U i r*expOfc0v)|<M 
for each n, so |X"=i ^ cos fc0v| < M for each n. But, because kSv is eventually in 
[-0*r/2) + e, ( i r /2)-e] (mod27i), cos(fc0v)>ô>O for all large v. It follows that 
X T ^ =XT|dv |k<°°, and Theorem 2.6 gives the result. If the fc sectors are 
rotated through the angle a, then an argument similar to that used in the proof 
of the above corollary shows that the result still holds. 

Theorem 2.6 and its corollaries require that Xn l<4|k converges for some 
positive integer fc. It turns out, however, that this is not a necessary condition 
for a generalized Lototsky method to be regular and Mercerian. In order to 
present the example which demonstrates this, we need 

THEOREM 2.12. If dn-^0, then (F, d^) is regular. 

Proof. If 0 < J R < 1 , (1.3) implies that 

1 If (z + dnV. 1 
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Because 1 + x < ex for all real x, we may write 

[March 

z + 4, 
1 + 4, 

< e x p l - l + 
z + d. 

= exp 

exp 

1 + 4, 
/|2| + K | - | 1 - K | | \ 
V ll + d̂ l / 

/ R + l 
VU + dJ ' 

R - 1 + 2K | \ 
4,1 r 

)= e x p l IÏTZÎ j 

exp( — 
+ 

14,1̂ 1 

ki<i. 

There exist N and e > 0 such that i ? - l + 2 | 4 , | < - e and | 4 , | < 1 when v>N. 
Moreover, R-l + 2\dv\<R + l when 1 < ^ < N and | 4 , | < 1 . Thus, 

(2.13) 

. , 1 (£ R + l £ -e \ 

(2.14) 

= 0 ( l ) ^ e x p ( - e | i i r ^ ) - 0 as „ - * » , 

so the (F, d j matrix A has null columns. From (2.13) follows 

= 0( R - ,exp(- e î i i ï ^). 

Because ll + d j - 1 - * 1, so does its Cesàro transform: 

1 n 1 
l i m ~ Z M , , i = i; 

it follows that there is an a > 0 such that the transform exceeds a for all large 
n, whence 

(2.15) e ] T | l + dvl 1 > n e a > 0 for all large n. 

We may assume that 13 has been chosen in (0,1) so that log(lAR) = ea. Then 
from (2.15) follows 

(2.16) e Ï ll + d J - ^ - e V l l + ^ r H n - l o g O L / K ) 

for large n. Choose 8 in (0,1) so that - e l îMl + d J - 1 = log(ô). Then (2.16) 
implies / n \ 

exp e X ll + d.I'M^S/J?" 
^ N+l ' 
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for large n, whence (2.14) gives £ k 10^1 = 0(1)18, so ||A||<<». It follows that A 
is regular. 

By choosing d^ = e inW2/log(n + 2) (n = 1, 2 , . . . ) , it is possible to show (mak
ing use of Theorem 2.12) that (F, d„) is regular and Mercerian, even though in 
this case we have £ n | d j k =+ 0 0 for every positive integer fe. This example 
shows that the hypotheses of Theorem 2.6, while sufficient, are not all 
necessary. 
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