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ELLIPTIC CURVES AND MODULAR FORMS 

M. RAM MURTY 

ABSTRACT. This is a survey of some recent developments in the theory of elliptic 
curves. After an informal discussion of the main theorems of the arithmetic side of the 
theory and the open problems confronting the subject, we describe the recent work of 
K. Rubin, V. Koly vagin, K. Murty and the author which establishes the finiteness of the 
Shafarevic-Tate group for modular elliptic curves of rank zero and one. 

Consider the problem of finding all the rational points on the curve 

C: x2+y2=l. 

We will denote the set of rational points on C by C(Q ). If (JC, y) € C(Q ), then the slope 
t of the line through (—1,0) is rational. Conversely, the line y = t{x + 1) with t ratio
nal intersects C in a rational point. This establishes a one-one correspondence between 
rational points and lines with rational slope 

y = t(x+l). 

Therefore, t parametrizes all rational points. Indeed, if we solve for t fixed, 

1 = x2+y2 

y=t(x+l) 

we obtain after some simplification 

_ l-t2 It 

If we let t = m I n, where m, n G Z, by the above formulas, we can generate all the 
primitive Pythagorean triples. These are solutions of 

with a, b,c,G Z which are pairwise coprime. This is an ancient theorem known to at 
least three early civilizations: the Hindus, the Egyptians and the Babylonians. Pythagoras 
alluded to it in the 6th century B.C. and Diophantus wrote down a proof, in the modern 
mathematical sense, in 250 A.D. Thus, we obtain: 

This is the substance of the Coxeter-James Lecture delivered in December 1988 at the Canadian Mathe
matical Society Winter meeting in Toronto, Canada. 
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376 M. RAM MURTY 

THEOREM. All primitive solutions of 

a2+b2 = c2, a,b,cEZ 

are given by 
2 2 

a — n — m 

b — 2mn 
2 2 

c = n + m 

(m,n) = 1 m^n (mod 2). 
The same idea works for any rational conic. 
Using this theorem, for instance, Fermât showed that the equation 

x4 +y4 = z2, JC, y,z, G Z 

has no non-trivial integral solutions. His method is the origin of the method of descent 
and is very instructive. As the above equation is classical and is treated in many books, 
I will illustrate the method by another example. Consider instead the equation 

x4
+4/ = z2. 

Suppose the equation has a non-trivial solution. Of all the solutions, we will choose the 
one with \y\ minimal and > 0 as the solution is non-trivial. By our ancient theorem, we 
can parametrise a hypothetical solution by 

2y2 = 1rs 

and we notice that the equation above 

can in turn be parametrised by 
x= a

2-(32 

s = 2a (3 

r= a2 + (32. 

But now, if we combine these parametrizations, namely 

2y* = 2rs, s=2af3, r = a2 + f52 

we obtain 
v2 = 2af3(a2 + f32). 
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Because a and /3 are relatively prime, 2a, (3 and a 2 + (32 must all be perfect squares. 
Therefore, 

a = 2u2 

a 2 + / ? 2 = w2 

from which we deduce that 
v4 +4M

4 = vv2. 

But now, 0 < |w| < | a | 1 / 2 < |v|, which contradicts the minimality of the solution. 
Hence, there are no non-tri vial solutions. 

Now consider rational cubics of the following form. 

E : y2 = JC3 + ax + b, a, b € Q 

/"~"N? 

,^y 

Y 

«̂  

X 

\ 

FIGURE 1 

A line passing through two rational points intersects the curve in another rational 
point. This defines a group law on E(Q), first noticed by Poincaré. Suppose that 

P=(xuyi), Q=(x2,y2) 

are two rational points on the curve. The line through them is 

Y — mX + B, m— . 
X2 — X\ 

To find the third point of intersection, we solve 

y2 — JC3 +ax + b 

y = mx + B 

to obtain 
(mx + B)2 = x3 + ax + b. 
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We already know two roots of this cubic equation, namely x = x\, x — x^. Therefore, 
the third root satisfies 

x\ +X2+X3 = m2 

and we obtain 
, fyi-yiY 

*3 — ~x\ — X2 + 
\X2-X\J 

y 3 — mx3 4- B 
and this gives the addition formula for two distinct points. If x\ = X2, the tangent line at 
(x\,y 1 ) determines (JC3,y?,). Define 

