APPROXIMATION OF FUNCTIONS BY MEANS OF LIPSCHITZ FUNCTIONS

J. H. MICHAEL

(received 24 May 1962)

1. Introduction

Let Q denote the closed unit cube in R^{n}. The elementary area $A(f)$ of a Lipschitz function f on Q is given by the formula

$$
A(f)=\int_{Q}\left\{1+\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}}\right)^{2}\right\}^{\frac{1}{2}} \mathrm{~d} x
$$

In [1], C. Goffman has shown that A is lower semi-continuous with respect to the \mathscr{L}_{1} norm and admits a lower semi-continuous extension to a functional A defined on the class of all functions summable on Q. Thus for a summable f

$$
A(f)=\inf \left[\underset{r \rightarrow \infty}{\liminf } A\left(f^{(r)}\right)\right],
$$

where the infimum is taken over all sequences $\left\{f^{(r)}\right\}$ of Lipschitz functions that converge \mathscr{L}_{1} to f.
Denote by \mathscr{D} the set of all infinitely differentiable functions on R^{n} with compact support. Let \mathscr{P}^{k} denote the set of transformations $\psi=\left(\psi_{1}, \cdots, \psi_{k}\right)$ from R^{n} to R^{k} such that each $\psi_{i} \in \mathscr{D}$.
The functional A can also be characterised by

$$
\begin{equation*}
A(f)=\sup \left[\sum_{i=1}^{n} \int_{Q} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\int_{Q} \psi_{n+1} \mathrm{~d} x\right], \tag{1}
\end{equation*}
$$

where the supremum is taken over all $\psi \in \mathscr{D}^{n+1}$ such that $\operatorname{spt} \psi \subseteq \operatorname{Int}(Q)$ and

$$
\sup _{x}\left[\sum_{i=1}^{n+1}\left\{p_{i}(x)\right\}^{2}\right]^{\frac{1}{2}} \leqq 1 .
$$

In [2], I proved the following theorem.
Let f be summable on Q and such that $A(f)<\infty$. Then, for each $\varepsilon>0$, there exists a Lipschitz function g on Q such that the set $\{x ; x \in Q$ and $f(x) \neq g(x)\}$ has measure less than ε and $A(g)<A(f)+\varepsilon$.

In the present paper, a similar theorem is proved for a more general functional Ψ, but unfortunately I can only prove the theorem for continuous
functions. I take a functional Ψ on the class of Lipschitz functions, extend it by lower semi-continuity to the class of summable functions and then show that for each continuous f on Q, with $\Psi(f)<\infty$ and each $\varepsilon>0$, there exists a Lipschitz function g on Q which agrees with f except on a set of measure less than ε and is such that $\Psi(g)<\Psi(f)+\varepsilon$.

The functional Ψ is defined on the Lipschitz functions in the following way.
Let ϕ be a non-negative, real-valued continuous function on R^{n}, ρ be a norm for $\mathscr{D}^{n+1} ; \alpha$ be an integer that is either 0 or 1 and η be a non-negative, strictly increasing, unbounded, continuous function on the non-negative reals. Let ϕ, ρ, α and η be such that:
(i) $\phi(\xi) \geqq \phi\left(\xi^{\prime}\right)$ when $\left|\xi_{1}\right| \geqq\left|\xi_{1}^{\prime}\right|, \cdots,\left|\xi_{n}\right| \geqq\left|\xi_{n}^{\prime}\right|$;
(ii) there exist constants A and B such that

$$
\|\xi\| \leqq A+B \phi(\xi) \quad \text { for all } \quad \xi \in R^{n}
$$

(iii) there exists a continuous function θ on the $n \times n$ real matrices such that

$$
\phi(\xi \cdot X) \leqq \phi(\xi) \cdot \theta(X)
$$

for every $\xi \in R^{n}$ and every $n \times n$ matrix X;
(iv) for every open set U of R^{n} and every locally Lipschitz function f on U,

$$
\begin{align*}
\int_{U} \phi(\operatorname{grad} f) \mathrm{d} x & =\eta\left[\sup \left\{\sum_{i=1}^{n} \int_{U} \frac{\partial f}{\partial x_{i}} \psi_{i} \mathrm{~d} x+\alpha \int_{U} \psi_{n+1} \mathrm{~d} x\right\}\right], \tag{1}\\
& =\eta\left[\sup \left\{\sum_{i=1}^{n} \int_{U} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\alpha \int_{U} \psi_{n+1} \mathrm{~d} x\right\}\right] \tag{2}
\end{align*}
$$

where in each case the supremum is taken over all $\psi \in \mathscr{D}^{n+1}$ with spt $\psi \subseteq U$ and $\rho(\psi) \leqq 1 ;$
(v) ρ is translation invariant; i.e., if $\psi \in \mathscr{D}^{n+1}$ and $\nu(\zeta)=\psi(\zeta+a)$, then $\rho(\nu)=\rho(\psi)$;
(vi) $\rho(\psi)=\rho\left(\varepsilon_{1} \psi_{1}, \cdots, \varepsilon_{n+1} \psi_{n+1}\right)$ for all $\psi \in \mathscr{D}^{n+1}$ and all $\dot{\varepsilon}_{1}= \pm 1, \cdots$, $\varepsilon_{n+1}= \pm 1$.

Define

$$
\Psi(f)=\int_{Q} \phi(\operatorname{grad} f) \mathrm{d} x
$$

for every Lipschitz function f on Q. It is shown in [4], that when Ψ is extended to the summable functions by lower semicontinuity, one has for each continuous f,

$$
\Psi(f)=\eta\left[\sup \left\{\sum_{i=1}^{n} \int_{Q} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\alpha \int_{Q} \psi_{n+1} \mathrm{~d} x\right\}\right],
$$

where the supremum is taken over all $\psi \in \mathscr{D}^{n+1}$ with $\operatorname{spt} \varphi \subseteq \operatorname{Int}(Q)$ and $\rho(\psi) \leqq 1$.

A simple example of such a ϕ, ρ, etc. is

$$
\begin{gathered}
\phi(\xi)=\left[\sum_{i=1}^{n} \xi_{i}^{2}\right]^{\frac{1}{2}}=\|\xi\|, \\
\rho(\psi)=\sup _{x}\left[\sum_{j=1}^{n+1}\left\{\psi_{j}(x)\right\}^{2}\right]^{\frac{1}{2}}, \\
\alpha=0, \quad \eta(t)=t \quad \text { and } \quad \theta(X)=\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i j}^{2}\right]^{\frac{1}{2}} .
\end{gathered}
$$

If one uses the same ρ and η, but puts

$$
\phi(\xi)=\left[1+\sum_{i=1}^{n} \xi_{i}^{2}\right]^{\frac{1}{2}}
$$

$\alpha=1$ and $\theta(X)=\left[1+\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i j}^{2}\right]^{\frac{1}{2}}$, one obtains the area functional; i.e., $\Psi(f)=A(f)$.

