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Abstract
This project uses methods in geometric analysis to study almost complex manifolds. We introduce the notion of
biharmonic almost complex structure on a compact almost Hermitian manifold and study its regularity and existence
in dimension four. First, we show that there always exists smooth energy-minimizing biharmonic almost-complex
structures for any almost Hermitian four manifold. Then, we study the existence problem where the homotopy
class is specified. Given a homotopy class [𝜏] of an almost complex structure, using the fact 𝜋4 (𝑆2) = Z2, there
exists a canonical operation p on the homotopy classes satisfying 𝑝2 = id such that 𝑝( [𝜏]) and [𝜏] have the same
first Chern class. We prove that there exists an energy-minimizing biharmonic almost complex structure in the
companion homotopy classes [𝜏] and 𝑝( [𝜏]). Our results show that, When M is simply connected, there exists an
energy-minimizing biharmonic almost complex structure in the homotopy classes with the given first Chern class.
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1. Introduction

In this paper, we study the energy-minimizing and critical almost complex structures, as a continuation
of [5], with respect to the energy functional

E2(𝐽) =
∫
𝑀

|Δ𝑔𝐽 |2𝑑𝑣, 𝐽 ∈ J𝑔, (1.1)

where J𝑔 is the space of almost complex structures which are compatible with g. We call these objects
biharmonic almost complex structures, as these objects are tensor-valued versions of biharmonic maps.
The first result of the paper is the following.

Theorem 1.1. A 𝑊2,2-biharmonic almost complex structure on (𝑀4, 𝑔) is smooth. Moreover, on any
compact almost Hermitian manifold (𝑀4, 𝑔), there always exist minimizers of the energy functional
E2 (𝐽) which are smooth biharmonic almost complex structures. All such energy minimizers form a
compact set.
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The existence of energy-minimizing almost complex structures is a standard practice of calculus of
variations. The proof of smooth regularity in Theorem 1.1 is inspired by the theory of biharmonic maps
in Chang-Wang-Yang [1]. There are subtle differences due to the nature of tensor-valued functions. We
will present the smooth regularity for a much more general system in a paper together with Jiang [6].

Our second result concerns the existence of energy-minimizing almost complex structures in a fixed
homotopy class. The topology of M will play an important role in the following. Let A denote the set of
homotopy classes of almost complex structures on M, so the first Chern class gives a map

𝑐1 : 𝐴 → 𝐻2 (𝑀,Z).

Donaldson [3, Section 6] defined a map 𝑝 : 𝐴 → 𝐴 with 𝑝2 = id and 𝑐1 ◦ 𝑝 = 𝑐1 using the fact that
𝜋4 (𝑆2) = Z2. First, we discuss the case that M is simply connected. If M is not spin, then 𝜎 = 𝑝(𝜎) (see
[11]), and it is uniquely determined by its first Chern class. If M is spin, then the pair, 𝜎 and 𝑝(𝜎), is
uniquely determined by its first Chern class.

Theorem 1.2. Let (𝑀4, 𝑔) be a compact, simply connected almost Hermitian four manifold. If M
is nonspin, then every homotopy class contains an energy-minimizing biharmonic almost complex
structure. If M is spin, there exists an energy-minimizing biharmonic almost complex structure in the
pair of homotopy classes (𝜎, 𝑝(𝜎)).

Theorem 1.2 can be stated as, for a compact simply connected almost Hermitian four manifold, given
its first Chern class 𝑐1, there exists an energy-minimizing biharmonic almost complex structure in the
homotopy classes (possibly one or two) determined by 𝑐1. When M is not necessarily simply connected,
we have the following.

Theorem 1.3. Given a pair of homotopy classes (𝜎, 𝑝(𝜎)) on (𝑀, 𝑔), there exists an energy-minimizing
biharmonic almost complex structure in the pair.

