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This work investigates the time-averaged shape dynamics of a soft elastic capsule in
two phase-shifted orthogonal ultrasonic standing waves. The capsule consists of an
elastic membrane that encloses a viscous fluid and is immersed in another viscous
fluid. Combining the acoustic perturbation theory of fluid dynamics with the thin-shell
mechanics of capsule membrane deformation, two sets of equations are established to
govern the ultrasonic propagation and the time-averaged response of the fluid–capsule
system, respectively. These governing equations are solved numerically based on the
finite element method. Numerical simulations show that the ultrasonic standing waves
have pure elongation and pure rotation effects on the initially circular capsule when the
phase difference is 0 and π/2, respectively. By setting the phase difference between 0
and π/2, it is found that the initially circular capsule exhibits a tank-treading motion due
to the combined effect of the elongation and rotation. The capsule membrane elasticity
and internal fluid viscosity have significant effects on the tank-treading behaviour of
the initially circular capsule, including elongation deformation, inclination angle and
tank-treading velocity. For the initially non-circular capsule, three types of dynamical
states, including stable orientation, swinging and tumbling, are predicted by varying
the phase difference and intensity of the ultrasonic standing waves, as well as the
initial shape, membrane elasticity and internal fluid viscosity of the initially non-circular
capsule. This work enriches the cell manipulation capabilities of ultrasonic standing wave
micro-acoustofluidics and may inspire new biological applications.
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1. Introduction

The ability to manipulate biological cells in microfluidic systems has brought
significant advances to chemical, biomedical and clinical studies (Salieb-Beugelaar
et al. 2010). Various types of cell manipulation techniques have been developed based
on hydrodynamic force (Gossett et al. 2012; Mietke et al. 2015) or other external
energy inputs, such as optical (Guck et al. 2005), magnetic (Elbez et al. 2011) and
dielectrophoretic (Doh et al. 2012) manipulations of cells. In the past decade, acoustic
waves have attracted particular attention because they offer reasonable throughput and
excellent biocompatibility (Li & Huang 2019; Xie, Bachman & Huang 2019).

A common implementation of acoustic microfluidic systems is the actuation of
ultrasonic standing waves within a microfluidic channel or cavity. Under the action of
the ultrasonic standing waves, the cells are subjected to two kinds of forces, including the
acoustic radiation force generated by sound wave scattering and the hydrodynamic force
generated by acoustic streaming. These nonlinear acoustic effects provide a great degree
of freedom for cell manipulation, such as acoustophoresis (Lenshof, Magnusson & Laurell
2012; Ding et al. 2014; Augustsson et al. 2016), acoustic orientation (Jakobsson, Antfolk
& Laurell 2014; Lovmo et al. 2021) and acoustic rotation (Aubert et al. 2016; Bernard
et al. 2017). Most previous acoustic manipulation techniques assume that cells behave as
rigid bodies. This is because the input acoustic pressure amplitude (typically ∼0.1 MPa) in
these techniques is small (Hartono et al. 2011; Bernard et al. 2017), so the acoustic-induced
stress acting on the cell surface is too small to induce significant deformation of
the cell.

It is known that the elastic modulus of different biological particles spans several
orders of magnitude. For very soft biological particles, such as swollen red blood cells
(Mishra, Hill & Glynne-Jones 2014), green algae cells (Wijaya et al. 2016) and giant
unilamellar vesicles (Silva et al. 2019), detectable spherical to ellipsoidal deformation
can be observed when they are immersed in one-dimensional (1-D) standing waves with
acoustic pressure amplitude up to 1 MPa. Despite the progress being made in exploring cell
deformation in a 1-D standing wave, the mechanical behaviour of deformable biological
particles in two-dimensional (2-D) ultrasonic standing waves remains to be explored.
Two-dimensional standing waves usually consist of two orthogonal 1-D standing waves
with phase differences and have attracted great interest in cell patterning, which is
crucial for applications such as bioprinting, drug development and single-cell analysis
(Drinkwater 2020). When the phase difference is 0, at the local pressure node, the 2-D
standing wave exhibits acoustic characteristics similar to the 1-D standing wave. Therefore,
a 2-D standing wave can generate an acoustic force acting on a suspended cell similar
to a 1-D standing wave, thereby producing an extension effect on the cell. When the
phase difference is π/2, the 2-D standing wave can generate a rotating acoustic streaming
field around the suspended cell, thereby causing the rotation of the cell (Aubert et al.
2016; Bernard et al. 2017; Lovmo et al. 2021). The 2-D standing wave with the phase
difference between 0 and π/2 is expected to retain the elongation and rotation effects,
which will enrich the acoustic manipulation function of deformable cells. Therefore, it
is of great interest to understand and control the behaviour of deformable cells in a 2-D
standing wave to guide the development of advanced acoustic methods for manipulating
cells.

In the recent past, there have been several works devoted to the prediction of the
static deformation of cells in an ideal inviscid fluid in 1-D standing waves. The cell
is modelled as an elastic capsule, i.e., an elastic membrane enclosing the fluid, whose
acoustic deformation is explained by using the interfacial acoustic radiation stress acting
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on the membrane. Based on the linear elastic thin-shell theory, Mishra et al. (2014)
developed a finite element model to calculate the acoustic deformation of cells, taking
into account the coupling of acoustic wave propagation and cell deformation. Wijaya et al.
(2016) proposed an efficient numerical model based on the boundary element method, but
omitted the feedback effect of cell deformation on acoustic wave propagation. In the long
wavelength and small deformation limit, Silva et al. (2019) analytically solved the acoustic
deformation of an elastic membrane without bending stiffness. Recently, we developed a
numerical model for the deformation and aggregation of red blood cells in 1-D standing
waves (Liu & Xin 2022a), and further considered the strain-hardening elasticity of the
cell membrane to reproduce the available experimental data (Liu & Xin 2022b). However,
none of these works consider fluid viscosity, and the acoustic radiation stress formulation
used is obtained based on the assumption of an ideal inviscid fluid. Moreover, the above
work mainly considers the cell deformation in a 1-D standing wave sound field, while the
theoretical and numerical research on the cell deformation and motion in a 2-D standing
wave acoustic field considering fluid viscosity is very scarce.

The theoretical research on the dynamics of particles driven by acoustic excitation in real
viscous fluid environments can be divided into two categories. The first category employs
direct numerical simulation (DNS) to solve the compressible Navier–Stokes equations.
Although DNS provides an accurate solution, it is computationally expansive in acoustic
microfluidic applications due to the large difference between the time scale of acoustic
oscillations and the time-averaged motion and deformation of particles. Specifically,
acoustic oscillations typically occur on fast time scales in the microsecond range, while
fluid dynamics driven by ultrasonic waves are observed on slow time scales in the
sub-second range (Karlsen, Augustsson & Bruus 2016; Guglietta et al. 2020). Therefore,
DNS is rarely used. The second category employs the acoustic perturbation method, which
decomposes the compressible Navier–Stokes equations into a compressible time-harmonic
acoustic part and an incompressible time-averaged part based on the acoustic perturbation
theory (Bruus 2012). Due to the linearization of the decomposed governing equations,
analytical solutions of the acoustic-induced torque acting on a particle in 2-D standing
waves and the rotation speed of the particle have been developed (Busse & Wang 1981;
Rednikov, Riley & Sadhal 2003). Later, a procedure similar to the analytical solution was
revisited through numerical simulations to bypass the limitations of the analytical solution
on the thickness of the viscous boundary layer and the acoustic wavelength relative to the
particle radius (Hahn, Lamprecht & Dual 2016). However, these studies have focused on
the rotation of rigid particles in 2-D standing waves, while the dynamics of deformable
cells in 2-D standing waves have not been investigated.

This work investigates the time-averaged shape dynamics of a soft elastic capsule in
a viscous fluid driven by two phase-shifted orthogonal ultrasonic standing waves. The
capsule consists of an elastic membrane enclosing an homogeneous fluid, which serves
as a popular mechanical model of biological cells. Combining the acoustic perturbation
theory of fluid dynamics with the thin-shell mechanics of capsule membrane deformation,
two sets of equations are established to govern the ultrasonic propagation and the
time-averaged response of the fluid–capsule system, respectively. The governing equations
are numerically solved based on the finite element method. Through simulation, the shape
dynamics of the initially circular capsule and the initially non-circular capsule under 2-D
ultrasonic standing waves with different phase differences are analysed. In particular, the
acoustic-induced stress distribution on the capsule membrane and the acoustic-induced
moment acting on the whole capsule are numerically calculated and investigated to explain
the shape dynamics of the capsule under 2-D ultrasonic standing waves.
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Figure 1. (a) Schematic of a microfluidic cavity with a soft elastic capsule. (b) Illustration of 2-D ultrasonic
standing waves (illustrated by dashed lines) generated by the oscillation of channel walls (illustrated by
arrows).

