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The systematic study of identities in groups was begun by B. H. Neumann in
1937, [7]. Although many special loop identities have been extensively investigated,
there is not, as yet, a general theory of identical relations in loops. We cannot
hope that such a theory will be as rich in results as in the group case (except in
the sense that loop theory includes group theory) but there are many interesting
problems, including some which have no analogue in the associative case.

After preliminary remarks on varieties and free loops, we begin a classifica-
tion of loop identities and loop varieties by proving the following loop version of
the well-known group theorem, [7]. Any set of identical relations in a loop is
equivalent to a collection of commutator-associator identities and an identity

x" •/>(*) = 1

where p(x) is a commutator-associator word (we write x" for right-powers, "x for
left-powers).

A non-trivial variety and the set of identities it satisfies is called anti-associative
(anti-finite) if it contains no non-trivial associative (finite) loops. We construct
examples of such varieties and give an example of a finite loop satisfying the anti-
associative identity x(x • (1/x)) = 1. Thus, although anti-finiteness clearly implies
anti-associativity, the converse is not true. We prove that a variety of loops is
anti-associative if and only if it satisfies an identity x • p(x) = 1, where p(x) is a
commutator-associator word. An example is given of a collection of uncountably
many anti-finite varieties of loops, each of which contains the set of identities

n l x = y ! + 1 n = 3 , 4 , 5 , •••

in the identities it satisfies. There are in fact, uncountably many anti-finite varieties
defined by equationally complete sets of identities. The other atoms in the lattice
of loop varieties are the varieties of abelian groups of prime exponent and a
countable number of anti-associative but not anti-finite varieties.

1 This research was supported in part by NSF Grant GP 6597.
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The general theory of loop varieties including properties of fully invariant
subloops, products of loop varieties, nilpotent varieties, will be developed in
forthcoming papers.

1. Free loops

A loop is usually defined as a set L, closed under a multiplication JC • y,
containing a neutral element 1 such that 1 • x = x • 1 = x and such that for any
a, b in L, there are unique solutions u, v to the equations au = b,va = b. We will
find it necessary to use the alternative definition in terms of three binary operations
x • y called multiplication, x\y called left division and xfy called right division.
(See [2], [3].) A loop is a non-empty set L closed under these three operations
and satisfying the following axioms for all x, y

x • (x\y) = J> x\(x -y) = y, ixfy) • y = x, (x- y)ly = x, x\x = y/y

It is easy to verify that the further identities

x/(y\x) = y, (x[y)\x = y, 1 • x = x • 1 = x, x/1 = l \x = x

hold for all x, y, where 1 is the neutral element-whose existence is guaranteed by
the axiom x\x = y/y. If we omit this axiom, the remaining axioms characterize
the variety of quasigroups. In a loop or quasigroup defined in this way, u = a\b,
v = b/a are the unique solutions of au = b,va = b.

A loop word in some set of elements S is an expression built up from the ele-
ments of S u {1} and the three loop operations (•, \ , /). An equivalence relation
is induced on the set of loop words in the elements of S = {glt g2, g3, • • •} by
the loop axioms above, two words being considered equal if we can transform
one into the other by a finite sequence of applications of these identities. We
obtain, as in the usual construction of a free algebra the free loop on the free set
of generators gt, g2, g3, • • •. The free loop on a finite set of n generators will be
denoted by Fn and on a countably infinite set of generators by F. We will also
write Ffor a free loop if it is immaterial whether it is finitely or infinitely generated.
We refer to [3] for a detailed study of free loops.

If w(xy, x2, x3, • • •) is a loop word in xt, x2, x3, • • •, we say that a loop L
satisfies the identity w(x1, x2, x3, • • •) = 1 if for any choice of elements
al,a2,a3, • • • in L, we have w(at, a2, a3, • • •) = 1 in L. A variety of loops is
the class of all loops satisfying some defining set of identities.

Let V be a non-trivial variety of loops. A loop Lin V is a free F-loop on free
generators g^, g2, g3, • • • if any mapping of gx, g2, g3, • • • into any F-loop M
can be extended to a homomorphism of L into M. We write Fn(V) for the free
F-loop on n generators, F{V) for the free F-loop on a countably infinite set of
generators.

There is an explicit construction for a free loop on generators glt g2, g3, • • •
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[3] Identical relations in loops, I 277

in a variety V similar to that for an (absolutely) free loop. The resulting loop we
call the free K-loop on the free set of generators gt, g2, g3, • • •• Such a construc-
tion, of course, is simply a special case of the construction of a free algebra in
any variety of universal algebras. We assume without further comment the usual
properties of a free algebra in a variety.