Another example is given by

$$
\phi(\xi)=\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}
$$

where p is a real number >1,

$$
\begin{gathered}
\rho(\psi)=\left[\int_{R^{n}}\left(\sum_{i=1}^{n+1}\left|\psi_{j}(x)\right|^{p(p-1)}\right) \mathrm{d} x\right]^{(p-1) / p}, \\
\alpha=0, \quad \eta(t)=t^{p} \text { and } \theta(X)=\sum_{j=1}^{n}\left\{\sum_{i=1}^{n}\left|X_{i}\right|^{p \mid(p-1)}\right\}^{p-1} .
\end{gathered}
$$

Thus

$$
\Psi(f)=\int_{Q}\left(\sum_{i=1}^{n}\left|\frac{\partial f}{\partial x_{i}}\right|^{p}\right) \mathrm{d} x
$$

for a Lipschitz f.

2. Preliminaries

Let U be an open set of $R^{n} . \mathscr{L}(U)$ denotes the set of all locally summable real-valued functions on $U . \mathscr{K}(U)$ denotes the subset of $\mathscr{L}(U)$ consisting of all locally Lipschitz functions. For each $f \in \mathscr{L}(U)$ and each open subset V of U, define

$$
\Lambda(f, V)=\sup \left[\sum_{i=1}^{n} \int_{V} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\alpha \int_{V} \psi_{n+1} \mathrm{~d} x\right]
$$

and

$$
\Gamma(f, V)=\sup \left[\sum_{i=1}^{n} \int_{V} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x\right]
$$

where in each case the supremum is taken over all $\psi \in \mathscr{D}^{n+1}$ with spt $\psi \subseteq V$
and $\rho(\psi) \leqq 1$. The definition of Λ and Γ is extended to arbitrary Borel subsets B of U by putting

$$
\Lambda(f, B)=\inf \Lambda(f, V)
$$

and

$$
\Gamma(f, B)=\inf \Gamma(f, V)
$$

where each infimum is taken over all open subsets V of U containing B. For each Borel subset B of U, define

$$
\Phi(f, B)=\eta\{\Lambda(f, B)\}
$$

If we put

$$
\mu(B)=\Phi(f, B)
$$

then we will show in 2.13 , that μ is a non-negative completely additive Borel measure.

When $f \in \mathscr{L}(U), V$ is an open subset of U with $\mathrm{d}(V, \sim U)>0$ and r is a positive integer with $(\sqrt{ } n) \cdot r^{-1}<\mathrm{d}(V, \sim U)$, we will use (as in [2]), the symbol $\mathscr{I}_{r}(f)$ to denote the integral mean

$$
\left\{\mathscr{F}_{r}(f)\right\}(x)=r^{n} \int_{0}^{1 / r} \cdots \int_{0}^{1 / r} f(x+\xi) \mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{n},
$$

which is defined for $x \in V$.
Integral means have the following properties:
2.1 If $f \in \mathscr{L}(U)$, then $\mathscr{I}_{r}(f)$ is continuous and hence locally summable on V.
2.2 If f is continuous, then $\mathscr{I}_{\boldsymbol{r}}(f)$ has continuous first order partial derivatives.
2.3 If $f \in \mathscr{L}(U)$ and is bounded, then $\mathscr{I}_{r}(f)$ is Lipschitz.
2.4 If $t \in \mathscr{K}(U)$, then

$$
\frac{\partial}{\partial x_{i}}\left\{\mathscr{I}_{r}(f)\right\}=\mathscr{I}_{r}\left(\frac{\partial f}{\partial x_{i}}\right)
$$

everywhere in V.
2.5 If $f \in \mathscr{L}(U)$, then $\mathscr{F}_{r}(f) \rightarrow f$ almost everywhere in V and for every compact set C,

$$
\int_{C}\left|f-\mathscr{I}_{r}(f)\right| \mathrm{d} x \rightarrow 0 \text { and } \int_{C}\left|f-\mathscr{I}_{r}\left\{\mathscr{I}_{r}(f)\right\}\right| \mathrm{d} x \rightarrow 0
$$

as $r \rightarrow \infty$.
Λ, Γ and Φ have the following properties:
2.6 If $f, g \in \mathscr{L}(U)$ and B is a Borel subset of U, then $\Lambda(f+g, B) \leqq$ $\Lambda(f, B)+\Gamma(g, B)$.
2.7 If $f \in \mathscr{L}(U), B$ is a Borel subset of U and β is a real number, then

$$
\Gamma(\beta f, B)=|\beta| \Gamma(f, B)
$$

2.8 If $f \in \mathscr{K}(U)$ and B is a Borel subset of U, then

$$
\Phi(f, B)=\int_{B} \phi(\operatorname{grad} f) \mathrm{d} x
$$

The following theorems establish some further properties of Φ, Γ and Λ.
2.9 Theorem. If $f, f^{(r)} \in \mathscr{L}(U)$ and V is an open subset of U such that f and each $f^{(r)}$ is summable on V and if

$$
\int_{V}\left|t-f^{(r)}\right| d x \rightarrow 0
$$

as $r \rightarrow \infty$, then

$$
\underset{r \rightarrow \infty}{\liminf } \Lambda\left(f^{(r)}, V\right) \geqq \Lambda(f, V)
$$

and

$$
\underset{r \rightarrow \infty}{\liminf } \Phi\left(f^{(r)}, V\right) \geqq \Phi(f, V) .
$$

Proof. Take $\varepsilon>0$ or $N>0$ according as $\Lambda(f, V)$ is finite or infinite. There exists $\psi \in D^{n+1}$ such that $\rho(\psi) \leqq 1$, spt $\psi \cong V$ and

$$
\sum_{i=1}^{n} \int_{V} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\alpha \int_{V} \psi_{n+1} \mathrm{~d} x>\Lambda(f, V)-\varepsilon \text { or } N .
$$

Then

$$
\begin{gathered}
\lim _{r \rightarrow \infty} \inf \Lambda\left(f^{(r)}, V\right) \geqq \lim _{r \rightarrow \infty}\left[\sum_{i=1}^{n} \int_{\nabla} f^{(r)} \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\alpha \int_{\nabla} \psi_{n+1} \mathrm{~d} x\right] \\
=\sum_{i=1}^{n} \int_{\nabla} f \frac{\partial \psi_{i}}{\partial x_{i}} \mathrm{~d} x+\alpha \int_{V} \psi_{n+1} \mathrm{~d} x>\Lambda(f, V)-\varepsilon \text { or } N .
\end{gathered}
$$