2. Deformation dynamics of capsules

The time-averaged deformation dynamics of capsules driven by ultrasonic standing waves
in a rectangular microfluidic cavity is investigated. Operating at the half-wavelength
resonant frequency, the oscillations of two pairs of transducers connected to the cavity
walls excite two orthogonal standing waves in the fluid cavity, as shown in figure 1(a). The
pressure node is located at the centre of the cavity, and the pressure antinodes are located at
the channel walls, as shown in figure 1(b). The capsule can be trapped at the centre of the
cavity (i.e. at the pressure node) by the acoustic radiation force of the ultrasonic standing
waves (Bernard et al. 2017). For the soft capsule trapped at the centre of the cavity, it not
only experiences acoustic oscillations, but also exhibits complex time-averaged responses
caused by the acoustic nonlinear effect.

The theoretical treatment of acoustical-induced capsule motion and deformation
involves two completely separated time scale processes: the fast time scale for ultrasound
propagation (usually in the microseconds range) and the slow time scale for the
time-averaged response of the fluid and capsule (usually in the seconds range). To
model this acoustic nonlinear phenomenon, the acoustic perturbation method in the
context of generalized Lagrangian formulation (Nama, Huang & Costanzo 2017) is
employed in this work. Compared with the usual Eulerian formulation (Bruus 2012), the
generalized Lagrangian formulation employs the perturbation expansion of fluid variables
in the mean configuration. As shown in figure 2, the mean configuration is introduced
as an intermediate configuration between the reference configuration and the current
configuration. Here, the reference configuration B0 is the initial fluid configuration before
acoustic excitation. In the acoustic field, the actual motion of the material particles is a
combination of the mean motion u0 observed on the slow time scale and the acoustic
oscillation ξ observed on the fast time scale. The mean motion of the material particles
maps the reference configuration B0 to the mean configuration B. The actual motion of
the material particles maps the reference configurationB0 to the current configuration Bt.
Since the mean configuration B is not disturbed by acoustic oscillations, it is convenient
to formulate a theoretical framework in it, especially to accurately define the boundary
conditions of the time-averaged dynamics. Therefore, the theoretical framework of this
work is formulated in the mean configuration B.
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Figure 2. Schematic of configurations used in this work, including the reference configuration B0 before
acoustic excitation, mean configuration B of particle time-averaged motion and current configuration Bt of
particle actual motion. Here, the actual motion of the material particles can be regarded as a combination of
the mean motion u0 observed on the slow time scale and the acoustic oscillation ξρv observed on the fast time
scale.

The hydrodynamics of the fluids is governed by the mass continuity equation and the
momentum equation, which can be expressed in the mean configuration as

∂tρ + F−T
ξ · ∇ρ · (v − vξ ) + ρF−T

ξ : ∇v = 0, (2.1)

Jξ ρ[∂tv + ∇v · F−1
ξ · (v − vξ )] = ∇ · P + f , (2.2)

where ρ is the fluid density, v is the fluid velocity, F ξ = ∇ξ is the acoustic displacement
gradient, Jξ = det(F ξ ) is the Jacobian determinant of the acoustic displacement gradient,
vξ = ∂tξ is the time derivative of the acoustic displacement, P is the Piola–Kirchhoff
stress of viscous compressible fluid and f represents the body force caused by the elastic
tensions of the capsule membrane. The Piola–Kirchhoff stress P is related to the Cauchy
stress σ through the relationship

P = Jξσ · F−T
ξ , (2.3)

where the superscript ‘−T’ denotes the inverse transpose of the tensor. Equation (2.3)
maps the Piola–Kirchhoff stress P defined as the force per unit area in the mean
configuration B to the Cauchy stress σ defined as the force per unit area in the
current configuration Bt. Conversely, σ = J−1

ξ P · F T
ξ maps the Cauchy stress σ to the

Piola–Kirchhoff stress P. The Cauchy stress of the viscous compressible fluid is given by

σ = −pI + μ(∇yv + ∇yv
T) +

(
−2

3μ + μb

)
(∇y · v)I, (2.4)

where ∇y = F−1
ξ · ∇ represents the gradient in the current configuration, μ and μb are

the shear viscosity and bulk viscosity, respectively, and the fluid pressure p follows the
relationship

p = c2
0(ρ − ρ0), (2.5)

where ρ0 and c0 are the density and sound speed of the stationary fluid, respectively. To
obtain the governing equations for the two time scales, the acoustic perturbation method
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is employed, in which the fluid variables are expanded to the second order, { · } = { · }0 +
{ · }1 + { · }2 + · · · , where the subscripts denote the respective orders. Correspondingly,
(2.1) and (2.2) can be divided into a set of first-order equations governing the ultrasonic
propagation on the fast time scale and second-order equations governing the time-averaged
dynamics on the slow time scale.

2.1. Fast time scale wave propagation
According to the acoustic perturbation method, the first-order equations governing the
acoustic wave propagation can be expressed in the frequency domain as

(iω)p1 + c2
0ρ0∇ · v1 = 0 and ρ0(iω)v1 = ∇ · P1, (2.6)

P1 = −p1I + μ(∇v1 + ∇vT
1 ) + (−2

3μ + μb)(∇ · v1)I. (2.7)

Here, all variables with subscript 1 correspond to first-order variables, p1 is the acoustic
pressure, v1 is the acoustic particle velocity and ω = 2πf is the angular frequency with f
being the frequency. Since the acoustic impedance of the cell membrane is generally close
to that of the cytoplasm, for ultrasound propagation, the cell membrane and the cytoplasm
can be considered as a whole. As a model of the cell, the capsule membrane and the inner
fluid are also considered as a whole. Therefore, the influence of the capsule membrane on
acoustic propagation is neglected in (2.6).

Using the relationship v1 = vξ = (iω)ξ with ξ being the acoustic particle displacement,
the first-order equations (2.6) governing the acoustic wave propagation are given in terms
of the acoustic particle displacement field ξ by

ρ0(iω)2ξ − ∇ · P1(ξ) = 0, (2.8)

with the first-order Piola–Kirchhoff stress

P1(ξ) = −[c2
0ρ0 + iω(−2

3μ + μb)](∇ · ξ)I + iωμ(∇ξ + ∇ξT). (2.9)

2.2. Slow time scale time-averaged dynamics
Now consider the time-averaged dynamics of the fluid–capsule system driven by
the time-averaged acoustic force. According to the acoustic perturbation method, the
time-averaged second-order equations governing the time-averaged dynamics can be
expressed as

∇ · 〈v2〉 = 0 and ∇ · 〈P2〉 + f = 0, (2.10)

with the time-averaged second-order Piola–Kirchhoff stress

〈P2〉 = −〈 p2〉I + μ(∇〈v2〉 + ∇〈v2〉T)

− μ〈∇v1 · ∇ξ + ∇ξT · ∇vT
1 〉 − (−2

3μ + μb)〈∇ξT : ∇v1〉I
+ 〈P1(ξ) · [(∇ · ξ)I − ∇ξT ]〉. (2.11)

Here, all variables with subscript 2 correspond to second-order variables, 〈v2〉 is the
second-order fluid velocity and 〈 p2〉 is the second-order fluid pressure determined by the
incompressible constraint given in the first of (2.10). The first line in (2.11) represents the
stress of incompressible fluid, while the second line of (2.11) consists of the products of
two acoustic quantities, representing the driving force for the time-averaged response of
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the capsule and surrounding fluid. The flow 〈v2〉 includes two components, the acoustic
streaming 〈va

2〉 generated by the driving term in (2.11) and the Stokes flow 〈vs
2〉 driven by

the motion and deformation of the capsule. Fluid viscosity plays an important role in the
driving term, so acoustic streaming can be explained as a result of acoustic dissipation.