2. Commutator-associators

Let F be the free loop on generators gx, g2, g3, • • • and A the free abelian
group on the same number of generators hl, h2, h3, • • -. The kernel of the homo-
morphism F -*• A given by gt -*• ht, i = 1, 2, 3, • • • is called the commutator-
associator subloop of F, [1 ]. We will denote it by [F, F] and call its elements
commutator-associator words in gt, g2, g3, • • •. In general, by a commutator
element in a loop L, we mean an element c such that for some x, y in L, one of the
equations c • yx = xy, cy • x = xy, yc • x = xy, y • ex = xy, y • xc = xy, yx • c —
xy holds. That is c is one of xy/yx, (xy[x)/y, • • •, yx\xy, for some x, y in L. By an
associator element in L, we mean an element a such that for some x, y, z in L,
one of the twenty equations

a(x • yz) — xy • z, ax • yz = xy • z, • • •, (JC • yz)a = xy • z,

x • yz = a(xy • z), • • -, x • yz = (xy • z)a

holds. That is, a is one of (xy • z)j(x • yz), {(xy • z)fyz}/x, • • •, (x • yz)\(xy • z),
for some x, y, z in L.

The commutator and associator elements in a loop L generate a normal
subloop K = [L, L], which is the smallest normal subloop of L such that L/K is
an abelian group, [1]. In the free loop F, generated by gt, g2, g3, • • • we call the
commutator and associator elements, basic commutator words and basic associator
words. It will be necessary later to develop the beginnings of a calculus of commu-
tator-associators (this has already been done by Bruck for some special varieties
of loops, [2]) but here we need only some very simple properties of commutators
and associators.

Let w(gt, g2,gi,- ) be a word in the free loop F. We define the exponent
of w in giy denoted by et(w) by

(i) e{(\) = 0, e,(gt) = 1, e (9i) = OJ * i
(ii) if w = u • v, then et(w) = e^ + e^v)

(iii) if w = u\v, then et(w) = -ei(u) + et(v)
(iv) if w = u/v, then e{(w) = e^-e^v).

By direct consideration of elementary transformations of words in a free
loop F, we see that if u = v in F, then et(u) = et(v), i = 1, 2, 3, • • •. The mapping
w -> h^'h^hl3 • • •, (where we write et for et(w)) is simply the homomorphism of
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F onto the free abelian group A, described at the beginning of this section. We
obtain from this the following very useful property.

THEOREM 2.1. w(gt, g2, g3, • • •) is a commutator-associator word in F if and
onlyifet(w) = 0,i= I, 2, 3, • • -.

3. A standard form for identities

If w(g1, g2, g3, • • •) is a word in F, let wt denote the image of w under the
endomorphism

That is, wt = w(l, 1, • • •, gt, 1, • • •, 1). We see that e^wj = e^w) and e/w;) = 0,
j / /. We will write wtw2 • • • wt for the right-product ((• • '((w1w2)w3)- • -)wt).
Now (wj w2 • • • w,) \w has exponent zero in each g{ and hence is in [F, F]. If we
d e n o t e i t b y c(gt ,g2,---, 9t), t n e n

H f f i , 9 2 , - - - , 9 t ) = ( w i w 2 • • • wt) • c ( g t , g 2 , - - - , 9 t )

and we have proved the following.

LEMMA 3.1. An element in F may be written as the product of powers of genera-
tors and a commutator-associator word.
(By a power of a loop element u, we mean an element in the subloop generated
by w.)

We may restate this lemma as our first version of a standard form for loop
identities.

THEOREM 3.1. Any loop identity

w(xt,x2,x3,- ••) = 1

is equivalent to a finite collection of identities wt(x) = 1, w2(x) = 1, w3(x) = 1, • • •
involving only one variable, and an identity c(xt, x2, x3 , • • • ) = 1 where c is a
commutator-associator word.