2.10 Theorem. If $f \in \mathscr{L}(U), C$ is a compact subset of U and $\Phi(f, C)$ is finite, then

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \sup \Lambda\left\{\mathscr{f}_{r}(f), C\right\} \leqq \Lambda(f, C), \\
& \lim _{r \rightarrow \infty} \sup \Lambda\left[\mathscr{I}_{r}\left\{\mathscr{F}_{r}(f)\right\}, C\right] \leqq \Lambda(f, C), \\
& \lim _{r \rightarrow \infty} \sup \Phi\left\{\mathscr{F}_{r}(f), C\right\} \leqq \Phi(f, C)
\end{aligned}
$$

and

$$
\lim _{r \rightarrow \infty} \sup \Phi\left[\mathscr{I}_{r}\left\{\mathscr{I}_{r}(f)\right\}, C\right] \leqq \Phi(f, C) .
$$

Proof. Take $\varepsilon>0$ and let V be a bounded open subset of U containing C and such that

$$
\begin{equation*}
\Lambda(f, V)<\Lambda(f, C)+\frac{1}{2} \varepsilon \tag{1}
\end{equation*}
$$

By the usual procedure for integral means one can easily show that

$$
\Lambda\left\{\mathscr{\mathscr { A }}_{r}(f), C\right\} \leqq \Lambda(f, V)
$$

for sufficiently large r and

$$
\Lambda\left[\mathscr{\mathscr { O }}_{r}\left\{\mathscr{D}_{r}(f)\right\}, C\right] \leqq \Lambda(f, V)
$$

for sufficiently large r. From these inequalities and (1), the theorem immediately follows.
2.11 Theorem. If $t \in \mathscr{K}(U)$ and C is a compact subset of U, then

$$
\begin{aligned}
& \Lambda\left\{t-\mathscr{I}_{r}(f), C\right\} \rightarrow \eta^{-1}\{\phi(0) \cdot m(C)\}, \\
& \Lambda\left[f-\mathscr{I}_{r}\left\{\mathscr{I}_{r}(f)\right\}, C\right] \rightarrow \eta^{-1}\{\phi(0) \cdot m(C)\}, \\
& \Phi\left\{f-\mathscr{I}_{r}(f), C\right\} \rightarrow \phi(0) \cdot m(C)
\end{aligned}
$$

and

$$
\Phi\left[f-\mathscr{I}_{r}\left\{\mathscr{I}_{r}(f)\right\}, C\right] \rightarrow \phi(0) \cdot m(C)
$$

as $r \rightarrow \infty$.
Proof. It follows from 2.4 and 2.5, that $\partial / \partial x_{i}\left\{\mathscr{I}_{r}(f)\right\} \rightarrow \partial / / \partial x_{i}$ almost everywhere on C. Also, there exists a constant K such that

$$
\left|\frac{\partial f}{\partial x_{i}}-\frac{\partial}{\partial x_{i}}\left\{\mathscr{I}_{r}(f)\right\}\right| \leqq K
$$

for all sufficiently large r and almost all $x \in C$. Let $L>0$ be such that $\phi(\xi) \leqq L$ for all ξ for which $\left|\xi_{1}\right| \leqq K, \cdots,\left|\xi_{n}\right| \leqq K$. Then

$$
\phi\left\{\operatorname{grad} f-\operatorname{grad} \mathscr{I}_{r}(f)\right\} \leqq L
$$

for all sufficiently large r and almost all $x \in C$, and

$$
\lim _{r \rightarrow \infty} \phi\left\{\operatorname{grad} f-\operatorname{grad} \mathscr{\mathscr { F }}_{r}(f)\right\}=\phi(0)
$$

for almost all $x \in C$. Therefore, by bounded convergence,

$$
\lim _{r \rightarrow \infty} \int_{C} \phi\left\{\operatorname{grad} f-\operatorname{grad} \mathscr{I}_{r}(f)\right\} d x=\phi(0) \cdot m(C) .
$$

Suppose that $\Phi\left\{f-\mathscr{I}_{r}^{2}(f), C\right\}$ does not approach $\phi(0) \cdot m(C)$. Then there is an increasing sequence $\left\{r_{s}\right\}$ of positive integers such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Phi\left\{t-\mathscr{I}_{r_{0}}^{2}(f), C\right\}-\phi(0) \cdot m(C)=\delta \neq 0 . \tag{1}
\end{equation*}
$$

But by 2.4 and 2.5

$$
\int_{C}\left\|\operatorname{grad} f-\operatorname{grad} \mathscr{I}_{r_{t}}^{2}(f)\right\| \mathrm{d} x \rightarrow 0
$$

as $s \rightarrow \infty$, so that there exists a subsequence $\left\{p_{s}\right\}$ of $\left\{r_{s}\right\}$ such that

$$
\lim _{s \rightarrow \infty}\left[\operatorname{grad} f-\operatorname{grad} \mathscr{F}_{p_{i}}^{2}(f)\right]=0
$$

almost everywhere in C. But there is a constant K^{\prime} such that $\| g r a d ~ f-$ $\operatorname{grad} \mathscr{I}_{p_{c}}^{2}(f) \| \leqq K^{\prime}$ almost everywhere in C.

Hence

$$
\lim _{s \rightarrow \infty} \int_{C} \phi\left\{\operatorname{grad} f-\operatorname{grad} \mathscr{I}_{p_{t}}^{2}(f)\right\} \mathrm{d} x=\phi(0) \cdot m(C)
$$

contradicting (1).
2.12 Theorem. If $g \in \mathscr{K}(U)$ and C is a compact subset of U, then

$$
\Gamma\left[g-\mathscr{I}_{\mathrm{r}}(g), C\right] \rightarrow 0
$$

as $r \rightarrow \infty$ and

$$
\Gamma\left[g-\mathscr{I}_{r}\left\{\mathscr{F}_{r}(g)\right\}, C\right] \rightarrow 0
$$

as $r \rightarrow \infty$.
Proof. Let $g^{(r)}$ denote either $\mathscr{\mathscr { I }}_{r}(g)$ or $\mathscr{\mathscr { F }}_{r}^{2}(g)$ and suppose that $\Gamma\left[g-g^{(r)}\right.$, C] does not approach zero. Then there exists an increasing sequence $\left\{r_{s}\right\}$ of positive integers such that

$$
\begin{equation*}
\lim _{\rightarrow \rightarrow \infty} \Gamma\left[g-g^{\left(r_{0}\right)}, C\right]=\alpha>0 . \tag{I}
\end{equation*}
$$