(x\9y\)®(x2,y2) = (x3,-y3) 

and formally add the point at infinity to play the role of the identity element. This makes 
E(Q) into a group. If R = C*3, ̂ 3), then the group law is illustrated by Figure 1. Poincaré 
conjectured that E(Q) is finitely generated. In 1922, Mordell proved this for elliptic 
curves over Q : 

£ ( Q ) ~ £ ( Q ) t o r s ® Z r . 

r — TQ is called the rank of E over Q. In 1928, A. Weil proved in his doctoral thesis the 
same theorem for global fields (that is, either an algebraic number field or an algebraic 
function field over a finite field of transcendence degree one). If k is a global field, then 

£ ( * ) ~ £(£)tors®Zr< 

and ric is called the rank of E over k. More generally, the same holds for abelian varieties. 
(A good reference for the arithmetic theory of elliptic curves is [7]. Many of the classical 
results that will be referred to in the subsequent discussion can be found there and the 
original source is cited there.) 

Therefore, in order to know E(Q ), we first must know E(Q )tors and r. The knowledge 
of torsion is supplied by the classical Lutz-Nagell theorem of 1935. This says: 

THEOREM (LUTZ-NAGELL, 1935). Let 

y2 = x3 + ax + b, a9b,eZ. 

If(x,y) G £(Q)tors> then (x,y) G Z and either y = 0 ory2\4a3 + 21b2. 

EXAMPLE. Let 

E: y2 = x3+3, A = - 3 5 . 

Now, (1,2) G E(Q). If (1,2) G E(Q)tors theny = 2 divides 35, which is a contradiction. 
Therefore, (1,2) is point of infinite order. In fact, E(Q )tOTS = 1. 

How does one compute torsion? That this can be done effectively for curves over Q 
is a theorem of Mazur: 
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THEOREM (MAZUR). E( Q )tors is one of 

Z/NZ, 1<N<109 AT = 1 2 

Z/2ZxZ/2AfZ, 1<N<4 

and each group occurs for some curve Ej Q. For arbitrary number fields, such a result 
is unknown and it is conjectured that: 

CONJECTURE. | /tutors I < CK for some constant CK depending only on the number 
field K. 

Recent work in progress by S. Kamienny determines the finite list of primes that can 
divide the order of the torsion subgroup when A' is a quadratic extension of Q. 

EXERCISE. If E is defined over Q, then 

|£(*0tors| <16[K:Q]1 

Another way to guess the size of torsion is noting 

E(Q)tors^E(¥p) 

for/? not dividing 4a3 + 21b2. We know from a classical result of Hasse that 

#E(FP)=P+l-ap 

where \ap\ < 2^/p. 

EXAMPLE. Consider y2 = JC3 — 2. The discriminant of the curve is 108. A direct 
computation shows that #E(Fs) = 6 and #E(Fj) — 7. As these two cardinalities are 
relatively prime £(Q)t0rs = 1-

It is not difficult to see that the ring of endomorphisms of E is either an order in an 
imaginary quadratic field or Z. In the former case, we say that E has complex multipli
cation (CM). 

If E has CM and/7 is inert in k, then ap = 0. Therefore, if m = #E(Q)tOTS, then as the 
torsion group imbeds into the group of points mod/? for/? not dividing the discriminant, 
we can conclude that 

m\p +l-ap. 

But ap = 0 if/? is inert in k. Thus, 

p + 1 = 0(mod m) 

for at least half of the primes. Hence, 

<t>(m) ~ 2 

by Dirichlet's theorem on primes in arithmetic progressions. We conclude that <j> (m) < 2 
so that m — 1,2,3,4, or 6 in the CM case. 
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What about the rank r? This is more difficult. For the sake of simplicity, let us suppose 
that our cubic has a rational root. After a suitable transformation, we can write the curve 
as 

y2 — x3 + ax2 + bx. 