PROOF. We have shown above that, in F,

H9i, 9i,93,•••) = ( w i t e i ) • w2(g2) • w3(g3) • • •} • c(gx ,g2,93r--)

where each Wi(#;) = wt(l, 1, • • •, gt, 1, • • •, 1) is a word involving at most one
generator and where c(gt, g2, g3, • • •) is a commutator-associator word. Hence,
this equation is satisfied by any elements in any loop. Now, if w(x^ ,x2,x3,- • •) = I
is satisfied in a loop L, putting all variables but xt equal to 1, we see that w,(x;) = 1
is satisfied identically in L. Hence, c(xx, x2, x3, • • •) = 1 is also satisfied
identically in L. Conversely, these identities imply w = 1.
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We may now obtain more information about the identities in one variable
which a loop may satisfy. Let Ft be the free loop freely generated by g. Let w(g)
be an element of F j . We define a right-power gm to be 1 if m = 0, by gm +1 = gm • g
if m ^ 0, and by gm~l = gm\g if m ^ 0. Let w(g) have exponent m in g and let
p(g) = gm\w(g)- Now p(g) has exponent zero in g and so is in [Ft, Fx ]. Hence,

w{g) = gm-p(g)

where gm is a right-power and p(g) is in [Ft, F J .

LEMMA 3.2. Any loop identity w(x) = 1 in one variable is equivalent to an
identity x™ • p(x) = 1, where p(x) is a commutator-associator word and x"1 is a
right-power.

We may now combine the preceding results.

THEOREM 3.2. Any loop identity w(xlt x2, • • •, xt) = 1 may be written in the
form t

fl{xT'-Pi(xi)}-c(xi,x2,--;xt)= 1
i = l

where each x"' is a right-power and each Pi(xi) and c(xl5 x2, • • •, xt) are com-
mutator-associator words 2.

COROLLARY. The loop identity w(xt, x2, • • •, x,) = 1 is equivalent to a finite
set of one-variable identities x1"' • Pi(x) = 1, where p{(x) is a commutator-associator
word, and an identity c(xt, x2, • • •, xt) = 1 where c(x1; x2, • • •, xt) is a com-
mutator-associator word.

There is a slight modification we can make in the above results. Let xm • p(x)
= 1 be an identity in one variable, with m < 0. Then x™ • p(x) = 1 is equivalent
to x'm' • q{pc) = 1 where q{x) is a commutator-associator word, since in F1

0 • ({!//>(#)} • g)g)- • -)g = g[m[ • q{g) where q(g) is in [F^F^. Hence, any loop
identity in one variable is equivalent to an identity x™ • p(x) = 1 where p(x) is
a commutator-associator word and m 2: 0.

Let gm • p(g), g" • q(g) be two elements in the free loop Fl, on the free genera-
tor g, where p(g), q(g) belong to the commutator-associator subloop of F1 and
0 < m ^ n. Then n — am + b for non-negative integers a, b, with b < m. Let
r(ff) = gb\[g" • q{g)l{gm • P{g)}"l Since r(g) has exponent zero in g, r{g) is a
commutator-associator word in Fx. The identities x™ • p(x) = 1, x" • q(x) = 1 are
equivalent to the identities xm • p(x) = 1, xb • r(x) = 1. We obtain immediately the
finite case of the following lemma.

LEMMA 3.3. Any finite or countably infinite set of identities of the form
x"" ' Pi(x) = 1 ^ equivalent to a collection of commutator-associator identities

2 It is possible to compute explicit expressions for the pt(xt) and c(xt, x2, • • ', ^r) in terms
of basic commutators and associators.
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r;(jc) = 1 and an identity x™ • p(x) = 1 where p(x) is a commutator-associator
word and m 2: 0.

For an infinite set of identities, we need only note that any infinite set of
positive integers contains a finite subset whose g.c.d. is the same as that of the
infinite set.

THEOREM 3.3. A variety of loops may be defined by a collection of commutator-
associator identities and a single identity of the form

x"1 •/>(*) = 1

where p(x) is a commutator-associator word (i.e. p(x) = 1 is an identity satisfied
by all abelian groups).

PROOF. Immediate from the preceding lemmas.

4. Anti-associative varieties

Let V be a non-trivial variety of loops. V may be defined by a collection cf
commutator-associator identities and an identity xm • p(x) = 1 where m Si 0 and
p(x) is a commutator-associator word. If m = 0, all commutative groups belong
to Fand if m > 1, then a cyclic group of order m belongs to V. That is, V contains
non-trivial groups. If m = 1, then V contains no non-trivial groups since a group
satisfying x • p(x) = 1 satisfies x = 1. We define a non-trivial variety of loops to
be anti-associative if it contains no non-trivial groups.

THEOREM 4.1. A variety is anti-associative if and only if it satisfies an identity
of the form

where p(x) is a commutator-associator word.