The membrane of the 2-D capsule is geometrically regarded as a closed 1-D curve
marked by the position xc in the mean configuration. The unit tangent vector t of the
membrane points in the direction of increasing arc length, and the unit normal vector n
points to the outer fluid. For later use, the curve gradient and curve divergence operators
for vector fields are introduced as (Steinmann 2008)

∇c{ · } = ∂l{ · } ⊗ t and ∇c · { · } = ∂l{ · } · t. (2.12)

Here, the curve gradient and curve divergence operators on the left are expressed in
vector form and independent of the coordinate system (i.e. local curve coordinates and
global Cartesian coordinates). Based on the thin-shell formulation (Pozrikidis 2001), the
equilibrium equation for the capsule membrane under the action of the traction f (in
N m−2) can be derived as

f = ∇c · (τ t ⊗ t + n ⊗ ∇cm), (2.13)

where τ (in N m−1) is the in-plane tension and m (in N m) is the bending moment.
The in-plane tension and bending moment are given by constitutive laws of the capsule

membrane material. To this end, the neo-Hookean model is employed to obtain the
in-plane tension, where the neo-Hookean model allows for area dilatation. In fact, some
types of cells have extensible membranes, such as keratocytes (Shao, Rappel & Levine
2010) and fibroblasts (Raucher & Sheetz 1999), and the membrane area of these cells can
be altered by the flattening of small-scale wrinkles. There are also types of cells whose
membranes are considered to be (close to) inextensible, such as red blood cells (Cordasco
& Bagchi 2014). The capsules studied here are more representative of those cells that are
extensible, so the application of the neo-Hookean model is accurate. In particular, it has
been shown that the neo-Hookean model is effective in capturing the characteristics of
cells regardless of whether the cell membranes allow for area dilatation (Bagchi 2007;
Jayathilake et al. 2011; Luo et al. 2013). The in-plane tension of the capsule membrane
line segments is calculated as (Bagchi, Johnson & Popel 2005)

τ = Es(J3/2
c − J−3/2

c ), (2.14)

where Es is the membrane elastic modulus and Jc is the stretch ratio of the membrane,
which is calculated from the evolution equation (Ii et al. 2018):

∂tJc + 〈v2〉 · ∇cJc = (∇c · 〈v2〉)Jc. (2.15)

In (15), the continuity boundary condition of the membrane velocity and fluid velocity,
i.e. vc = dxc/dt = 〈v2〉, is used. Additionally, the bending moment is determined by the
Helfrich bending energy as (Helfrich 1973)

m = Eb(h − h0), (2.16)

where Eb is the membrane bending modulus, and h and h0 are the curvature of the
membrane in the mean and reference configuration, respectively. The curvature h0 is not
the spontaneous curvature associated with lipid membranes. The curvature h is calculated
from the curvature vector h ≡ hn, which obeys (Elliott & Stinner 2010)

h = −∇c · ic. (2.17)

Here, ic = I − n ⊗ n = t ⊗ t is the curve unit tensor. The curvature h0 is a variable in
the reference configuration. It can be updated as a state variable in the mean configuration
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Figure 3. (a) Finite element model. The whole fluid domain is represented by B and the capsule membrane is
denoted by C. The domain defined by the dashed line representing the fluid domain does not include the viscous

boundary layer around the walls with the viscous boundary layer thickness δv =
√

2μout/(ρout
0 ω) ≈ 0.20 μm.

(b) Typical mesh and enlargement of the capsule area used in the simulation.

Descriptions Symbols Values
Capsule radius a0 3.1 μm
Density of the outside medium ρout

0 998 kg m−3

Density of the inside medium ρin
0 1139 kg m−3

Sound speed of the outside medium cout
0 1495 m s−1

Sound speed of the inside medium cin
0 1680 m s−1

Viscosity of the outside medium μout 0.89 mPa s
Viscosity of the inside medium μin 6 mPa s
Shear modulus of the membrane Es 6 μN m−1

Bending modulus of the membrane Eb 0.6 nN nm

Table 1. Model parameters of capsules. These parameters are chosen with reference to the parameters of red
blood cells (Muller et al. 2012; Mishra et al. 2014).

according to the advection equation, defined as

∂th0 + 〈v2〉 · ∇ch0 = 0. (2.18)

3. Finite element model

As shown in figure 3(a), the calculation domain is the square of the length L = 100 μm.
The whole calculation domain is occupied by the water-based biological solution with
a capsule immersed in it. All relevant material parameters are listed in table 1. The
model system has a half-wavelength resonance given by the frequency f = cout

0 /(2L) =
7.475 MHz. To excite this resonance, the external acoustic excitations have a harmonic
time dependence of frequency f = 7.475 MHz. In what follows, to facilitate the numerical
implementation based on the finite element method, the strong form of the governing
equations introduced in the above section is transformed into a weak form.

By multiplying (2.8) with the test function δξ of the acoustic displacement ξ , integrating
over the fluid domain B and applying the divergence theorem, the weak form of the
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acoustic wave equation is obtained as∫
B

[ρ0(iω)2ξ · δξ + P1 : ∇ξ ] da = 0. (3.1)

The two acoustic excitations on the oscillating walls are expressed in terms of acoustic
particle displacement as

ξ = u0 eiωtex for x ∈ Γ left ∪ Γ right, (3.2)

ξ = u0 eiωt+iϕey for x ∈ Γ top ∪ Γ bottom, (3.3)

where u0 is the input particle displacement amplitude, ϕ is the phase difference between
two excitation signals, and Γ left, Γ right, Γ top and Γ bottom denote the left, right, top and
bottom walls, respectively.

Similarly, by multiplying (2.10) with the test function pairs (δ〈 p2〉, δ〈v2〉) of the
second-order pressure and second-order velocity (〈 p2〉, 〈v2〉), integrating over the fluid
domain B′ and applying the divergence theorem, the weak form of the fluid dynamic
equation can be obtained as∫

B′
(∇ · 〈v2〉) · δ〈 p2〉 da = 0, (3.4)

−
∫
B′

〈P2〉 : ∇δ〈v2〉 da +
∫
C

f · δ〈v2〉 dl = 0, (3.5)

where B′ represents the fluid domain excluding the acoustic viscous boundary layer near
the channel walls (the domain defined by the dashed line in figure 3a). The integrating
domain is chosen to exclude acoustic streaming generated by acoustic dissipation in the
viscous boundary layer near the channel wall. The effect of this boundary-drive acoustic
streaming on capsule dynamics is negligible because the acoustic streaming becomes zero
in the central part of the fluid domain (where the capsule is captured). Furthermore, using
(2.13) and applying the curve divergence theorem, (3.5) becomes

−
∫
B′

〈P2〉 : ∇δ〈v2〉 da −
∫
C

(τ t ⊗ t + n ⊗ ∇cm) : ∇δ〈v2〉 dl = 0. (3.6)

In the second term of (3.6), the tension τ is a function of the stretch ratio Jc. According to
(2.15), the stretch ratio Jc is solved from the following weak form equation:

∫
C

[∂tJc + 〈v2〉 · ∇cJc − (∇c · 〈v2〉)Jc] · δJc dl = 0, (3.7)

where δJc is the corresponding test functions of Jc. The moment m is a function of the
curvature h and h0. According to (2.17) and (2.18), the curvature h and h0 are solved from
the following weak form equations:

∫
C

(h · δh − ic:∇cδh) dl = 0, (3.8)
∫
C

(∂th0 + 〈v2〉 · ∇ch0) · δh0 dl = 0, (3.9)

where δh and δh0 are the corresponding test functions of h and δh0, respectively.
Furthermore, for the time-averaged dynamic problem, the no-slip boundary condition is
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imposed on the boundary of the computational domain B′ as

〈v2〉 = 0 for x ∈ ∂B′. (3.10)

To fix the numerical solution of the incompressible time-averaged flow, a pressure point
constraint is imposed at the point P in figure 3(a) as

〈 p2〉 = 0 at P . (3.11)

The weak form governing equations are solved in the commercial finite element software
COMSOL Multiphysics. Specifically, the acoustic wave equation (3.1) along with the
boundary conditions (3.2) and (3.3) are implemented in the ‘weak form partial differential
equation (PDE)’ interface, the time-averaged dynamic equations (3.4) and (3.6) are
implemented by modifying the ‘laminar two-phase flow, moving mesh’ interface, and the
additional equations (3.7)–(3.9) used for calculating Jc, h and h0 are implemented in the
‘weak form boundary PDE’ interface. It is worth noting that in the ‘laminar two-phase
flow, moving mesh’ interface, the moving mesh technique is used to track the interface of
the membrane. To obtain the smooth solutions, ξ , Jc, h and h0 are approximated with
the third-order Lagrange elements, and (〈v2〉, 〈 p2〉) are approximated with third-order
Lagrangian elements for 〈v2〉 and second-order composite Lagrangian elements for 〈 p2〉
to meet the stability requirements of incompressible flow. All governing equations are
solved simultaneously by the time-dependent solver, and the time step in the range of
10−3 ∼ 10−4 s depends on the displacement excitation amplitude. The typical mesh used
in the simulations is shown in figure 3(b).