By 2.11,

$$
\lim _{g \rightarrow \infty} \int_{C} \phi\left\{\operatorname{grad} t\left(g-g^{\left(r_{0}\right)}\right)\right\} \mathrm{d} x=\phi(0) \cdot m(C)
$$

for every positive integer t, hence there exists a subsequence $\left\{p_{t}\right\}$ of $\left\{r_{a}\right\}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{C} \phi\left\{\operatorname{grad} t\left(g-g^{\left(p_{t}\right)}\right)\right\} \mathrm{d} x=\phi(0) \cdot m(C) \tag{2}
\end{equation*}
$$

But

$$
\Gamma\left\{t\left(g-g^{\left(p_{1}\right)}\right), C\right\}=t \Gamma\left(g-g^{\left(p_{1}\right)}, C\right) \rightarrow \infty
$$

as $t \rightarrow \infty$, contradicting (2).
2.13 Theorem. If $f \in \mathscr{L}(U)$ and we put

$$
\mu(E)=\Phi(f, E)
$$

for every Borel subset E of U, then μ is a completely additive Borel measure.
Proof. We begin by proving
(a) if V_{1}, V_{2}, \cdots are open subsets of U, finite or countable in number and $V=V_{1} \cup V_{2} \cup \cdots$, then

$$
\mu(V) \leqq \sum_{i} \mu\left(V_{i}\right) .
$$

To prove (a), we take an increasing sequence $\left\{C_{r}\right\}$ of compact sets such that
$C_{r} \subseteq V$ for all r and $\lim _{r \rightarrow \infty} \operatorname{Int}\left(C_{r}\right)=V$. Let \mathscr{V}_{r} be a finite subcollection of the V_{i} 's that covers C_{r}. We can assign to each $W \in \mathscr{V}_{r}$ a compact subset $P_{r}(W)$ of C_{r} such that $P_{r}(W) \subseteq W$ and

$$
C_{r}=\bigcup_{w \in \mathfrak{V}_{r}} P_{r}(W) .
$$

Put $\mathscr{C}_{r}=\left\{P_{r}(W) ; W \in \mathscr{V}_{r}\right\}$. Since each of the functions $\mathscr{\mathscr { F }}_{5}^{2}(f)$ is locally Lipschitz,

$$
\begin{aligned}
\Phi\left\{\mathscr{I}_{:}^{2}(f), C_{r}\right\} & =\int_{C_{r}} \phi\left\{\operatorname{grad} \mathscr{I}_{a}^{2}(f)\right\} \mathrm{d} x \\
& \leqq \sum_{C \in \mathscr{Y}_{r}} \int_{C} \phi\left\{\operatorname{grad} \mathscr{I}_{:}^{2}(f)\right\} \mathrm{d} x=\sum_{C \in \mathscr{ধ}_{r}} \Phi\left\{\mathscr{I}_{a}^{2}(f), C\right\}
\end{aligned}
$$

so that by 2.9 and 2.10 ,
for all r, hence

$$
\Phi\left\{f, \operatorname{Int}\left(C_{r}\right)\right\} \leqq \sum_{C \in \mathscr{\varphi}_{r}} \Phi(f, C)
$$

$$
\Phi(f, V) \leqq \sum_{i} \Phi\left(f, V_{i}\right)
$$

Next we prove
(b) if V, W are disjoint open subsets of U, then

$$
\mu(V \cup W)=\mu(V)+\mu(W) .
$$

To prove this, let $\left\{A_{r}\right\}$ be a sequence of compact sets such that $A_{r} \subseteq V \cup W$ for all r and $\lim _{r \rightarrow \infty} \operatorname{Int}\left(A_{r}\right)=V \cup W$. Then

$$
\begin{aligned}
& \Phi(f, V \cup W)=\lim _{r \rightarrow \infty} \Phi\left(f, A_{r}\right) \\
& \geqq \lim _{r \rightarrow \infty} \lim _{r \rightarrow \infty} \sup \Phi\left\{\mathscr{\mathscr { I }}_{9}^{2}(f), A_{r}\right\} \\
& \geqq \lim \lim \sup \left[\Phi\left\{\mathscr{\mathscr { S }}_{:}^{2}(f), V \cap \operatorname{Int}\left(A_{r}\right)\right\}\right. \\
& \left.+\Phi\left\{\mathscr{F}_{9}^{2}(f), W \cap \operatorname{Int}\left(A_{\tau}\right)\right\}\right] \\
& \geqq \lim _{r \rightarrow \infty}\left[\Phi\left\{f, V \cap \operatorname{Int}\left(A_{r}\right)\right\}+\Phi\left\{f, W \cap \operatorname{Int}\left(A_{r}\right)\right\}\right] \\
& =\Phi(f, V)+\Phi(f, W) .
\end{aligned}
$$

If we now define for every subset A of U,

$$
\mu^{*}(A)=\inf \mu(V)
$$

where the infimum is taken over all open subsets V of U containing A, we obtain a Caratheodory outer measure with $\mu^{*}(V)=\mu(V)$ for open sets V. Thus μ is completely additive on the Borel sets.
2.14 Theorem. If $f \in \mathscr{L}(U), N>0$ and we put

$$
\begin{aligned}
f_{N}(x) & =f(x) \\
& =N \\
& \text { if } \quad-N \leqq f(x) \leqq N \\
& =-N
\end{aligned} \text { if } \quad f(x)>N
$$

then $f_{N} \in \mathscr{L}(U)$ and $\Phi\left(f_{N}, B\right) \leqq \Phi(f, B)$ for every Borel subset B of U.
Proof. (1) When f is locally Lipschitz on U, the theorem follows immediately from 1 (i).
(ii) When f is arbitrary and B is an open interval such that $B \subseteq U$ and $\Phi\{f, \operatorname{Fr}(B)\}=0$, we have

$$
\Phi\left(f_{N}, B\right) \leqq \lim _{r \rightarrow \infty} \inf \Phi\left[\left\{\mathscr{\mathscr { S }}_{r}^{2}(f)\right\}_{N}, B\right]
$$

and by (i), $\leqq \lim _{r \rightarrow \infty} \inf \Phi\left[\mathscr{I}_{r}^{2}(f), B\right] \leqq \Phi(f, B)$.
(iii) When f and B are arbitrary. We can assume $\Phi(f, B)<\infty$. Take $\varepsilon>0$. There exists an open set V with $B \subseteq V \subseteq U$ and $\Phi(f, V)<\Phi(f, B)+\varepsilon$. Let Z_{i} be the subset of R^{1} consisting of all t for which the set