PROOF. If the variety satisfies x • p(x) = 1, then it contains no non-trivial
groups. On the other hand, if it can be defined by commutator-assocatior identities
and x™ • p(x) = 1, where m = 0 or m > 1, then the variety contains non-trivial
groups.

One of the simplest anti-associative identities is x • {x • (1/JC)} = 1. Below
we give the multiplication table for a loop of order eight satisfying this identity.
The construction of this loop is based upon the equivalence of the identity
x • {x • (l/x)} = 1 with the property that, for any elements a, b, if ab = 1 in the
loop, then b(ba) = 1.
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In a finite loop of order n, the left and right multiplications Lx, Rx are permuta-
tions on a set of n elements and hence L"J = Rx

l = the identity mapping. Hence,
a finite loop of order n satisfies the identity

"•x = xn!.

Using this, we see that in the above loop of order 8, the identity x • {x • (1/x)} = 1
is equivalent to

40,318^ _ ^40,319

Another simple anti-associative identity is x • xx = (xx • x)x. This can be
written in the form x • p(x) = 1 where p(x) = {(xx • x)\(x • xx)}\\. The
construction of an infinite loop satisfying this identity uses the embedding theorem
proved in the next section and will be discussed there.

5. An embedding theorem

Let P be a partial loop consisting of a countably infinite set of elements
(which we will denote by the positive integers) and a partial multiplication on P
satisfying the following conditions.

(i) 1 • i = i • 1 = i, i = 1, 2, 3, • • •. That is, 1 is the neutral element,

(ii) If j ^ k and i • j , i • k are assigned values in P, then i • j ¥= i • k.

(iii) If y # k and j • i,k • i are assigned values in P, then j • i # k • i.

Conditions (i), (ii), (iii) guarantee that P is a partial loop [3], [4].

(iv) If i ^ 1, then there are an infinite number of elements j in /"such that
i • j is not assigned a value and an infinite number of elements k in P such that
k • i is not assigned a value.

(v) If / # 1, then there are, for all / • j which are assigned values, an infinite
number of elements of P which are not included among these values and for all
k • i which are assigned values, an infinite number of elements which are not in-
cluded among these values.
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(vi) No element in P occurs an infinite number of times as the value of
products in P.

(vii) There are an infinite number of elements in P which do not occur as
values of the products in P.

Although the above conditions on P seem rather stringent, they are flexible
enough to enable us to construct partial loops satisfying special identities. First,
however, we need the following theorem.

THEOREM 5.1. The partial loop P can be embedded in a loop L on the same set
of elements.

PROOF. Write P = Po. We will construct a sequence of partial loops
Pi, Pi, Pi, •• such that (i) Po £ Pt £ P2 £ • • •, (ii) each Ptt satisfied the seven
conditions which P satisfies, (iii) (J Pn is a loop. We begin by ordering all ordered
pairs (i,j) of elements of P in a sequence s1, s2, s3, • • •. Assume that Pn has been
constructed and satisfies the seven conditions P satisfies. Let sn+1 be the ordered
pair (i,j). If /' • j is assigned a value in Pn and if solutions x, y of x • i = j , i • y = j
exist in Pn, then we put Pn+1 = Pn. Otherwise, we define i-j in Pn+1 to be the
smallest positive integer which does not occur as a value of i • x or y • i for any
x, y in P. Furthermore, if there is no solution x of x • i = j in Pn, we choose the
smallest positive integer x in P such that x • i is not assigned a value in Pn and
x • k =£ j for any k, and put x • i = j in Pn+i- Similarly, we introduce a solution
y of i • y = j in Pn+1 if one does not already exist in Pn. Clearly, Pn £ Pn+1 and
Pn+l satisfies the seven conditions imposed on P. Consider the union (J Pn = L.
In L, all products i • j are defined and for any i,j in P, there are unique solutions
x, y of x • i = j , i • y = j . Hence, L is a loop and P is contained in L.

We illustrate the use of this embedding theorem by constructing an infinite
loop satisfying the anti-associative identity x • xx = (xx • x)x. Let P be a partial
loop with the positive integers as elements and with the following products defined
(we use (o) to denote ordinary multiplication of positive integers)

(i) 1 • / = M = i, for i = 2, 3, 4, • • •.

(ii) / • i = the ilh prime, pt, in the sequence of primes 2, 3, 5, • • •.

(iii) ii • i = p{ o /, (ii • i)i = pt o i o /, for i = 2, 3, 4, • • -.

(iv) i • ii = pt o i o i, for i — 2, 3, 4, • • •.