4. Results and discussion

4.1. Model validation
The developed numerical model can simulate the time-averaged deformation dynamics of
capsules driven by ultrasonic standing waves. To validate the present numerical model,
considering zero acoustic input, the present numerical model is degraded to calculate
the transient deformation of a capsule in shear flow and compared with previous results
(Breyiannis & Pozrikidis 2000). As shown in figure 4, the initially circular capsule is
considered in a simple shear flow with constant shear rate k. The capsule membrane
obeys Hooke’s law, which assumes a linear constitutive relation as τ = Es(Jc − 1). The
fluids inside and outside the capsule have the same shear viscosity μ, and their motion
is described by the Stokes flow equation ignoring the inertial effect. The dynamics of the
capsule is controlled by the capillary number Ca = μka0/Es, which measures the ratio of
viscous force to elastic force.

The tank-treading motion of the capsule in the shear flow is captured by the present finite
element model. The capsule deforms from the initially circular shape to an elliptical shape
and remains in a stable state, while the capsule membrane still rotates around the inside
fluid driven by the shear force of the surrounding fluid. The deformation of the capsule
is characterized by the Taylor shape parameter D = (a1 − a2)/(a1 + a2), with a1 and a2
being the major and minor semi-axes of the deformed elliptical shape, respectively, and
the inclination angle θ relative to the positive x-axis (see figure 4). The time evolution of
D and θ for different Ca are presented in figure 5(a,b), respectively. The present results are
shown to match the previous results obtained by boundary integral simulations (Breyiannis
& Pozrikidis 2000).
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Figure 4. Schematic of an initially circular capsule in shear flow.
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Figure 5. Time-evolution of capsules in simple shear flow for different capillary numbers Ca: (a) deformation
index D; (b) inclination angle θ . Note that in figure 2 of the previous paper (Breyiannis & Pozrikidis 2000), the
results for Ca = 0.05 are incorrectly labelled as Ca = 0.04 (Mendez, Gibaud & Nicoud 2014).

4.2. Circular capsules in 2-D standing waves
This subsection studies the dynamics of the initially circular capsule in 2-D standing
waves generated by the oscillation of the top/bottom wall pair and left/right wall pair
at different phase differences ϕ. In the present work, the initial shape of the capsule is
its stress-free shape. The displacement excitation amplitude of the ultrasonic excitation is
fixed at u0 = 10−11 m, and the induced acoustic pressure amplitude in the microfluidic
cavity is approximately 0.5 MPa. As will be discussed in figures 6–8, for the initially
circular capsule, there are three dynamic states: pure elongation deformation, pure rotation
motion and tank-treading motion. The pure elongation deformation occurs when the
phase difference is ϕ = 0. The pure rotation motion occurs when the phase difference
is ϕ = π/2. The tank-treading motion occurs when the phase difference is between ϕ = 0
and ϕ = π/2.

For the phase difference ϕ = 0, figure 6(a) plots the root-mean-square (RMS) acoustic
pressure around the capsule in the initial state with red circles representing the capsule
membrane. It can be observed from figure 6(a) that the acoustic pressure has a static
nodal line (blue) along y = −x, while the amplitude is oscillating. This acoustic pressure
pattern is similar to that of the 1-D standing wave with the nodal line along y = −x.
Therefore, the capsule dynamics in a 2-D standing wave with phase difference ϕ = 0 is
similar to that in 1-D standing waves. Figure 6(b) shows the flow pattern of the acoustic
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Figure 6. (a) RMS acoustic pressure around the capsule in the initial state. (b) Flow pattern around the capsule
in the steady state. The red line indicates the capsule membrane, and the phase difference is ϕ = 0. In this case,
the capsule is elongated along the along the acoustic pressure nodal line y = −x.
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Figure 7. (a) RMS acoustic pressure around the capsule in the initial state. (b) Flow pattern around the capsule
in the steady state. The red line indicates the capsule membrane, and the phase difference is ϕ = π/2. In this
case, the capsule rotates clockwise with an angular frequency of 0.45 rps (revolution per second).

streaming 〈va
2〉 around the stretched capsule in the steady state, whereas the Stokes flow

〈vs
2〉 driven by the membrane motion is zero due to the zero velocity of the capsule

membrane in the steady state. Outside the capsule, the outer acoustic streaming is expelled
in the direction perpendicular to the acoustic pressure nodal line, while the inner acoustic
streaming is characterized by the vortex structure rotating in the opposite direction. Inside
the capsule, the acoustic streaming consists of four vortices. As shown in figure 6(a,b),
in the 2-D ultrasonic standing wave field, the capsule is stretched along the acoustic
pressure nodal line and finally reaches a steady state of pure elongation deformation.
Here, the time-averaged stress generated by 2-D ultrasonic standing waves has normal
and tangential components. The normal stress deforms the capsule and tangential stress
rotates the capsule. The clockwise and counterclockwise components of the tangential
stress cancel each other, no rotation motion is produced, and only the stable elongation
deformation caused by the normal stress is present (see figure 17 in § 4.4). Therefore,
when the phase difference is ϕ = 0, the capsule undergoes pure elongation deformation.

For the phase differences ϕ = π/2, figure 7(a) plots the RMS acoustic pressure around
the capsule in the initial state. The acoustic field around the capsule is shown to be
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Figure 8. (a) Time evolution of deformation index and inclination angle at different phase differences ϕ =
15π/64, 25π/64 and 30π/64; (b) the shape of the capsule (indicated by the red line) and the flow pattern
around the capsule in the steady state.

approximately a vortex beam with zero amplitude at the core. Figure 7(b) shows the
flow pattern around the capsule in the steady state. For an initially circular capsule,
this rotationally symmetric acoustic field does not cause any obvious deformation of the
capsule. However, the capsule is observed to rotate in the clockwise direction. Around
the capsule membrane, the total flow consists of the rotating acoustic streaming 〈va

2〉
generated by acoustic dissipation and the rotating Stokes flow 〈vs

2〉 generated by capsule
rotation. Thus, the terminal rotation speed is determined by the moment balance generated
by the acoustic streaming and the moment generated by the Stokes flow. In particular,
the moment generated by the acoustic streaming induces the capsule rotation, while the
moment generated by the Stokes flow acts as a hindrance. As the effect of inertia is
negligible, the capsule immediately reaches a steady state of pure rotation motion. As
mentioned above, the time-averaged stress generated by 2-D ultrasonic standing waves has
normal and tangential components. The normal stress deforms the capsule and tangential
stress rotates the capsule. Here, the normal stress is zero and no elongation deformation
is produced, and only the stable rotation motion caused by the clockwise tangential stress
is present (see figure 17 in § 4.4). Therefore, when the phase difference is ϕ = π/2, the
capsule undergoes pure rotation motion.

For the phase difference between ϕ = 0 and ϕ = π/2, figure 8(a,b) plot the time
evolution of the deformation index D and inclination angle θ of the capsule at different
phase differences ϕ = 15π/64, 25π/64 and 30π/64. The capsule is shown to take
approximately 0.2 s to reach a steady state. Figure 8(c) further plots the flow pattern
around the capsule membrane in the steady state. The results show that the capsule at
the steady state exhibits a stable tank-treading motion, just like suspended in a shear flow.
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It is known that the shear flow can be divided into elongation and rotation components, so
the capsule performs the tank-treading motion. As discussed in figures 6 and 7, the capsule
undergoes pure elongation deformation for the phase difference ϕ = 0 and pure rotation
motion for the phase difference ϕ = π/2. Here, similar to shear flow, the 2-D standing
wave with the phase difference between 0 and π/2 also produces a combined effect
of elongation and rotation on the capsule, the normal stress deforms the whole capsule
and the tangential stress rotates the capsule membrane. The capsule deformation and
membrane rotation as a whole form the tank-treading motion. Since the initially circular
capsule has no energy barrier (see Appendix A for details) for the tank-treading motion,
the initially circular capsule performs the stable tank-treading motion at a fixed inclination
angle. Therefore, when the phase difference is between ϕ = 0 and ϕ = π/2, the capsule
undergoes tank-treading motion.