As a comparison, despite much progress in the study of biharmonic maps and polyharmonic maps in
the last two decades, the general existence result remains very limited. We briefly discuss the new input
in the proof of Theorem 1.3. Recall the classic [12] on the existence of harmonic two-spheres. Sacks-
Uhlenbeck [12] considered a perturbation elliptic system for harmonic maps and one technical core is
the bubble analysis. The system for biharmonic almost complex structures is fourth order, and a natural
perturbed biharmonic system becomes much more complicated. We are not able to prove a regularity
result for such a system. This obstructs us from adopting Sacks-Uhlenbeck’s approach using a perturbed
biharmonic system. Instead, we analyze an energy-minimizing sequence directly in a fixed homotopy
class. We get a weak limit in 𝑊2,2. Using the special structure of the almost complex structure, we can
argue that the weak limit satisfies the elliptic system weakly for biharmonic almost complex structures,
and hence it is smooth by [6, Theorem 2, Corollary 1]. The main difficulty, as in other similar situations,
is to understand what exactly happens if the convergence fails to be strongly in 𝑊2,2. A major technical
result is an 𝜖-regularity for an energy-minimizing sequence in a fixed homotopy class. We prove that
if the convergence of a weakly convergent energy-minimizing subsequence fails to be strongly in 𝑊2,2,
then there must be energy concentration around finitely many isolated points. The 𝜖 regularity for a
minimizing sequence is very different from the classical 𝜖-regularity in the theory of harmonic maps
since there is no elliptic system to be dealt with.

A technical tool we develop in the paper is an extension theorem for almost complex structures in𝑊2,2,
with precisely controlled behavior in the neck region. The classical extension theorems developed by
Schoen-Uhlenbeck [13], Luckhaus [10] and Lin [9] played an essential role in the setting of𝑊1, 𝑝 maps,
which do not extend to 𝑊2,2 (see Simon [14, Section 2.6, 2.7]). Motivated by these classical methods
in the harmonic maps, we analyze the defect measure as in Lin [9]. We prove an 𝜖-regularity theorem
for a minimizing sequence in 𝑊2,2 for defect measure, by modifying techniques in Schoen-Uhlenbeck
[13] and Lin [9] in a rather subtle way. The method developed should be useful in energy-minimizing
problems in the setting of 𝑊 𝑘,2 for 𝑘 ≥ 2.
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Recently, together with He-Jiang-Lin [7], we apply this method to study the existence of biharmonic
maps and polyharmonic maps. Among others, we prove the 𝜖-regularity holds for an energy-minimizing
sequence for a polyharmonic functional, and a weak limit is a polyharmonic map. Given the target
manifold having trivial homotopy, we prove the existence of an energy-minimizing m-harmonic map in
each homotopy class, which solves a longstanding open question for polyharmonic maps.

Theorem 1.3 does not answer what would precisely happen if we restrict to each homotopy class.
We will discuss an intuitive conjectural picture regarding the existence problem in the pair (𝜎, 𝑝(𝜎)),
which is closely related to the study of extrinsic biharmonic maps.

2. Existence of an energy minimizer

In this section we prove the existence of an energy-minimizing biharmonic almost complex structure on
(𝑀, 𝑔) and derive the Euler-Lagrange equation. We recall the definition of the Sobolev spaces of almost
complex structures.

Definition 2.1. Given an almost Hermitian manifold (𝑀, 𝑔) with compatible almost complex structures
in J𝑔, we define 𝑊 𝑘, 𝑝 (J𝑔) to be the subspace of 𝑊 𝑘, 𝑝 (𝑇∗𝑀 ⊗ 𝑇𝑀) consisting of those sections
𝐽 ∈ 𝑊 𝑘, 𝑝 (𝑇∗𝑀 ⊗ 𝑇𝑀), satisfying the compatible condition almost everywhere,

𝐽2 = −𝑖𝑑, 𝑔(𝐽·, ·) + 𝑔(·, 𝐽·) = 0. (2.1)

We have the following.

Theorem 2.2. Let (𝑀, 𝑔,J𝑔) be a compact Hermitian manifold with compatible almost complex struc-
tures. Then there exists an energy minimizer of E2 (𝐽) in 𝑊2,2 (J𝑔), satisfying the Euler-Lagrangian
equation in the weak sense as in (2.5). Moreover, energy minimizers form a sequential compact set
in 𝑊2,2.