$$
A_{i t}=\left\{x ; x \in V \text { and } x_{i}=t\right\}
$$

has $\Phi\left(f, A_{i t}\right)=0$. Put $Z=\bigcap_{i=1}^{n} Z_{i}$. Then $R^{1} \sim Z$ is countable. There exists a countable collection \mathscr{F} of open intervals with their union containing V, with the coordinates of their vertices all in Z and with

$$
\sum_{J \in g} \Phi(f, J)<\Phi(f, V)+1
$$

Then

$$
\Phi\left(f_{N}, V\right) \leqq \sum_{J \in g} \Phi\left(f_{N}, J\right)
$$

and by (ii)

$$
\leqq \sum_{J \in g} \Phi(t, J)<\Phi(f, V)+1
$$

Thus $\Phi\left(f_{N}, V\right)$ is finite. There now exists a countable collection \mathscr{J}^{*} of mutually disjoint open intervals with

$$
V=\bigcup_{J \in \boldsymbol{J}^{*}} J
$$

and with $\Phi\{f, \operatorname{Fr}(J)\}=\Phi\left\{f_{N}, \operatorname{Fr}(J)\right\}=0$ for all $J \in \mathscr{J}^{*}$. Now
and by (ii)

$$
\Phi\left(f_{N}, B\right) \leqq \sum_{J \in g_{0}} \Phi\left(f_{N}, J\right)
$$

$$
\begin{aligned}
& \leqq \sum_{J \in \mathcal{S}^{*}} \Phi(f, J) \leqq \Phi(f, V) \\
& <\Phi(f, B)+\varepsilon
\end{aligned}
$$

3. Some approximation theorems

3.1. Theorem. Let C be a compact subset of R^{n} and f be a locally summable function on R^{n} such that $\Phi(f, C)$ is finite. Let $\varepsilon>0$. There exists a Lipschitz function g on R^{n} with compact support and such that the set

$$
\{x ; x \in C \quad \text { and } \quad f(x) \neq g(x)\}
$$

has measure less than ε.
Proof. For each positive integer r, put

$$
f^{(r)}=\mathscr{I}_{r}^{2}(f) .
$$

Let V be a bounded upen set such that $C \subseteq V$ and $\Phi(f, V)<\infty$. Each $f^{(r)}$ is Lipschitz on $V, f^{(r)} \rightarrow f$ in the \mathscr{L}_{1} topology on V and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \Phi\left(f^{(r)}, V\right)<\infty, \tag{1}
\end{equation*}
$$

so that by 1 (ii),

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \int_{V}\left[1+\left\|\operatorname{grad} f^{(r)}\right\|^{2}\right]^{\frac{1}{2}} \mathrm{~d} x<\infty . \tag{2}
\end{equation*}
$$

Let $J_{1}, J_{2}, \cdots, J_{p}$ be a finite number of mutually non-overlapping closed cubes such that, if we put $W=\bigcup_{j=1}^{p} J_{j}$, we have $C \subseteq \operatorname{Int}(W)$ and $W \subseteq V$. By (2) and [2] 4.3, each of the functions

$$
\begin{array}{rlrl}
f_{5}(x) & =f(x) & \text { if } & x \in J \\
& =0 & & \text { if } \\
& x \notin J_{i}
\end{array}
$$

belongs to the class \mathscr{B} of [2]. Hence, the function

$$
f^{*}=\sum_{j=1}^{p} f_{j}
$$

belongs to \mathscr{B} and by [2] 3.1, there exists a Lipschitz function g on R^{n} with compact support and agreeing with f^{*} except on a set of measure less than ϵ. Since f^{*} agrees with f almost everywhere on C, g is the required function.
3.2 Lemma. Let f be continuous on R^{n} with compact support and g be Lipschitz on R^{n} with compact support. For each $\eta>0$, put

$$
\begin{array}{rlrl}
f_{\eta}(x) & =g(x) & \text { if }|f(x)-g(x)| \leqq \eta \\
& =f(x)-\eta \operatorname{sgn}\{f(x)-g(x)\} & \text { if }|f(x)-g(x)| \geqq \eta, \\
B_{\eta} & =\left\{x ; x \in R^{n} \text { and } 0<|f(x)-g(x)|<\eta\right\} .
\end{array}
$$

Then

$$
\Phi\left(f_{\eta}, E\right) \leqq \Phi(f, E)+\Phi\left(g, B_{\eta} \cap E\right)
$$

for every Borel set E.

Proof. (i) Suppose first of all that E is open. Put

$$
f^{(r)}=\mathscr{I}_{r}(f)
$$

Then $f^{(r)} \rightarrow f$ uniformly on R^{n}, hence there exists an increasing sequence $\left\{r_{s}\right\}$ of positive integers such that

$$
\left|f^{\left(r_{s}\right)}(x)-f(x)\right|<\frac{1}{s}
$$

for all $x \in R^{n}$. Let s_{1} be such that $1 / s_{1}<\frac{1}{2} \eta$ and for each $s \geqq s_{1}$, put

$$
\begin{aligned}
p^{(s)}(t) & =t \text { for }|t| \leqq \frac{1}{s} \\
& =\frac{1}{s} \operatorname{sgn} t \text { for } \frac{1}{s} \leqq|t| \leqq \eta-\frac{1}{s} \\
& =t-\left(\eta-\frac{2}{s}\right) \operatorname{sgn} t \text { for }|t| \geqq \eta-\frac{1}{s}, \\
h^{(s)}(x) & =g(x)+p^{(s)}\left\{f^{\left(r_{0}\right)}(x)-g(x)\right\}
\end{aligned}
$$

and

$$
G_{s}=\left\{x ; x \in R^{n} \text { and } \frac{1}{s}<\left|f^{\left(r_{s}\right)}(x)-g(x)\right|<\eta-\frac{1}{s}\right\}
$$

Then $h^{(a)} \rightarrow f_{\eta}$ uniformly on R^{n} so that for each open set U,

$$
\begin{equation*}
\Phi\left(f_{\eta}, U\right) \leqq \lim _{z \rightarrow \infty} \inf \Phi\left(h^{(s)}, U\right) \tag{1}
\end{equation*}
$$