Moreover, it can be seen from figure 8(a,c) that increasing the phase difference weakens
the elongation effect, so that the deformation of the capsule decreases with increasing the
phase difference, while increasing the phase difference strengthens the rotation effect, so
that the tank-treading speed of the capsule membrane increases with increasing the phase
difference (indicated by the increased mean flow velocity). Figure 8(b) shows that the
inclination angle decreases as the phase difference increases. For the deformed capsule,
the 2-D standing wave generates two moments acting on it: one moment aligns the long
axis of the deformed capsule along the inclination angle 3π/4, related to the elongation
effect, and the other moment rotates the capsule clockwise, related to the rotation effect.
As the phase difference increases, the former moment decreases, while the latter moment
increases. Thus, as the phase difference increases, the acoustic-induced moment tends to
rotate the capsule clockwise away from the inclination angle 3π/4, and the inclination
angle is observed to decrease.

Here, the effect of membrane elasticity on the capsule dynamics is examined. Figure 9
plots the dynamic parameters, including steady-state deformation index D, inclination
angle θ and tank-treading angular velocity ωtt, as a function of the phase difference ϕ

for different shear moduli Es. As discussed in figures 6 and 7, as the phase difference
increases from 0 to π/2, the effect of the 2-D standing waves on the capsule changes
from pure elongation to pure rotation. Therefore, the deformation index D and inclination
angle θ decrease, while the tank-treading angular velocity ωtt increases. This observation
is essentially the same as that observed in figures 6–8. For a fixed phase difference,
with the increase of the shear modulus, the deformation index D decreases, while
the inclination angle θ and the tank-treading angular velocity ωtt increase. Figure 10
plots the dynamic parameters, including steady-state deformation index D, inclination
angle θ and tank-treading angular velocity ωtt, as a function of the phase difference
ϕ for different bending moduli Eb. As shown in figure 10, as the bending modulus Eb
decreases, the steady-state deformation index D decreases, while the inclination angle θ

and the tank-treading angular velocity ωtt increase. These trends are generally the same as
those observed when increasing the shear modulus. Regarding the effect on the capsule
dynamics, the shear modulus and bending modulus of the membrane are similar in that
they both limit the deformation of the capsule. It can also be seen that the deformation
index and inclination angle are more sensitive to the shear modulus when the phase
difference is small, while the deformation index and inclination angle are more sensitive
to the bending modulus when the phase difference is large.

The trend of the dynamic parameters of the tank-treading capsule in relation to the
elastic modulus of the membrane, including the shear modulus and bending modulus, is
analysed. First, it is most obvious that increasing the shear modulus and bending modulus
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Figure 9. Effects of shear modulus on capsule dynamics: (a) deformation index; (b) inclination angle;
(c) tank-treading angular velocity.

constrains the deformation of the capsule, which leads to smaller deformations, as shown
in figures 9(a) and 10(a). Then, the trend of the tank-treading angular velocity can be
explained based on the results of capsule deformation. With a larger elastic modulus,
the smaller deformation reduces the velocity gradient around the capsule and the capsule
membrane is more likely to circulate around the capsule contour. Therefore, as shown
in figures 9(c) and 10(c), the tank-treading angular velocity increases as the elastic
moduli increase. Finally, figures 9(b) and 10(b) show that the steady-state inclination
angle increases with the increase of the elastic modulus. The steady-state inclination
angle is determined by the balance between the acoustic-induced moment and the Stokes
flow-induced moment. Here, the tank-treading membrane drives a clockwise rotating
Stokes flow, which in turn exerts a reaction moment that tends to rotate the capsule
counterclockwise. This Stokes flow induced reaction moment increases with the increase
of the tank-treading angular velocity. With the increase of the shear modulus and bending
modulus, the counterclockwise deflection of the inclination angle (i.e. the increase of
the inclination angle) is related to the increase of the tank-treading angular velocity,
as shown in figures 9(b) and 10(b). That is, with the increase of shear modulus and
bending modulus, the capsule deformation decreases, the clockwise tank-treading angular
velocity increases and the counterclockwise Stokes flow moment increases, leading to
the counterclockwise deflection of the capsule inclination angle, i.e. the inclination
angle increases in figures 9(b) and 10(b). It is noticed that this trend is not significant
at small phase differences. This is because at small phase differences, the clockwise
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Figure 10. Effects of bending modulus on capsule dynamics: (a) deformation index; (b) inclination angle;
(c) tank-treading angular velocity.

and counterclockwise tangential stresses largely cancel each other out (see figure 17 in
§ 4.4), resulting in a weak rotation effect and small tank-treading angular velocity for all
considered shear and bending moduli, as shown in figures 9(c) and 10(c). Accordingly,
the small tank-treading motion induces a small Stokes flow, and also the small Stokes
flow-induced moment has a small effect on the steady-state inclination angle, which limits
the influence of membrane elasticity on the steady-state inclination angle.

Figure 11 shows the effect of internal fluid viscosity on the initially circular capsule
dynamics, where the dynamic parameters of the tank-treading motion including the
steady-state deformation index D, inclination angle θ and tank-treading angular velocity
ωtt are plotted as a function of the phase difference ϕ for different internal fluid
viscosities μin. As shown in figure 11(a), the internal fluid viscosity has little effect on
the deformation of the capsule. The internal fluid viscosity affects the deformation of the
capsule through the viscous shear stress generated by the velocity gradient. In the steady
state, the internal fluid velocity is small (see figures 6b and 8c) and the viscous shear
stress generated by the internal fluid viscosity is also small. Therefore, the internal fluid
viscosity has little effect on the steady-state deformation of the capsule. Only at large
phase differences, the internal fluid velocity becomes large [see figure 8c] and the internal
fluid viscosity generates large viscous shear stress, which slightly affects the capsule
deformation. As shown in figure 11(b), when the internal fluid viscosity increases, the
inclination angle decreases. The high internal fluid viscosity hinders the clockwise motion
of the capsule membrane driven by acoustic streaming. That is, the high internal fluid
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Figure 11. Effect of internal fluid viscosity on capsule dynamics: (a) deformation index; (b) inclination
angle; (c) tank-treading angular velocity.

viscosity makes the capsule membrane and the internal fluid more like a whole, and the
acoustic streaming drives the capsule membrane and internal fluid as a whole to deflect
clockwise (corresponding the decrease of the inclination angle). Therefore, the increase of
the internal fluid viscosity leads to the decrease of the inclination angle.

As shown in figure 11(c), when the phase difference ϕ is in the wide range of [0, 0.45π],
the tank-treading angular velocity decreases as the internal fluid viscosity increases, while
the trend is reversed when the phase angle ϕ is close to 0.5π. A greater internal fluid
viscosity results in a greater resistance of the internal Stokes flow to the membrane
tank-treading motion. Additionally, a greater internal fluid viscosity results in a greater
acoustic energy dissipation of the whole acoustic field, a greater velocity of the external
acoustic streaming generated by the acoustic energy dissipation and a greater driving force
for the membrane tank-treading motion. Considering that it is the change of internal fluid
viscosity, the effect of internal viscosity on internal Stokes flow is greater than the effect
on external acoustic streaming in the above two effects. Therefore, in the wide phase
difference range of [0, 0.45π], the internal Stokes flow plays a dominant role, and a greater
internal fluid viscosity results in a greater resistance of the internal Stokes flow to the
membrane tank-treading motion and a slower membrane tank-treading angular velocity.
However, when the phase difference ϕ is 0.5π (or close to 0.5π), the capsule does not
deform and maintains its initially circular shape, the capsule membrane and the internal
fluid rotate together as a whole (Keller & Skalak 1982), so that the internal Stokes flow
does not resist the motion of the capsule membrane, and the external acoustic streaming
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plays a dominant role in this case. Therefore, when the phase difference ϕ is 0.5π (or
close to 0.5π), a greater internal fluid viscosity results in a greater driving force for the
membrane tank-treading motion and a faster membrane tank-treading angular velocity.

4.3. Elliptical capsules in 2-D standing waves
Initial non-spherical biological particles are common in the biological system, such as
biconcave erythrocytes. In this subsection, the numerical model is used to study the
elliptical capsule to qualitatively understand the dynamics of real non-spherical biological
particles. For a capsule with an initial elliptical shape whose area is set equal to a circle of
radius a0, the initial conditions are provided by the initial aspect ratio α0 = a2/a1 and the
initial orientation θ0, where a1 and a2 are the major and minor semi-axes of the elliptical
shape. The initial orientation is fixed at θ0 = π/2 in the following simulations.