This partial loop satisfies the conditions for the embedding theorem to apply.
Complete the partial loop to a loop L. Then L satisfies the identity

x • xx = (xx • x)x.

THEOREM 5.2. There exists a non-trivial loop satisfying the anti-associative
identity

x • xx = (xx • x)x.
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6. Anti-finite varieties

By an anti-finite variety, we mean a non-trivial variety which contains no
non-trivial finite loops. A set of identities is said to be anti-finite if it has infinite
models but only trivial finite models. There do not exist anti-finite varieties of
groups (every non-trivial group variety contains finite cyclic groups) and it is
not immediately obvious that anti-finite loop varieties exist. Before demonstrating
their existence by use of the embedding theorem in the preceding section we state
an interesting but easily proved theorem.

THEOREM 6.1. Anti-finiteness implies anti-associativity.

PROOF. Let V be a non-trivial variety of loops which is not anti-associative,
i.e. V contains a non-trivial group G. But then V contains finite groups. That is,
V is not anti-finite.

THEOREM 6.2. There exists an anti-finite variety of loops satisfying the identities

"x = x" + \ « = 3, 4, 5, •••.

PROOF. We construct a partial loop satisfying these identities and then use
Theorem 5.1 to embed the partial loop in a loop. Let Pi,p2,P3,m ' ' denote the
sequence of primes 2, 3, 5, • • •. Let P be the partial loop with the positive integers
{1, 2, 3, • • •} as elements, and partial multiplication

(i) 1 -i = i- l ,for i = 1,2, 3, ••-.

(ii) i" = p\"~u, for all i,n7z.2 where i" is the «th right power of i in P and
plm] denote the ordinary mtb power of the prime p.

(iii) "/ = p\"\ for all i ^ 2 and all n > 2.

This partial loop satisfies "x = x" + 1, n = 3, 4, 5, • • • and it is easily checked that
it satisfies the conditions for Theorem 5.1 to apply. Let L be the loop on
{1,2, 3, • • } in which P is embedded by this construction. Then L satisfies
"x = xn + 1,n = 3,4, 5, ••-.

Hence, the variety defined by these identities is non-trivial. To show that it
is anti-finite, we note first that a loop of order two does not satisfy these identities.
A loop of order n satisfies n'x = x"! = 1. Thus a loop of order n ^ 2 in the variety
satisfies n]x = x"! + 1 and n'x = x"! = 1. These identities imply x = 1, a contradic-
tion. Hence, the variety contains no finite non-trivial loops.

It was shown in [5] that there are uncountably many varieties of loops.
Another proof of this follows from the next lemma.

LEMMA 6.1. The set of identities "x = x" + 1, n = 3, 4, 5, • • • is independent.

PROOF. By a trivial modification of the construction used in the proof of
Theorem 6.2, we can construct a loop satisfying all but one of the identities
"x = x"+1, n = 3, 4, 5, • • •. We omit the details.

https://doi.org/10.1017/S1446788700009745 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009745


284 Trevor Evans [10]

The uncountably many subsets of the set of identities "x = x" + 1, n =
3, 4, 5, • • • thus define uncountably many different varieties. However, a stronger
result than this is true.

THEOREM 6.3. There exist uncountably many subvarieties of the anti-finite
variety defined by the set of identities

n'x = xnl + \ « = 3,4, 5, •••.

PROOF. Let N be any set of positive integers containing the factorials
3!, 4!, 5!, • • •. Let V be a variety denned by the identities

nx = xn+1, neN.

By the same argument as in the proof of Theorem 6.2, V is anti-finite. If Nt, N2

are two different sets of positive integers each containing 3!, 4!, 5!, • • • and
Vt, V2 the corresponding varieties, then V± # V2 by Lemma 6.1. Since there are
uncountably many sets of positive integers containing 3! ,4! ,5! ,--- , there are
uncountably many anti-finite varieties of loops satisfying nlx = x"' + l, n =
3, 4, 5, • • •.

7. Equationally complete varieties

A set of identities / is said to be equationally complete if it is consistent and
has no consistent extension. That is, for any loop identity w = 1, either w = 1 is
a consequence of / or the set of identities / u {w = 1} is satisfied by only a trivial
loop. Thus, an equationally complete variety, defined by an equationally complete
set of identities, is a minimal variety, in the sense that its only proper subvariety
is the trivial variety. We now refine the preceding construction of anti-finite
varieties and combine it with some ideas of Kalicki [6] to obtain the following
theorem.