Proof. We only prove the existence of 𝑊2,2 energy minimizer of E2 (𝐽) over 𝑊2,2 (J𝑔). We will derive
the Euler-Lagrange equation later. This is a standard practice of calculus of variations. Take an energy-
minimizing sequence 𝐽𝑘 ∈ 𝑊2,2(J𝑔), such that

E2 (𝐽𝑘 ) → inf
𝐽 ∈𝑊 2,2 (J𝑔)

E2(𝐽).

Since 𝐽𝑘 ∈ 𝑊2,2(𝑇𝑀⊗𝑇∗𝑀), it follows from Kondrachov compactness that a subsequence, still denoted
by 𝐽𝑘 , converges strongly in 𝑊1,2(𝑇∗𝑀 ⊗ 𝑇𝑀) and weakly in 𝑊2,2 (𝑇∗𝑀 ⊗ 𝑇𝑀). Denote the limit by
𝐽0 ∈ 𝑊2,2 (𝑇𝑀 ⊗ 𝑇∗𝑀). The strong convergence in 𝑊1,2 implies, in particular, that 𝐽𝑘 converges to
𝐽0 almost everywhere; therefore, 𝐽0 satisfies the compatible condition (2.1) almost everywhere. Hence,
𝐽0 ∈ 𝑊2,2(J𝑔). The weak convergence in 𝑊2,2 implies that

E2 (𝐽0) ≤ lim inf E2 (𝐽𝑘 ) = inf
𝐽 ∈𝑊 2,2 (J𝑔)

E2(𝐽).

This forces that E2 (𝐽0) = min E2(𝐽), and 𝐽0 is an energy minimizer. Moreover, this also implies that the
convergence 𝐽𝑘 → 𝐽0 is strongly in 𝑊2,2 and that the set of all energy minimizers is compact. �

Straightforward computation gives the Euler-Lagrange equation in smooth setting

Δ2𝐽 + 𝐽 (Δ2𝐽)𝐽 = 0. (2.2)

An equivalent form is [Δ2𝐽, 𝐽] = 0. By 𝐽2 = −𝑖𝑑, we can rewrite the equation as,

Δ2𝐽 = 𝑄(𝐽,∇𝐽,∇2𝐽,∇3𝐽), (2.3)
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where Q is given by

𝑄 = 𝐽Δ𝐽Δ𝐽 + 𝐽∇𝑝𝐽∇𝑝Δ𝐽 + 𝐽∇𝑝Δ𝐽∇𝑝𝐽 + 𝐽Δ (∇𝑝𝐽∇𝑝𝐽). (2.4)

We need to be more careful when working in 𝑊2,2 (J𝑔) to derive equations for weak solutions. For any
𝐴 ∈ 𝑇𝑀 → 𝑇𝑀 , it is convenient to define its adjoint 𝐴∗ as follows.

𝑔(𝐴∗·, ·) = 𝑔(·, 𝐴·).

Hence, g-compatibility can be written as 𝐴 + 𝐴∗ = 0. For any 𝐽 ∈ J𝑔, the tangent space S𝐽 of J can be
described as the endomorphisms 𝑆 : 𝑇𝑀 → 𝑇𝑀 as

S𝐽 = {𝑆 : 𝑆𝐽 + 𝐽𝑆 = 0, 𝑆 + 𝑆∗ = 0}.

Clearly, 𝑆 ∈ S𝐽 , and then 𝐽𝑆 is in S𝐽 as well. The adjoint can be directly carried over for Sobolev
spaces. Necessary properties of the adjoint endomorphism are summarized in [6, Proposition 4.1]. For
any 𝑆 ∈ S𝐽 ∩ 𝐿∞, it is direct to check that 𝐽 (𝑡) = 𝐽 exp(𝑡𝑆𝐽) gives a path in J𝑔 ∩ 𝐿∞ for |𝑡 | << 1, with
𝜕𝑡 𝐽 (0) = 𝑆.