As shown in figure 12(a), the phase diagram for different dynamical states is plotted as a
function of the displacement excitation amplitude and phase difference at the initial aspect
ratio of α0 = 0.8. At the displacement excitation amplitude of u0 = 0.32 × 10−11 m, as
the phase difference increases, the dynamic state of the capsule changes from the stable
orientation (green circle) to tumbling motion (red square). At the displacement excitation
amplitude of u0 = 1 × 10−11 m, as the phase difference increases, the dynamic state
of the capsule changes from the stable orientation (green circle) to swinging motion
(blue rhombus), and then to tumbling motion (red square). For the initially non-circular
capsule, there are three dynamical states including stable orientation, tumbling motion
and swinging motion, according to the dynamical characteristics of the capsule inclination
angle and the membrane material points. In the stable orientation, the capsule inclination
angle eventually reaches a steady state, in which the inclination angle remains unchanged
over time. This is illustrated by the time evolution of the capsule inclination angle as shown
by the green dash curve in figure 12(b). In addition, the blue and pink points in figure 12(c)
show two material points of the capsule membrane. The material points are shown to
remain stationary in the steady state (i.e. stable orientation). In the tumbling motion,
the capsule inclination angle undergoes a complete 2π rotation. The rapid decrease of
the capsule inclination angle with time shown by the red solid curve in figure 12(b)
corresponds to the capsule tumbling motion. The motion of the membrane material points
in figure 12(e) is caused by the rigid-body-like rotation of the capsule, which does not
circulate around its contour. In the swinging motion, the capsule membrane performs
tank-treading motion and the capsule inclination angle oscillates with time, but never
makes a 2π rotation. This is illustrated by the fluctuation of the capsule inclination angle
with time as shown by the blue dash–dotted curve in figure 12(b). The capsule membrane
also circulates clockwise around its contour as shown by the motion of the material points
in figure 12(d).

In figure 12, as mentioned above, for the initially non-circular capsule, there are
three dynamic states: stable orientation, tumbling motion and swinging motion. The
time-averaged stress generated by 2-D ultrasonic standing waves has normal and tangential
components. The normal stress deforms the capsule and tangential stress rotates the
capsule.

(1) Stable orientation: When the phase difference is relatively small, the clockwise and
counterclockwise components of the tangential stress cancel each other, no rotation motion
is produced and only the stable elongation deformation caused by the normal stress is
present. The initially circular capsule is stable elongation deformation, and the initially
non-circular capsule is also stable elongation deformation, but called stable orientation,
since its long axis has a stable inclination angle.
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Figure 12. (a) Phase diagram of different dynamical states as a function of displacement excitation amplitude
and phase difference. (b) Typical time evolution curves of deformation index and inclination angle for stable
orientation, swinging and tumbling. (c–e) Shapes and flow profiles of stable orientation, swinging and tumbling
represented by hollow circles, hollow diamonds and hollow squares in panel (b), respectively. The blue and pink
particles are attached to the capsule membrane, and the red dashed lines indicate the orientation of the major
axis. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.277.

(2) Tumbling motion: When the phase difference is relatively large, the normal stress
causes elongation deformation and the initially non-circular capsule deforms into another
ellipse with greater curvature. If the work provided by the acoustic streaming is insufficient
to overcome the energy barrier of the tank-treading motion (see Appendix A for details),
the membrane elements do not start cycling around the elliptical capsule contour, and
the moment formed by the clockwise tangential stress causes the overall tumbling motion
of the capsule. The initially circular capsule is stable rotation motion, but the initially
non-circular capsule is tumbling motion since it is not circular.

964 A18-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.277
https://doi.org/10.1017/jfm.2023.277


Y. Liu and F. Xin

(3) Swinging motion: As shown in the second column of figure 12(a), when the phase
difference is between ϕ = 0 and ϕ = π/2, a new motion mode of the swinging motion
is predicted for an initially non-circular capsule. In the swinging motion, the capsule
membrane performs tank-treading motion and the capsule inclination angle oscillates with
time, but never makes a 2π rotation, as shown in figure 12(d). When the phase difference
is between ϕ = 0 and ϕ = π/2, the 2-D standing waves produce a combined effect of
elongation and rotation on the capsule, the normal stress deforms the whole capsule and
the tangential stress rotates the capsule membrane. The initially circular capsule exhibits
tank-treading motion since it has no energy barrier, but the initially non-circular capsule
exhibits swinging motion since it has an energy barrier of the tank-treading motion (see
Appendix A for details). In fact, the swinging motion is the tank-treading motion that
includes the oscillation of the inclination angle. For the initially non-circular capsule,
when the work provided by the acoustic streaming is sufficient to overcome the energy
barrier, the membrane elements start cycling around the elliptical capsule contour, i.e. the
membrane starts tank-treading motion. During the tank-treading motion, because the initial
ellipse has an energy barrier, the capsule membrane stores elastic energy periodically,
and accordingly, the membrane elastic stress changes periodically, and therefore the
time-averaged stress in equilibrium with it also changes periodically, where the periodic
change of the tangential component of the time-averaged stress leads to the periodic
change of the moment formed by it, which affects the overall moment balance and leads
to the periodic oscillation of the capsule long-axis inclination angle. Consequently, one
observes the tank-treading motion of the initially non-circular capsule has a periodically
oscillating inclination angle instead of the stable tank-treading motion of the initially
circular capsule. This compound motion, which includes both membrane tank-treading
motion and long-axis inclination angle oscillation, is called swinging motion. The work
provided by the acoustic streaming increases with the increase of displacement excitation
amplitude. Therefore, the swinging motion (blue rhombus) can be observed at large
displacement excitation amplitudes in the second column of figure 12(a).

Here, the effect of membrane elastic moduli, including the shear modulus and bending
modulus, on the dynamical state transition of the initially non-circular capsules is
investigated. Figures 13 and 14 show the time evolution of the inclination angle θ

with different shear and bending moduli for a fixed acoustic excitation displacement
u0 = 10−11 m. As shown in figures 13(a) and 14(a), when the shear modulus increases,
the inclination angles are all wavy with time, which indicates that the capsule keeps
the swinging motion unchanged. In contrast, in figure 13(b), when the bending modulus
increases, the inclination angle changes from wavy to a horizontal straight line with time,
which indicates that the capsule changes from swinging motion to a stable orientation.
In figure 14(b), when the bending modulus increases, the inclination angle changes from
wavy to a rapidly decreasing curve with time, which indicates that the capsule changes
from swinging motion to tumbling motion. The above results for the effects of shear and
bending moduli indicate that the bending modulus has a more significant effect on the
energy barrier and on the mode of motion than the shear modulus.

To further investigate the transition of different dynamical states of capsules in 2-D
standing waves, the phase space diagrams of initial aspect ratio versus bending modulus
for the occurrence of different dynamical states at the phase difference ϕ = 15π/64
and ϕ = 30π/64 are plotted in figures 15 and 16, respectively. Once the initial capsule
shape is no longer circular (initial aspect ratio α0 < 1), the capsule begins swinging
and eventually reaches a stable orientation at small phase differences in figure 15(a) or
performs the tumbling motion at large phase differences in figure 16(a) for sufficiently
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Figure 13. Instantaneous inclination angle for different (a) shear moduli and (b) bending moduli at the phase
difference ϕ = 15π/64. The black line shows the result at the shear modulus Es = 6 μN m−1 and the bending
modulus Eb = 0.6 nN nm.
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Figure 14. Instantaneous inclination angle for different (a) shear moduli and (b) bending moduli at the phase
difference ϕ = 30π/64. The black line shows the result at the shear modulus Es = 6 μN m−1 and the bending
modulus Eb = 0.6 nN nm.
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Figure 15. Phase space diagram of initial aspect ratio versus bending modulus for the occurrence of different
dynamical states at the phase difference ϕ = 15π/64. (a) Typical plot of internal fluid viscosity μin = 6 mPa s;
(b) plot of different internal fluid viscosity μin = 6, 12 and 18 mPa s. The lines separate the regions of stable
orientation and swinging for different internal fluid viscosities, and the line α0 = 1 represents the region of
the tank-treading motion. The initial aspect ratio is defined as α0 = a2/a1 with a2 and a1 being the minor and
major semi-axes of the elliptical shape.
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Figure 16. Phase space diagram of initial aspect ratio versus bending modulus for the occurrence of different
dynamical states at the phase difference ϕ = 30π/64. (a) Typical plot of internal fluid viscosity μin = 6 mPa s;
(b) plot of different internal fluid viscosity μin = 6, 7.5 and 9 mPa s. The lines separate the regions of
tumbling and swinging for different internal fluid viscosities, and the line α0 = 1 represents the region of
the tank-treading motion. The initial aspect ratio is defined as α0 = a2/a1 with a2 and a1 being the minor and
major semi-axes of the elliptical shape.

elongated capsules. This transition occurs because the energy barrier increases as the
initial aspect ratio decreases or the bending modulus increases, so that smaller initial
aspect ratio and larger elastic modulus hinder the circulation of the membrane element
around the capsule contour. In general, the swinging motion is observed at small elastic
modulus and large initial aspect ratio, while stable orientation for small phase differences
in figure 15(a) or tumbling for large phase differences in figure 16(a) is observed at large
elastic modulus and small initial aspect ratio.