THEOREM 7.1. There exist uncountably many equationally complete anti-finite
varieties of loops.

PROO:J. Let S be the set of even positive integers ^ 4 and M any subset of S.
Let M' = S-M. Let V(M) be the variety defined by the set of identities IM,
where

"x = x" + 1, neM
M' "x = x" , n e M'

LEMMA 7.1. V(M) is non-trivial.

PROOF. We construct a partial loop P satisfying IM, then use Theorem 5.1,
to complete the partial loop. Let the elements of P be the positive integers. We
will denote ordinary multiplication of integers by x o y and ordinary powers of
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integers by xC)>]. Let Pi,p2,Pi, • • • be the sequence of positive primes. We define
the partial multiplication in P as follows.

(i) 1 • i = i • 1 = i, for every / in P

(ii) i" = p\"~1'1, for every i in P and every right power i",

n = 2, 3, 4, • • •

That is, i2 = pi,p\"~1'1 • i = p\"\ n 2t 2

(iii) If n is odd,"/ = i o/^"~1], for every z 2: 2 in P
If n is in M, "i = /#"], for every z 2: 2 in P
If « is in M', "i = p\n~1], for every i 2t 2 in P

These conditions assign a value to each left power cf i.
It is easily checked that P satisfies the conditions for Theorem 5.1 to apply

(in the z'th column of the table for P only powers of pt occur, in the i'h row, either
powers of pt or i times a power of pt). We embed P in a loop L and from the
construction off, we see that L satisfies IM. Hence, V(M) is non-trivial.

If M^ M2 are different subsets of S, then by Lemma 6.1, V(Ml) ± V(M2).
However, a much stronger result than this is true.

LEMMA 7.2. If M^ ^ M3, then V(Mt) n V{M2) is the trivial variety.

PROOF. Since Mx # M2, there is at least one positive integer n which is in
one of Aft, M2 and in the complement of the other. This means that any loop in
VtMt) n V(M2) will satisfy "x = x" + 1 and "x = x". But these identities imply
x = 1. Hence, V{Ml) n V(M2) contains only trivial loops.

We are now in a position to prove Theorem 7.1. Any consistent set of identi-
ties has an equationally complete extension, or equivalently, any non-trivial
variety contains an equationally complete subvariety. Let F*(M) be any equa-
tionally complete variety contained in V{M), where M is any set of even positive
integers 2: 4 which contains all factorials 3!, 4!, 5!, • • •. By Theorem 6.3, V(M) is
anti-finite and hence V*(M) is anti-finite. Now there are uncountably many such
choices for M and by Lemma 7.2, the corresponding equationally complete
varieties are all distinct. This completes the proof.

LEMMA 7.3. There exist equationally complete varieties which are anti-associa-
tive but not anti-finite.

PROOF. In Section 4, we exhibit a finite loop satisfying the anti-associative
identity x(x • (1/x)) = 1. Let Fbe the variety defined by the identities which this
loop satisfies. For n 2: 2, the free loop Fn(V) is finite and non-trivial. Let V* be
an equational completion of V. Then Fn(V*), is a homomorphic image of
and for n 2: 2, is finite and non-trivial. Clearly, V* is anti-associative.
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The collection of all varieties of loops forms a lattice (actually a complete
modular lattice) under the partial ordering of ordinary inclusion. Equationally
complete varieties are the atoms in this lattice. The associative equationally
complete varieties are varieties of abelian groups satisfying xp = 1, p prime. If V
is any variety of loops which contains a non-trivial group, then V includes one of
these group atoms. If V is a variety which does not contain a non-trivial group,
then V satisfies some anti-associative law and so do all of the atoms which are
included in V, In other words, an equationally complete variety of loops in either
a variety of abelian groups satisfying xp = 1, p prime, or an anti-associative variety.

THEOREM 7.2. The atoms in the lattice of loop varieties are as follows (i) the
countably infinite collection of varieties of abelian groups, satisfying x" = 1,
p prime, (ii) countably many anti-associative varieties containing finite loops,
(iii) uncountably many anti-finite varieties.

The only point in the above theorem which we have not already covered is
the number of anti-associative varieties which contain finite loops. Since distinct
atoms have only the trivial loop in common and there are only countably infinitely
many finite loops altogether, the number of anti-associative but not anti-finite
atoms is at most Xo • Such atoms do exist as we showed above. Whether there is
a finite number of such atoms or, as is more likely, a countably infinite number,
we do not know at present.
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