But since $h^{(8)}$ is Lipschitz,

$$
\begin{aligned}
\Phi\left(h^{(s)}, U\right) & =\int_{U} \phi\left(\operatorname{grad} h^{(s)}\right) \mathrm{d} x \\
& =\int_{U \sim G_{2}} \phi\left(\operatorname{grad} h^{(s)}\right) \mathrm{d} x+\int_{U \cap G_{s}} \phi\left(\operatorname{grad} h^{(x)}\right) \mathrm{d} x \\
& =\int_{U \sim G_{0}} \phi\left(\operatorname{grad} f^{\left(r_{t}\right)}\right) \mathrm{d} x+\int_{U \cap G_{4}} \phi(\operatorname{grad} g) \mathrm{d} x \\
& \leqq \Phi\left(f^{\left(r_{t}\right)}, U\right)+\Phi\left(g, U \cap B_{\eta}\right) .
\end{aligned}
$$

Thus, it follows from (1), that for every bounded open set U,

$$
\begin{equation*}
\Phi\left(f_{\eta}, U\right) \leqq \Phi(f, \bar{U})+\Phi\left(g, U \cap B_{\eta}\right) \tag{2}
\end{equation*}
$$

Let $\varepsilon>0$. There exists an increasing sequence $\left\{U_{r}\right\}$ of bounded open sets such that each \bar{U}_{r} is contained in E and

$$
\lim _{r \rightarrow \infty} U_{r}=E
$$

Then

$$
\Phi\left(f_{y}, E\right)=\lim _{r \rightarrow \infty} \Phi\left(f_{\eta}, U_{r}\right)
$$

and by (2)

$$
\begin{aligned}
& \leqq \lim _{r \rightarrow \infty}\left[\Phi\left(f, \widetilde{U}_{r}\right)+\Phi\left(g, B_{\eta} \cap U\right)\right] \\
& =\Phi(f, E)+\Phi\left(g, B_{\eta} \cap E\right)
\end{aligned}
$$

(ii) f and E are arbitrary. Take $\varepsilon>0$ and let V be an open set containing E and such that

$$
\Phi(f, V) \leqq \Phi(f, E)+\frac{1}{2} \varepsilon
$$

and

$$
\Phi\left(g, B_{\eta} \cap V\right) \leqq \Phi\left(g, B_{\eta} \cap E\right)+\frac{1}{2} \varepsilon
$$

By (i)

$$
\Phi\left(f_{\eta}, V\right) \leqq \Phi(f, V)+\Phi\left(g, B_{\eta} \cap V\right)
$$

hence

$$
\Phi(f, E) \leqq \Phi(f, E)+\Phi\left(g, B_{\eta} \cap E\right)+\varepsilon .
$$

3.3 Theorem. Let C be a compact subset of an open set U and let f be continuous on U and such that $\Phi(f, C)$ is finite. Let $\varepsilon>0$. There exists a Lipschitz function f_{0} on U such that:
(i) the set $\left\{x ; x \in C\right.$ and $\left.f(x) \neq f_{0}(x)\right\}$ has measure less than ε, and
(ii) $\Phi\left(f_{0}, C\right)<\Phi(f, C)+\varepsilon$.

Proof. Let C_{1} be a compact set, contained in U and with C in its interior. There exists a continuous function f_{1} on R^{n} with compact support and agreeing with f on C_{1}. Evidently

$$
\begin{equation*}
\Phi\left(f_{1}, C\right)=\Phi(f, C) \tag{1}
\end{equation*}
$$

By 3.1, there exists a Lipschitz function g on R^{n} with compact support and such that, if

$$
A=\left\{x ; x \in C \quad \text { and } \quad f_{1}(x) \neq g(x)\right\}
$$

then

$$
\begin{equation*}
m(A)<\frac{1}{2} \varepsilon \tag{2}
\end{equation*}
$$

Let $\eta>0$ be such that, if

$$
B=\left\{x ; x \in R^{n} \quad \text { and } \quad 0<\left|f_{1}(x)-g(x)\right|<\eta\right\}
$$

and

$$
D=\left\{x ; x \in R^{n} \quad \text { and } \quad\left|f_{1}(x)-g(x)\right|=\eta\right\}
$$

then

$$
\begin{equation*}
m(D)=0 \tag{3}
\end{equation*}
$$

and
(4)

$$
\Phi(g, B)<\frac{1}{2} \varepsilon
$$

Define

$$
\begin{align*}
f_{2}(x) & =g(x) \quad \text { if } \quad\left|f_{1}(x)-g(x)\right| \leqq \eta \\
& =f_{1}(x)-\eta \operatorname{sgn}\left\{f_{1}(x)-g(x)\right\} \quad \text { if } \quad\left|f_{1}(x)-g(x)\right| \geqq \eta \tag{5}
\end{align*}
$$

Then by 3.2,

$$
\Phi\left(f_{2}, C\right) \leqq \Phi\left(f_{1}, C\right)+\Phi(g, B \cap C)
$$

and therefore by (1) and (4)

$$
\begin{equation*}
\Phi\left(f_{2}, C\right) \leqq \Phi(f, C)+\frac{1}{2} \varepsilon \tag{6}
\end{equation*}
$$

Now it follows from 2.6, that

$$
\Phi\left\{g+\mathscr{I}_{r}^{2}\left(f_{2}-g\right), C\right\} \leqq \eta\left[\Lambda\left\{\mathscr{I}_{r}^{2}\left(f_{2}\right), C\right\}+\Gamma\left\{g-\mathscr{I}_{r}^{2}(g), C\right\}\right]
$$

hence, by $2.10,2.12$ and (6),

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \Phi\left\{g+\mathscr{I}_{r}^{2}\left(f_{2}-g\right)^{\prime}, C\right\} \leqq \Phi(f, C)+\frac{1}{2} \varepsilon \tag{7}
\end{equation*}
$$

Put

$$
E_{r}=\left\{x ; x \in R^{n} \quad \text { and } \quad\left[\mathscr{J}_{r}^{2}\left(f_{2}-g\right)\right](x) \neq 0\right\}
$$

and

$$
E=\left\{x ; x \in R^{n} \quad \text { and } \quad f_{2}(x) \neq g(x)\right\} .
$$

Then $\operatorname{Fr}(E) \subseteq D$ and, since by (3) D has measure zero,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup m\left(E_{r} \sim E\right)=0 \tag{8}
\end{equation*}
$$

Thus, by (7) and (8), we can choose an r_{1} such that if $t_{0}=g+\mathscr{J}_{r_{1}}^{2}\left(f_{2}-g\right)$, then

$$
\Phi\left(f_{0}, C\right)<\Phi(f, C)+\varepsilon
$$

and

$$
\begin{equation*}
m\left(E_{r_{1}} \sim E\right)<\frac{1}{2} \varepsilon \tag{9}
\end{equation*}
$$

Then

$$
\left\{x ; x \in C \quad \text { and } \quad f(x) \neq f_{0}(x)\right\} \subseteq A \cup\left(E_{r_{1}} \sim E\right)
$$

and by (2) and (9) has measure less than ε. Since f_{0} is Lipschitz, this completes the proof.