Figures 15(b) and 16(b) show the effect of internal fluid viscosity μin on the transition
of different dynamical states of the initially non-circular capsules at the phase differences
ϕ = 15π/64 and ϕ = 30π/64, respectively. As shown in figure 15(b), at the phase
difference ϕ = 15π/64, the dynamical state of the non-circular capsules changes from
the steady state (stable orientation) to the unsteady state (swinging motion) when the
bending modulus decreases or the initial aspect ratio increases. Once the work provided
by the acoustic streaming overcomes the energy barrier, the steady state ceases to exist
and the transition takes place. The larger internal fluid viscosity leads to more intense
acoustic streaming, and correspondingly more work is provided by the acoustic streaming.
Therefore, capsules with larger internal viscosity are more prone to swinging motion,
and the area of the swinging region increases with increasing internal fluid viscosity, as
shown in figure 15(b). As shown in figure 16(b), at the phase difference ϕ = 30π/64, the
dynamical state of the non-circular capsule changes from one unsteady state (tumbling
motion) to another unsteady state (swinging motion) when the bending modulus decreases
or the initial aspect ratio increases. Due to the coupling between the moment balance that
governs the rotation of the entire capsule and the energy conservation that governs the
circulation of the capsule membrane, the critical condition for triggering this transition is
not as simple as that at the phase difference ϕ = 15π/64. It is inferred that there exists
a finite tank-treading velocity under the critical condition for this transition. The work
provided by the acoustic streaming is partly used to overcome the energy barrier and partly
dissipated by the Stokes flow. The dissipation of the Stokes flow increases as the internal
fluid viscosity increases, so the effective energy provided by the acoustic streaming to
overcome the energy barrier is reduced. As a result, capsules with larger internal fluid
viscosity are more difficult to swing, and the area of the swinging region decreases with
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increasing internal fluid viscosity, as shown in figure 16(b). Moreover, the effect of internal
fluid viscosity is more prominent for large aspect ratios because capsules with large aspect
ratios have larger Stokes flow velocity gradients and dissipation.

4.4. Analysis of acoustic-induced stress and moment
In this subsection, the acoustic-induced stresses and moments acting on the capsule are
analysed to further understand the shape dynamics of the capsule in a 2-D standing
wave with phase difference. First, the jump of the time-averaged stress across the
membrane is introduced as Δf = (〈Pout

2 〉 − 〈Pin
2 〉) · n, where 〈Pin

2 〉 and 〈Pout
2 〉 are the

time-averaged second-order Piola–Kirchhoff stresses inside and outside the capsule,
respectively, and n is the unit outward normal to the capsule membrane. Here, the
time-averaged second-order Piola-Kirchhoff stress 〈P2〉 and all the unknown variables in
(2.11), including the acoustic displacement ξ , the time-averaged fluid pressure 〈 p2〉 and
the time-averaged fluid velocity 〈v2〉, can be obtained by numerically solving the acoustic
wave equation (3.1) and time-averaged dynamic equations (3.4) and (3.6) in the finite
element model. Corresponding to the decomposition of the time-averaged flow 〈v2〉 into
the sum of the acoustic streaming 〈va

2〉 and the Stokes flow 〈vs
2〉, i.e. 〈v2〉 = 〈va

2〉 + 〈vs
2〉,

the time-averaged stress jump f can be expressed as the sum of the acoustic induced
stress jump Δf a associated with the acoustic radiation pressure and the acoustic streaming
〈va

2〉 and the Stokes flow induced stress jump Δf s associated with the Stokes flow 〈vs
2〉,

i.e. f = f a + f s. For a capsule in an ultrasonic standing wave field, the dynamics of
the capsule is governed by the competition between the acoustic-induced stress, the Stokes
flow-induced stress and the membrane elastic stress. In particular, the acoustic-induced
stress is the driving force causing the motion and deformation of the capsule, while the
Stokes flow-induced stress and membrane elastic stress hinder the motion and deformation
of the capsule. To understand the capsule dynamics in an ultrasonic standing wave field, it
is important to analyse the acoustic-induced stress.

Here, the acoustic-induced stress acting on the tank-treading capsule with initially
circular shape in the steady state is investigated to understand the capsule elongation
deformation and the membrane tank-treading motion. The acoustic-induced stress is
divided into the normal component f a

n = f a · n with the normal vector n pointing
outward and the tangential component f a

t = f a · t with the tangential vector t pointing
clockwise. Figure 17(a) shows the vector plots of the normal and tangential components
on the deformed membrane, and figure 17(b,c) further show the normal and tangential
components as a function of the position angle α. As shown in the inset of figure 17(b),
the position angle α measures the angle position of the membrane element with respect to
the long axis of the deformed capsule. The normal stress causes the capsule deformation,
reflecting the elongation effect of the 2-D standing waves. As can be seen in the first row
of figure 17(a), the normal stress is tensile in the long-axis region (i.e. the phase angle
α = 0 and π) and compressive in the short-axis region (i.e. the phase angle α = π/2 and
3π/2) except in the case of phase difference ϕ = 32π/64. In the case of phase difference
ϕ = 30π/64, the normal stress still exists, although it is relatively small and not easy to
identify in the first row of figure 17(a). As shown in figure 17(b), when the phase difference
ϕ increases from 0 to 32π/64, the magnitude of the normal stress decreases, resulting
in the decrease of deformation of the tank-treading capsule. When the phase difference
is at 32π/64, the normal stress is almost 0 and the capsule deformation disappears.
These observations of the normal stress can explain the results in Figures 8–11 that as
the phase difference increases, the deformation of the tank-treading capsule decreases.
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Figure 17. (a) Vector plots of the normal stress (first row) and tangential stress (second row) of the
acoustic-induced stress. The black lines denote the deformed capsule membrane. (b) Normal stress and
(c) tangential stress of the acoustic-induced stress versus the position angle α for different phase differences.

However, the tangential stress causes the membrane to undergo a tank-treading motion,
reflecting the rotation effect of 2-D standing waves. As can be seen in the second row
of figure 17(a,c), the tangential stress is globally clockwise, except in the case of phase
difference ϕ = 0. Here, the clockwise tangential stress promotes the tank-treading motion
of the membrane in the clockwise direction. In the case of phase difference ϕ = 0, the
tangential stress has both clockwise and counterclockwise components, i.e. the positive
clockwise component is offset by the negative counterclockwise component and the
rotation effect vanishes. In the case of phase difference ϕ = 15π/64, the tangential stress
still has a counterclockwise component, although it is relatively small and not easy to
identify in the second row of figure 17(a). As shown in figure 17(c), when the phase
difference ϕ increases, the tangential stress shows a significant increase in a large area
with the position angle α in the range of [0, 0.8π], and therefore, the rotation effect of the
2-D standing wave is enhanced. These observations of the tangential stress can explain the
results in figures 8–11 that as the phase difference increases, the tank-treading velocity of
the tank-treading capsule increases.