Proposition 2.3. A critical point of E2 (𝐽) on 𝑊2,2 (J𝑔) satisfies the Euler-Lagrange equation (2.3) in
the following weak sense. For any 𝑇 ∈ 𝑊2,2(𝑇∗𝑀 ⊗ 𝑇𝑀) ∩ 𝐿∞, we have∫

𝑀
(Δ𝐽 − 𝐽∇𝐽∇𝐽,Δ𝑇)𝑑𝑣 +

∫
𝑀
(𝐴,𝑇)𝑑𝑣 +

∫
𝑀
(𝐵,∇𝑇)𝑑𝑣 = 0, (2.5)

where we write

𝐴 =𝐽Δ𝐽Δ𝐽 + ∇𝑝𝐽∇𝑝𝐽Δ𝐽 − Δ𝐽∇𝑝𝐽∇𝑝𝐽 + ∇𝑝𝐽Δ𝐽∇𝑝𝐽

𝐵 =∇𝐽Δ𝐽𝐽 + 𝐽Δ𝐽∇𝐽.

Proof. Assume that 𝑇 ∈ 𝑊2,2 (Γ(𝑇∗𝑀 ⊗ 𝑇𝑀)) ∩ 𝐿∞. Denote 𝑅 = 𝑇 + 𝐽𝑇𝐽 and 𝑆 = 𝑅 − 𝑅∗. Then S
satisfies 𝑆𝐽 + 𝐽𝑆 = 0, 𝑆 + 𝑆∗ = 0. Taking variation in the form 𝐽 (𝑡) = 𝐽 exp(𝑡𝑆𝐽) for small |𝑡 | << 1, we
have

∫
𝑀
(Δ𝐽,Δ𝑆)𝑑𝑣 = 0. Since J is g-compatible, this implies

∫
𝑀
(Δ𝐽,Δ𝑅)𝑑𝑣 = 0. In other words, we

have ∫
𝑀
(Δ𝐽,Δ𝑇)𝑑𝑣 +

∫
𝑀
(Δ𝐽,Δ (𝐽𝑇𝐽))𝑑𝑣 = 0.

For 𝐽 ∈ 𝑊2,2, we compute

Δ (𝐽𝑇𝐽) = 𝐽 (Δ𝑇)𝐽 + Δ𝐽𝑇𝐽 + 𝐽𝑇Δ𝐽 + 2∇𝐽∇𝑇𝐽 + 2∇𝐽𝑇∇𝐽 + 2𝐽∇𝑇∇𝐽.

Since J is g-compatible, it is straightforward to check that

(Δ𝐽, 𝐽Δ𝑇𝐽) =(𝐽Δ𝐽𝐽,Δ𝑇)
(Δ𝐽,Δ𝐽𝑇𝐽) =(Δ𝐽Δ𝐽𝐽, 𝑇).

Hence, we get that ∫
𝑀
(Δ𝐽 + 𝐽Δ𝐽𝐽,Δ𝑇) + (𝐴0, 𝑇) + 2(𝐵,∇𝑇) = 0, (2.6)
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where we have

𝐴0 =Δ𝐽Δ𝐽𝐽 + 𝐽Δ𝐽Δ𝐽 + 2∇𝑝𝐽Δ𝐽∇𝑝𝐽,

𝐵 =∇𝐽Δ𝐽𝐽 + 𝐽Δ𝐽∇𝐽.

However, we use Δ (𝐽2) = 0 to conclude that

Δ𝐽𝐽 + 𝐽Δ𝐽 + 2∇𝑝𝐽∇𝑝𝐽 = 0
𝐽Δ𝐽𝐽 = Δ𝐽 − 2𝐽∇𝑝𝐽∇𝑝𝐽.

We compute that

Δ𝐽Δ𝐽𝐽 = 𝐽Δ𝐽Δ𝐽 + 2∇𝑝𝐽∇𝑝𝐽Δ𝐽 − 2Δ𝐽∇𝑝𝐽∇𝑝𝐽.

Hence, we get that

𝐴0 = 2
(
𝐽Δ𝐽Δ𝐽 + ∇𝑝𝐽∇𝑝𝐽Δ𝐽 − Δ𝐽∇𝑝𝐽∇𝑝𝐽 + ∇𝑝𝐽Δ𝐽∇𝑝𝐽

)
.