4. Approximation of functions on Q

In this section, the final approximation theorem as described in the introduction, is proved (4.2).

The functional Ψ was defined in the introduction for Lipschitz functions on the unit cube Q by

$$
\Psi(f)=\int_{\boldsymbol{Q}} \phi(\operatorname{grad} f) \mathrm{d} x=\Phi(f, Q)=\Phi\{f, \operatorname{Int}(Q)\}
$$

It follows immediately from 2.9 that Ψ is lower semi-continuous on the Lipschitz functions with respect to \mathscr{L}_{1} convergence. Therefore, Ψ extends to a lower semicontinuous functional on the set of functions that are summable on Q. Thus, for a function f summable on Q

$$
\Psi(f)=\inf \left[\lim _{r \rightarrow \infty} \inf \Psi\left(f^{(r)}\right)\right],
$$

where the infimum is taken over all sequences $\left\{f^{(r)}\right\}$ of Lipschitz functions that converge \mathscr{L}_{1} to f. It follows immediately from 2.9, that

$$
\Phi\{f, \operatorname{Int}(Q)\} \leqq \Psi(f)
$$

4.1 Theorem. Let f be continuous on Q and such that $\Phi\{f, \operatorname{Int}(Q)\}$ is finite. Let $\varepsilon>0$. There exists a Lipschitz function g on Q such that the set

$$
\{x ; x \in Q \quad \text { and } \quad f(x) \neq g(x)\}
$$

has measure less than ε and

$$
\Phi(g, Q)<\Phi\{t, \operatorname{Int}(Q)\}+\varepsilon
$$

Proof. Let $|f(x)| \leqq K$ for all $x \in Q$. Let $a=\left(\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}\right)$ and for each $t \in\left[0, \frac{1}{2}\right]$, put

$$
Q_{t}=\{2 t(x-a)+a ; x \in Q\}
$$

Let D be the set of all $t \in\left(0, \frac{1}{2}\right)$ for which $\Phi\left\{f, \operatorname{Fr}\left(Q_{t}\right)\right\}=0$. The complement of D in ($0, \frac{1}{2}$) is countable. Let $t_{0} \in D$ be such that $0<t_{0}<\frac{1}{2}$,

$$
\begin{equation*}
m\left(Q \sim Q_{t_{0}}\right)<\frac{1}{2} \varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left\{f, \operatorname{Int}(Q) \sim Q_{t_{0}}\right\}<\{1+\theta(I)\}^{-1}\left(\frac{\sqrt{ } n}{2 t_{0}}+3\right)^{-n} \frac{1}{4} \varepsilon \tag{2}
\end{equation*}
$$

Let $t_{1} \in D$ be such that $t_{0}<t_{1}<\frac{1}{2}$,

$$
\begin{equation*}
t_{1}-t_{0}>\frac{1}{2}\left(\frac{1}{2}-t_{0}\right) \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta(X) \leqq 1+\theta(I) \tag{3~b}
\end{equation*}
$$

for all matrices X such that

$$
\left|X_{i j}-\delta_{i j}\right| \leqq \frac{\left(\frac{1}{2}-t_{1}\right)}{t_{0}\left(\frac{1}{2}-t_{0}\right)}
$$

for all i, j. By 3.3, there exists for each positive integer r a Lipschitz function $g^{(r)}$ on Int (Q) such that

$$
m\left\{x ; x \in Q_{t_{1}} \text { and } f(x) \neq g^{(r)}(x)\right\}<r^{-1}
$$

and

$$
\begin{equation*}
\Phi\left(g^{(r)}, Q_{t_{1}}\right)<\Phi\left(f, Q_{t_{1}}\right)+r^{-1} \tag{4}
\end{equation*}
$$

We can assume that $\left|g^{(r)}(x)\right| \leqq K$, for all $x \in \operatorname{Int}(Q)$. Then $g^{(r)} \rightarrow f$ in the \mathscr{L}_{1} topology so that by 2.9 ,

$$
\lim _{r \rightarrow \infty} \inf \Phi\left(g^{(r)}, Q_{t_{0}}\right) \geqq \Phi\left(f, Q_{t_{0}}\right)
$$

and

$$
\lim _{r \rightarrow \infty} \inf \Phi\left(g^{(r)}, Q_{t_{1}}\right) \geqq \Phi\left(f, Q_{t_{1}}\right)
$$

But by (4),

$$
\lim _{r \rightarrow \infty} \sup \Phi\left(g^{(r)}, Q_{t_{1}}\right) \leqq \Phi\left(f, Q_{t_{1}}\right)
$$

so that

$$
\lim _{r \rightarrow \infty} \sup \Phi\left(g^{(r)}, Q_{t_{1}} \sim Q_{t_{0}}\right) \leqq \Phi\left(f, Q_{t_{1}} \sim Q_{t_{0}}\right)
$$

Hence, one can choose a large r, put $h=g^{(r)}$ and obtain

$$
\begin{equation*}
m\left\{x ; x \in Q_{t_{1}} \text { and } \quad f(x) \neq h(x)\right\}<\frac{1}{2} \varepsilon \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\Phi\left(h, Q_{t_{1}}\right)<\Phi\left(f, Q_{t_{1}}\right)+\frac{1}{2} \varepsilon \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left(h, Q_{t_{1}} \sim Q_{t_{0}}\right)<\{1+\theta(I)\}^{-1}\left(\frac{\sqrt{ } n}{2_{t_{0}}}+3\right)^{-n} \frac{1}{2} \varepsilon \tag{7}
\end{equation*}
$$

For each $x \in Q$ define $\nu(x)$ by

$$
x \in \operatorname{Fr}\left\{Q_{\nu(x)}\right\}
$$

Then

$$
\left|\nu(x)-\nu\left(x^{\prime}\right)\right| \leqq\left\|x-x^{\prime}\right\|
$$

for all $x, x^{\prime} \in Q$. For $x \in Q \sim Q_{t_{0}}$ define

$$
p(x)=\left[\frac{t_{0}\left(\frac{1}{2}-t_{1}\right)}{v(x)\left(\frac{1}{2}-t_{0}\right)}+\frac{t_{1}-t_{0}}{\frac{1}{2}-t_{0}}\right](x-a)+a .
$$