Finally, the acoustic-induced moment acting on the non-circular capsule is investigated
to understand the dynamics of the capsule orientation, which is an important indicator
to distinguish different dynamical states of the initially non-circular capsule. The
acoustic-induced moment is calculated as Ma = ez · ∫

s x × Δf a dl with x being the
position vector of the capsule membrane and ez = ex × ey denoting the unit vector in
the z-direction. Figure 18 plots the acoustic-induced moment Ma acting on the non-circular
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Figure 18. Acoustic-induced moment versus capsule inclination angle for different phase differences. The
circles indicate the corresponding steady-state inclination angles.

capsules with aspect ratio α0 = 0.8 as a function of the inclination angle θ for different
phase differences at the displacement excitation amplitude u0 = 0.32 × 10−11 m. As can
be seen in figure 18, the acoustic-induced moment shows a cosine shape characteristic
with respect to the inclination angle. The acoustic-induced moment is maximum at the
inclination angle θ = 0.5π and minimum at the inclination angle θ = 0. This is consistent
with previous studies on the moment acting on rigid particles induced by 2-D standing
waves (Bernard et al. 2017). Furthermore, it can be seen from figure 18 that as the
phase difference increases, the acoustic-induced moment curve becomes smooth, i.e.
the fluctuation amplitude decreases, and the area with positive moment decreases and
eventually disappears. When the phase difference is relatively small (e.g. ϕ = 0, 15π/64
and 25π/64), the acoustic-induced moment curve and the grey line Ma = 0 have two
intersection points, which correspond to two equilibrium inclination angles of the capsule.
The first equilibrium inclination angle is unstable because a small deviation will cause the
capsule to rotate away from this inclination angle, while the second is stable because a
small deviation will cause the capsule to rotate back to this inclination angle. When the
phase difference is relatively large (e.g. ϕ = 30π/64 and 32π/64), the acoustic-induced
moment curve does not intersect with the grey line Ma = 0. This indicates that the capsule
does not have an equilibrium inclination angle. These observations of the acoustic-induced
moment explain the transition from stable orientation to tumbling motion of the initially
non-circular capsule when the phase difference increases, as shown in figure 12(a).

5. Concluding remarks

The time-averaged dynamics of the capsule in viscous fluid driven by two phase-shifted
orthogonal ultrasonic standing waves is theoretically and numerically investigated.
Subjected to an acoustic field, the capsule and surrounding fluid not only oscillate on
fast time scales, but also exhibit time-averaged responses on slow time scales due to
the acoustic nonlinear effect. The acoustic perturbation method based on the generalized
Lagrangian formulation is employed to decompose the particle motion into the first-order
ultrasound propagation and the second-order time-averaged responses. The equations that
govern the time-averaged dynamics of the fluid–capsule system are thus established.
The fundamental governing equations are converted to weak forms and solved by the
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finite element method. The developed computational model can effectively deal with the
coupling of three physical fields, including acoustic propagation field, capsule deformation
field and viscous flow field. This work develops a hydrodynamic computational method for
ultrasound-driven capsule deformation and motion in a viscous fluid.

The results show that two orthogonal ultrasonic standing waves with phase difference
can produce the elongation and rotation of the capsule, which leads to complex shape
dynamics of capsules. For the initially circular capsule, it undergoes pure elongation
deformation at the phase difference ϕ = 0 and pure rotation motion at the phase difference
ϕ = π/2. When the phase difference is between 0 and π/2, the capsule undergoes
tank-treading motion due to the combined effects of elongation and rotation. Parametric
studies show that membrane elasticity and internal fluid viscosity of the capsule have
significant effects on the dynamical parameters of the tank-treading capsule, including
capsule deformation, inclination angle and tank-treading velocity. For the initially
non-circular capsule, three different types of dynamical states are predicted, including
stable orientation, tumbling motion and swinging motion. Specifically, the transition from
stable orientation to tumbling is triggered by increasing the phase difference. When the
work provided by acoustic streaming becomes large enough to overcome the energy barrier
of the tank-treading motion, both stable orientation and tumbling motion switch to the
swinging motion.

This work investigates the shape dynamics of 2-D capsules in 2-D ultrasonic
standing waves, which should have the same key dynamic characteristics as the true
three-dimensional (3-D) system. Specifically, the phase difference of 2-D ultrasonic
standing waves should have the same effect in both 2-D and 3-D systems. Both the initial
2-D circular capsule and the initial 3-D spherical capsule have no energy barrier for the
membrane tank-treading motion, while both the initial 2-D non-circular capsule and the
initial 3-D non-spherical capsule have the energy barrier for the membrane tank-treading
motion. It is believed that the key insights into the shape dynamics of 2-D capsules in 2-D
ultrasonic standing waves can be applied to 3-D systems. However, a definitive answer
regarding the dynamics of a true 3-D capsule requires a 3-D model. This is work that
deserves further investigation in the future.

For the application value of this work, the developed computational model can pave the
way for methods to determine the mechanical properties of capsules/cells in cell biology.
Since this work considers the deformation and rotation of the capsule in 2-D standing
waves, the computational model can be used to derive not only the elastic parameters
but also the viscosity parameters of the capsule. Specifically, the mechanical properties
of the capsule include shear modulus, bending modulus and cytoplasmic viscosity, all of
which can be measured by using the acoustofluidic dynamics studied here. By fitting the
experimentally observed capsule deformation and motion to the present computational
model, the mechanical parameters of the capsules in the computational model can be
determined. The proposed computational model facilitates the accurate extraction of the
viscous and elastic properties of capsules/cells by the acoustofluidic technique, and also
provides guidance for the experimental work of manipulating deformable cells in 2-D
standing waves in the future.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.277.
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1/4 circulation
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B

Figure 19. Illustration of a 1/4 cycle of membrane elements around the capsule contour. The hollow circles
represent the membrane elements initially located in the long-axis region and the solid circles represent the
membrane elements initially located in the short-axis region.
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Appendix A: Energy barrier of the tank-treading motion

The time-averaged stress generated by 2-D ultrasonic standing waves has normal and
tangential components. The normal stress deforms the capsule and tangential stress rotates
the capsule membrane. As the capsule membrane rotates around the deformed capsule
contour (i.e. performs tank-treading motion), the Helfrich bending energy of the capsule
membrane also changes, and the maximum bending energy during the change is the energy
barrier of the tank-treading motion (Helfrich 1973):

Wb = Eb

2

∫
C

[h(l) − h0(l)]2 dl. (A1)

Here, Eb is the bending modulus, h(l) is the instantaneous curvature of the membrane
element at the position l and h0(l) is the initial curvature of the membrane element at the
position l.

For an initially circular capsule, since the initial shape is circular, the curvature is the
same everywhere, so the initial curvature of the membrane element h0(l) = 1/a0 (a0 is the
radius of the circular capsule) at the position l does not change with the position. When the
capsule membrane rotates around the circular capsule contour (i.e. performs tank-treading
motion), the membrane element at the position l changes, but the initial curvature of
the membrane element at the position l is always the constant h0(l) = 1/a0, which does
not change with time. However, the deformation of the initially circular capsule into an
elliptical shape will lead to a change in the instantaneous curvature h(l). Nevertheless,
after it becomes elliptical, it performs the tank-treading motion in its current elliptical
configuration, and its elliptical shape does not change with time, so the instantaneous
curvature h(l) does not change with time. Since neither h(l) nor h0(l) changes with time,
the difference h(l) − h0(l) does not change with time. The corresponding bending energy
Wb also does not change with time, so no energy barrier is formed.

For an initially non-circular capsule, since the initial shape is non-circular, the curvature
is different everywhere and the initial curvature of the membrane element h0(l) at the
position l changes with the position l. When the capsule membrane rotates around the
non-circular capsule contour (i.e. performs tank-treading motion), the membrane element
at the same position is changing, and the initial curvature of its corresponding membrane
element is different, that is, the initial curvature h0(l) of the membrane element at the
position l changes with time. Taking the 1/4 rotation shown in figure 19 as an example,
at the initial time, the membrane element at position A in the long-axis is the membrane
element marked by a hollow circle, and h0(A) is the initial curvature of the membrane
element at position A (i.e. the membrane element marked by the hollow circle). After
1/4 cycle, the membrane element marked by the solid circle reaches position A in the
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long-axis, and h0(A) is the initial curvature of the membrane element at position A (i.e.
the membrane element marked by the solid circle). The initial curvature of the solid
circle marked membrane element is different from the initial curvature of the hollow
circle marked membrane element, that is, h0(A) or h0(l) changes with time. However, the
deformation of the initially non-circular capsule into another elliptical shape with larger
curvature will lead to a change in the instantaneous curvature h(l). Nevertheless, after
it becomes another elliptical shape with larger curvature, it performs the tank-treading
motion in its current elliptical configuration, and its elliptical shape does not change with
time, so the instantaneous curvature does not change with time. Although h(l) does not
change with time, h0(l) changes with time. Therefore, the difference h(l) − h0(l) changes
with time, and the corresponding bending energy Wb changes with time. The maximum
bending energy during this change forms the energy barrier of the tank-treading motion.
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