For each b, let b = friZ?2 be a factorisation modulo squares. Look at 

Cbub2 : N2 = biM4 + aM2e2 + b2e\ 

If Cbub2
 n a s a non-trivial integral solution (N, M, e), call the factorisation good. Let g(b) 

be the number of good factorisations. Now let 

e : y2 ^x3 +a'x2 + b'x 

where 
a' = —la 

b' = a2- 4b. 

For b' = feiftj define g\b') analogously. Then 

THEOREM (TATE'S ALGORITHM). 

4 

EXAMPLE. For 

£ : / = x3 - x 

g(—1) = 2. The curve 

# : y2 = x3 + 4* 

leads to 
N2 = M4 + 4e4 

which has no solutions by our first example. Therefore g'(4) = 2 as Af2 = 2M4 + 2e4 has 
(2,1,1) as solution. Therefore, 2r = 1 so that r = 0. 

Potentially, this algorithm can run into the difficulty of an intractible diophantine prob
lem. This would make the calculation of r difficult. To circumvent this difficulty, Birch 
and Swinnerton-Dyer were led to make the following considerations about L-series. 

Define 

/>|A V P J p | /A 

where tp — 0,1, — 1 depending on the type of reduction of E mod /?, and 
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By virtue of Hasse's inequality on ap, this series converges for §l(s) > 3 / 2. 

CONJECTURE (BIRCH AND SWINNERTON-DYER). LE(S) has an analytic continuation 
for all complex values of s and satisfies the functional equation 

A(s) = (^-J r(s)LE(s) 

= wA(2 — s), H > = ± 1 . 

Moreover, 
ordj=i LE(s) = rank E(Q). 

If E has CM, Deuring showed LE(s) has an analytic continuation and satisfies the 
functional equation. Coates and Wiles ( 1977) showed that if rank E(Q) > 1 then LE( 1 ) = 
0 for CM elliptic curves. In 1982, Rajiv Gupta and H. Stark used the theory of Eisenstein 
series to establish the same result. Recently, Rubin [6] proved that for CM elliptic curves, 
rq > 2 implies ord5=i LE(s) > 2. 

What about non-CM curves? There is a central conjecture of Taniyama that shows the 
way for non-CM curves. 

CONJECTURE (TANIYAMA, 1955). There is a normalised cusp form of weight 2 on 
T0(AO such that if 

oo 

f(z)=Zane2*inz 

n=\ 
is the Fourier expansion at /oo then 

Such a conjecture would establish the functional equation and the analytic continua
tion of the L-series of E. 

Shimura proved that every CM elliptic curve over Q is modular, that is satisfies 
Taniyama's conjecture. 

Recently, the Soviet mathematician V. Kolyvagin [3] made significant progress to
wards the Birch-Swinnerton-Dyer conjecture. Combined with a result of Gross-Zagier 
[2] his result may be stated in the following form: 

THEOREM (KOLYVAGIN, PART 1). IfE is a modular elliptic curve over Q and rank 
E(Q) > 1, then LE(l) = 0, provided the following hypothesis holds: 

HYPOTHESIS. There is a quadratic character \D and D < 0, such that all p\N split 
completely in Q(y/3) and 

In joint work with V. Kumar Murty [5], it was shown that the hypothesis is always 
true. Independently, Bump, Hoffstein and Friedberg [1] using the automorphic theory of 
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GSp(4), also established the truth of the hypothesis. Thus, Kolyvagin's theorem can be 
stated unconditionally by putting together the work of eight mathematicians! 

Knowing the rank still leaves the problem of finding primitive generators. 
This problem is approached in the following way. Consider the surjective map 

£(Q)A£(Q) 

with kernel 
E[n] = {P<EE(Q):nP = 0}. 

Therefore, we have the exact sequence 

0 -> E[n] -> E(Q)^E(Q) -> 0. 

Now the Galois group G = Gal(Q/ Q) acts on E(Q) and the G-fixed points of E(Q) 
are the Q rational points of E. In general, whenever we have an exact sequence of G-
modules, we have a long exact sequence of cohomology groups obtained by taking the 
G-fixed points: thus, 

0 - > A - > # - + C - + 0 

leads to 

0 - • AG - • BG -> CG —• Hl(G,A) - • H\G,B) -+ Hl(G,, C) -+ //2(G, A) -+ • • • 

For the sake of completeness, we give the definition of the first cohomology group 
(the higher cohomology groups not being used in the later part of the exposition). Let G 
be a group and A an abelian group on which G acts. Define 

Z\G,A) = {f:G-+A\ f(ar) = af(r) +f(a)}. 