Then p maps $Q \sim Q_{t_{0}}$ onto $Q_{t_{1}} \sim Q_{t_{0}}$. Also

$$
p^{-1}(y)=\left[\frac{t_{0}\left(t_{1}-\frac{1}{2}\right)}{v(y)\left(t_{1}-t_{0}\right)}+\frac{\frac{1}{2}-t_{0}}{t_{1}-t_{0}}\right](y-a)+a .
$$

Then

$$
\begin{equation*}
\left\|p(x)-p\left(x^{\prime}\right)\right\| \leqq\left(\frac{\sqrt{ } n}{4 t_{0}}+1\right)\left\|x-x^{\prime}\right\| \tag{8}
\end{equation*}
$$

for all $x, x^{\prime} \in Q \sim Q_{t_{0}}$ and

$$
\begin{equation*}
\left\|p^{-1}(y)-p^{-1}\left(y^{\prime}\right)\right\| \leqq\left(\frac{\sqrt{ } n}{2 t_{0}}+3\right)\left\|y-y^{\prime}\right\| \tag{9}
\end{equation*}
$$

for all $y, y^{\prime} \in Q_{t_{1}} \sim Q_{t_{0}}$. Define

$$
\begin{array}{rlrl}
g(x) & =h(x) & & \text { if } \quad \\
& =h \in Q_{t_{0}} \\
& =h\{p(x)\} & & \text { if }
\end{array} \quad x \in Q \sim Q_{t_{0}} .
$$

Then g is Lipschitz on Q and by (1) and (5) the set $\{x ; x \in Q$ and $f(x) \neq g(x)\}$ has measure less than ε. For almost all $x \in Q \sim Q_{t_{0}}$, we have

$$
\phi(\operatorname{grad} g)=\phi\{(\operatorname{grad} h) \cdot J(x)\}
$$

where $J(x)$ denotes the Jacobian matrix of p. Therefore, by 1 (iii),

$$
\begin{equation*}
\phi(\operatorname{grad} g) \leqq \phi\left[\{\operatorname{grad} h(y)\}_{y=p(x)}\right] \cdot \theta\{J(x)\} \tag{10}
\end{equation*}
$$

But

$$
\frac{\partial p_{i}}{\partial x_{j}}=\left[\frac{t_{0}\left(\frac{1}{2}-t_{1}\right)}{v(x)\left(\frac{1}{2}-t_{0}\right)}+\frac{t_{1}-t_{0}}{\frac{1}{2}-t_{0}}\right] \delta_{i j}-\frac{t_{0}\left(\frac{1}{2}-t_{1}\right)}{\{v(x)\}^{2}\left(\frac{1}{2}-t_{0}\right)} \frac{\partial v}{\partial x_{j}}\left(x_{i}-a_{i}\right)
$$

hence

$$
\left|\frac{\partial p_{i}}{\partial x_{j}}-\delta_{i j}\right| \leqq \frac{\left(\frac{1}{2}-t_{1}\right)}{t_{0}\left(\frac{1}{2}-t_{0}\right)},
$$

so that by (3b) and (10)

$$
\int_{\mathbf{Q} \sim \mathbf{Q}_{t_{0}}} \phi(\operatorname{grad} g) \mathrm{d} x \leqq\{1+\theta(I)\} \int_{\mathbf{Q} \sim \mathbf{Q}_{t_{0}}} \phi\left[\{\operatorname{grad} h(y)\}_{\boldsymbol{v = p}(x)}\right] \mathrm{d} x
$$

and by (9)

$$
\begin{aligned}
& \leqq\{1+\theta(I)\}\left(\frac{\sqrt{ } n}{2 t_{0}}+3\right)^{n} \int_{Q_{\sim} \sim Q_{t_{0}}} \phi\left[\{\operatorname{grad} h(y)\}_{y=p(x)}\right] \frac{\partial(p)}{\partial x} \mathrm{~d} x \\
& =\{1+\theta(I)\}\left(\frac{\sqrt{ } n}{2 t_{0}}+3\right)^{n} \int_{Q_{t_{1} \sim Q_{t_{0}}}} \phi(\operatorname{grad} h) \mathrm{d} y
\end{aligned}
$$

which by (7), < $\frac{1}{2} \varepsilon$. Then

$$
\Phi(g, Q)<\Phi\left(h, Q_{t_{0}}\right)+\frac{1}{2} \varepsilon \leqq \Phi\left(h, Q_{t_{1}}\right)+\frac{1}{2} \varepsilon
$$

and by $(6),<\Phi\{f, \operatorname{Int}(Q)\}+\varepsilon$.
4.2 Corollary. If f is continuous on Q and such that $\Psi(f)$ is finite and if $\varepsilon>0$, then there exists a Lipschitz function g on Q such that the set

$$
\{x ; x \in Q \quad \text { and } \quad f(x) \neq g(x)\}
$$

has measure less than ε and

$$
\Psi(g)<\Psi(f)+\varepsilon
$$

4.3 Theorem. If f is continuous on Q, then

$$
\Phi\{f, \operatorname{Int}(Q)\}=\Psi(f)
$$

Proof. It is sufficient to prove that $\Psi(f) \leqq \Phi\{f$, Int $(Q)\}$. We can assume that $\Phi\{f, \operatorname{Int}(Q)\}$ is finite. Let $|f(x)| \leqq K$ for all $x \in Q$. By 4.1, there exists for each r a Lipschitz function $g^{(r)}$ on Q such that

$$
m\left\{x ; x \in Q \quad \text { and } \quad f(x) \neq g^{(r)}(x)\right\}<r^{-1}
$$

and

$$
\Phi\left(g^{(r)}, Q\right)<\Phi\{f, \operatorname{Int}(Q)\}+r^{-1}
$$

Because of 2.14, we can assume that $\left|g^{(r)}(x)\right| \leqq K$ for all $x \in Q$. Then $g^{(r)} \rightarrow f$ in the \mathscr{L}_{1} topology so that

$$
\Psi(f) \leqq \underset{r \rightarrow \infty}{\lim \inf } \Phi\left(g^{(r)}, Q\right)
$$

hence

$$
\Psi(f) \leqq \Phi\{f, \operatorname{Int}(Q)\}
$$

References

[1] Goffman, Casper, Lower semi-continuity and area functionals I. The non-parametric case. Rendiconti del Circolo Matematico di Palermo, Ser. 2, Tomo 2 (1953), 203-235.
[2] Michael, J. H., The equivalence of two areas for non-parametric discontinuous surfaces. Illinois Journal of Mathematics. To appear.

University of Adelaide
South Australia.

