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Abstract

We provide a geometric interpretation of the well-known A3w condition for regularity in optimal transport.

2020 Mathematics subject classification: primary 49K20; secondary 35J60.

Keywords and phrases: optimal transport, A3w, MTW condition.

1. Introduction

In optimal transport, a condition known as A3w is necessary for regularity of the
optimal transport map. Here we provide a geometric interpretation of A3w. We use
freely the notation from [4]. Let c ∈ C2(Rn × Rn) satisfy A1 and A2 (see Section 2).
Keeping in mind the prototypical case c(x, y) = |x − y|2, we fix x0, y0 ∈ Rn and perform
a linear transformation so that cxy(x0, y0) = −I. Define coordinates

q(x) := −cy(x, y0), (1.1)

p( y) := −cx(x0, y), (1.2)

and denote the inverse transformations by x(q), y(p). Write c(q, p) = c(x(q), y(p)) and
let q0 = q(x0) and p0 = p( y0). We prove A3w is satisfied if and only if whenever these
transformations are performed,

(q − q0) · (p − p0) ≥ 0 =⇒ c(q, p) + c(q0, p0) ≤ c(q, p0) + c(q0, p).

Heuristically, A3w implies that when q − q0 ‘points in the same direction’ as p − p0, it
is cheaper to transport q to p and q0 to p0 than the alternative q to p0 and q0 to p. Thus,
A3w represents compatibility between directions in the cost-convex geometry and the
cost of transport.

A3w first appeared (in a stronger form) in [4]. It was weakened in [6] and a
new interpretation was given in [2]. The impetus for the above interpretation is
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Lemma 2.1 in [1]. Our result can also be realised by a particular choice of c-convex
function in the unpublished preprint [5].

2. Proof of result

Let c ∈ C2(Rn × Rn) satisfy the following well-known conditions.

A1. For each x0, y0 ∈ Rn, the mappings

x �→ cy(x, y0) and y �→ cx(x0, y)

are injective.
A2. For each x0, y0 ∈ Rn, we have det ci,j(x0, y0) � 0.

Here, and throughout, subscripts before a comma denote differentiation with respect
to the first variable, subscripts after a comma denote differentiation with respect to the
second variable.

By A1, we define onU := {(x, cx(x, y)) : x, y ∈ Rn} a mapping Y : U → Rn by

cx(x, Y(x, p)) = p.

The A3w condition, usually expressed with fourth derivatives but written here as in
[3], is the following statement.

A3w. Fix x. The function

p �→ cij(x, Y(x, p))ξiξj

is concave along line segments orthogonal to ξ.

To verify A3w, it suffices to verify the midpoint concavity, that is, whenever
ξ · η = 0, it follows that

0 ≥ [cij(x, Y(x, p + η)) − 2cij(x, Y(x, p)) + cij(x, Y(x, p − η))]ξiξj. (2.1)

Finally, we recall that a set A ⊂ Rn is called c-convex with respect to y0 provided
cy(A, y0) is convex. When the A3w condition is satisfied and y, y0 ∈ Rn are given, the
section {x ∈ Rn : c(x, y) > c(x, y0)} is c-convex with respect to y0 [3].

Now fix (x0, p0) ∈ U and y0 = Y(x0, p0). To simplify the proof, we assume
x0, y0, q0, p0 = 0. Up to an affine transformation (replace y with ỹ := −cxy(0, 0)y),
we assume cxy(0, 0) = −I. Note that with q, p, as defined in (1.1), (1.2), this implies
∂q/∂x(0) = I. Put

c̃(x, y) := c(x, y) − c(x, 0) − c(0, y) + c(0, 0),
c(q, p) := c̃(x(q), y(p)).

THEOREM 2.1. The A3w condition is satisfied if and only if whenever the above
transformations are applied, the following implication holds:

q · p ≥ 0 =⇒ c(q, p) ≤ 0. (2.2)
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PROOF. Observe by a Taylor series

c(q, p) = −(q · p) + cij(τq, p)qiqj (2.3)

for some τ ∈ (0, 1). First, assume A3w and let q · p > 0. By (2.3), we have c(−tq, p) >
0 > c(tq, p) for t > 0 sufficiently small. If c(q, p) > 0, then the c-convexity (in our
coordinates, convexity) of the section

{q : c(q, p) > c(q, 0) = 0}

is violated. By continuity, c(q, p) ≤ 0 whenever q · p ≥ 0.
In the other direction, take nonzero q with q · p = 0 and small t. By (2.2) and (2.3),

0 ≥ c(tq, p)/t2 = cij(tτq, p)qiqj.

This inequality also holds with −p. Moreover, cij(tτq, 0) = 0. Thus,

0 ≥ [cij(tτq, p) − 2cij(tτq, 0) + cij(tτq,−p)]qiqj.

Sending t → 0 and returning to our original coordinates, we obtain (2.1). �

REMARK 2.2. On a Riemannian manifold with c(x, y) = d(x, y)2, for d the distance
function, Loeper [2] proved A3w implies nonnegative sectional curvature. Our
result expedites his proof. Let x0 = y0 ∈ M and u, v ∈ Tx0 M satisfy u · v = 0 with
x = expx0

(tu) and y = expx0
(tv). Working in a sufficiently small local coordinate chart,

our previous proof implies that if A3w is satisfied,

d(x, y)2 ≤ d(x0, y)2 + d(x0, x)2 = 2t. (2.4)

The sectional curvature in the plane generated by u, v is the κ satisfying

d(expx0
(tu), expx0

(tv)) =
√

2t
(
1 − κ

12
t2 + O(t3)

)
as t → 0, (2.5)

whereby comparison with (2.4) proves the result. (See [7, Equation (1)] for (2.5).)
We note Loeper proved his result using an infinitesimal version of (2.4).
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