Let 
B\G9A) = {f:G-^A | 3a:f(a) = aa-a}. 

It is easily seen that Bl(G,A) and Zl(G,A) are abelian groups and Bl(G,A) is a subgroup 
of Zl(G, A). The quotient group 

H\G,A) = Zl(G,A)/Bl(G,A) 

is called the first cohomology group and its elements are called 1-cocycles. 
In our case therefore, we obtain 

O^E[n](Q)^E(Q)^E(Q)^H\QJE[n])->H\Q,E(Q))-^H\Q,E(Q))... . 

We can shorten this exact sequence by noting that the image of the penultimate map 
surjects to the kernel of 

Hl(Q,E(Q)-^H\Q,E(Q)). 
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Thus, we get the short sequence 

0 -* E(Q)/ nE(Q)-> Hl(Q,E[n])-+ Hl(Q,E)[n]-+0. 

However, the groups above are infinite groups and the sequence is not amenable to cal
culation. We therefore study the sequence over the p-adic number field Qp. We get: 

O^E(Qp)/nE(Qp)^Hl(Qp,E[n])^Hl(Qp,E)[n]-+0. 

Define the n-Selmer group as 

Sin) = ker{H\Q,E[n\) - • l[Hl(Qp,E)} 
P 

and the Tate-Shafarevic group by 

III = ker{H\Q9E) - • Y[Hl(Qp,E)} 
p 

Our sequence becomes 

0 -+ E(Q)/ nE{Q) -> S(n) — lll[n] -> 0 

where now these groups are finite. 
We have 

CONJECTURE. Ill is finite. 

Rubin showed that if E has CM and L^(l) ^ 0, then III is finite. Recently, Kolyvagin 
(1987,1988) showed that if E is a modular elliptic curve and L^(l) ^ 0, then III is finite 
provided the above analytic hypothesis holds. Since this hypothesis is now a theorem, 
again Kolyvagin's results can be stated unconditionally. 

Our proof [5] of the analytic hypothesis establishes the following asymptotic formula. 
Let 

w=1 ns \n) 

and set 

2Nnun2 n2 n\n\' 

where n\ ranges over positive integers with the property that p|ni implies p\4N and n2 

ranges over all integers satisfying («2,4A0 = 1. 

THEOREM. Suppose LE(\)^ 0. Then, C ^ 0 and 

£ L'E(hD) = CY\ogY + o(Y\ogY) 
<X-D<Y 

D=l (mod 4/V) 

as Y —• 00. 

On the other hand, Bump, Friedberg and Hoffstein [1] realise the values of these 
quadratic twists as Fourier coefficients of metaplectic forms on GSp(4) and show that 
the form is not identically zero. 
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It is possible to prove more. If r# is the order of the zero of 

at s — 1 then the author [4] has shown that the generalised Riemann hypothesis implies 

E rD<2.5X 
0<-D<X 

as X —> oo. This shows that rD — 1 for a positive proportion of quadratic twists. It is 
conjectured that ro > 2 occurs rarely. More precisely, 

#{D<X: rD>2} = o(X) 

as X —-> oo. 
It is believed that there are elliptic curves of unbounded rank. This is true for elliptic 

curves over function fields over finite fields by a result of Shafarevic and Tate. In view of 
the Birch-Swinnerton-Dyer conjectures, this leads to the following question. Are there 
L-series of modular forms with a large order zero at the center of the criticial strip? This 
is not known. 

The algorithm of Tate however yields the following curious result. Let f(n) denotes 
the number of ways of writing n — ab with a + b a perfect square. If 

lim sup f(n) = oo 
n squarefree 

then there are curves over Q of arbitrarily large rank. D. Clark in his McGill M.Sc. thesis 
showed that 

lim sup f(n) = oo 

without the squarefree assumption. 
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