We denote 𝐴0 = 2𝐴, with

𝐴 = 𝐽Δ𝐽Δ𝐽 + ∇𝑝𝐽∇𝑝𝐽Δ𝐽 − Δ𝐽∇𝑝𝐽∇𝑝𝐽 + ∇𝑝𝐽Δ𝐽∇𝑝𝐽.

Together with (2.6), we have∫
𝑀
(Δ𝐽 − 𝐽∇𝐽∇𝐽,Δ𝑇) + (𝐴,𝑇) + (𝐵,∇𝑇) = 0. (2.7)

This completes the proof. �

Proposition 2.3 is equivalent to (2.2) for 𝐽 ∈ 𝑊2,2 when (2.2) is understood as a weak solution in the
form that ∫

𝑀
(Δ𝐽,Δ𝑇)𝑑𝑣 +

∫
𝑀
(Δ𝐽,Δ (𝐽𝑇𝐽))𝑑𝑣 = 0. (2.8)

An almost complex structure 𝐽 ∈ 𝑊2,2 (J𝑔) is called a weak biharmonic almost complex structure if it
satisfies (2.8) or its equivalent form (2.5). The equivalent descriptions below will be useful as well.

Proposition 2.4. A weak biharmonic almost complex satisfies the following.∫
𝑀
(Δ𝐽,Δ (𝑇𝐽 − 𝐽𝑇))𝑑𝑣 = 0, (2.9)

where 𝑇 ∈ Γ(𝑇𝑀 ⊗ 𝑇∗𝑀). Or equivalently, we have the following.∫
𝑀
(Δ𝐽,Δ𝑇𝐽 − 𝐽Δ𝑇)𝑑𝑣 + 2

∫
𝑀
(Δ𝐽,∇𝑇∇𝐽 − ∇𝐽∇𝑇)𝑑𝑣 = 0. (2.10)

As a consequence, the weak limit of a sequence of biharmonic almost complex structure with bounded
𝑊2,2 norm is biharmonic.

Proof. To derive (2.9), we take 𝑇 = 𝑇𝐽 in (2.8) and observe that∫
𝑀
(Δ𝐽, (Δ𝐽)𝑇)𝑑𝑣 =

∫
𝑀
(Δ𝐽, 𝑇Δ𝐽)𝑑𝑣. (2.11)
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Similarly, we have

(Δ𝐽, 𝑇Δ𝐽) = −(Δ𝐽Δ𝐽, 𝑇).

This gives (2.10). Suppose a sequence of weak biharmonic almost complex structures 𝐽𝑘 , with bounded
𝑊2,2 norm, converges weakly in 𝑊2,2 to 𝐽0 and strongly in 𝑊1,2. By passing to the limit, 𝐽0 satisfies
(2.10). More precisely, for any fixed smooth T, we have∫

𝑀
(Δ (𝐽𝑘 − 𝐽0),Δ𝑇𝐽0 − 𝐽0Δ𝑇)𝑑𝑣 → 0.

The strong convergence 𝐽𝑘 → 𝐽0 in 𝐿2 implies that∫
𝑀
(Δ𝐽𝑘 ,Δ𝑇 (𝐽𝑘 − 𝐽0) − (𝐽𝑘 − 𝐽0)Δ𝑇)𝑑𝑣 → 0.

Together, this implies that∫
𝑀
(Δ𝐽𝑘 , (Δ𝑇)𝐽𝑘 − 𝐽𝑘Δ𝑇)𝑑𝑣 →

∫
𝑀
(Δ𝐽0, (Δ𝑇)𝐽0 − 𝐽0Δ𝑇)𝑑𝑣.

Similarly, we have∫
𝑀
(Δ𝐽𝑘 ,∇𝑇∇𝐽𝑘 − ∇𝐽𝑘∇𝑇)𝑑𝑣 →

∫
𝑀
(Δ𝐽0,∇𝑇∇𝐽0 − ∇𝐽0∇𝑇)𝑑𝑣.

This completes the proof. �

He-Jiang [6, Theorem 2, Corollary 1] proved a smooth regularity for a general elliptic system. As a
result, we have the following.

Theorem 2.5. A 𝑊2,2 weak solution of biharmonic almost complex structure in dimension four is
smooth.

3. Biharmonic almost complex structures in a homotopy class

A fundamental problem in the theory of harmonic maps is finding harmonic maps in a fixed homotopy
class. Similarly, we would like to ask the same question for biharmonic almost complex structures. We
shall see that the topology of M plays a very important role. The following famous example about almost
complex structures on a 𝐾3 surface constructed by Donaldson [3] serves as an important example. We
recall relevant discussions. A compatible almost complex structure J on an oriented Riemannian four-
manifold M can be considered as a section of the associated 𝑆𝑂 (4)/𝑈 (2)-bundle over M (the sphere
bundle of Λ2

+, known as the ‘twistor space’). Let A denote the set of homotopy classes of almost complex
structures, so the first Chern class gives a map

𝑐1 : 𝐴 → 𝐻2 (𝑀,Z).

Donaldson [3, Section 6] defined a map 𝑝 : 𝐴 → 𝐴 with 𝑝2 = id and 𝑐1 ◦ 𝑝 = 𝑐1 as follows. For
𝜎 ∈ 𝐴, 𝑝(𝜎) agrees with 𝜎 outside a small ball in M, and over this ball, the two compare by the nonzero
element of

[𝑆4, 𝑆𝑂 (4)/𝑈 (2)] = [𝑆4, 𝑆2] � Z/2.

We need the following general result about 𝜎 and 𝑝(𝜎) ∈ 𝐴, which we have learned from Teichner
through mathoverflow [11].
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Lemma 3.1. If M is simply connected and nonspin, then the first Chern class determines a unique
homotopy class of an almost complex structure. When M is simply connected and spin, the first Chern
class determines a pair of homotopy classes 𝜎 and 𝑝(𝜎).

The main result in this section is to prove Theorem 1.3. The proof consists of several steps. Let 𝐽𝑘 ∈ 𝜎
be a minimizing sequence such that E2(𝐽𝑘 ) → 𝐸0. A direct computation shows that 𝐽𝑘 has uniformly
bounded𝑊2,2 norm. Hence, we can assume that 𝐽𝑘 converges to 𝐽0 weakly in𝑊2,2 and strongly in𝑊1,2,
in particular 𝐽0 ∈ 𝑊2,2(J𝑔). First, we have the following.

Lemma 3.2. The limit 𝐽0 is a smooth biharmonic almost complex structure.

Proof. We only need to prove that 𝐽0 is a weak biharmonic almost complex structure satisfying
(2.10). Let 𝐽𝑘 be a minimizing sequence and 𝐽0 be its weak limit in 𝑊2,2(J𝑔). For any fixed smooth
𝑇 ∈ Γ(𝑇𝑀 ⊗ 𝑇∗𝑀), consider

𝑆𝑡 = 𝑡 (𝑇 + 𝐽𝑘𝑇𝐽𝑘 ) − 𝑡 (𝑇 + 𝐽𝑘𝑇𝐽𝑘 )∗.

Note that for |𝑡 | sufficiently small, 𝑆𝑡 has small 𝐿∞ norm and we construct

𝐽𝑘 (𝑡) = 𝐽𝑘 exp(𝑆𝑡 ) ∈ J𝑔 .

We compute, for |𝑡 | sufficiently small,

𝐸 (𝐽𝑡𝑘 ) =
∫
𝑀

|Δ𝐽𝑡𝑘 |
2𝑑𝑣 = 𝐸 (𝐽𝑘 ) + 4𝑡

∫
𝑀
(Δ𝐽𝑘 ,Δ (𝐽𝑘𝑇 − 𝑇𝐽𝑘 ))𝑑𝑣 +𝑂 (𝑡2), (3.1)

where the term 𝑂 (𝑡2) denotes the terms of higher order in t. We have |𝑂 (𝑡2) | ≤ 𝐶𝑡2 for a uniformly
bounded constant C (assuming t is small). A quick way to see (3.1) is to write the (matrix) expansion of
𝐽𝑘 (𝑡) as

𝐽𝑘 (𝑡) = 𝐽𝑘 + 𝑡 (𝐽𝑘𝑇 − 𝑇𝐽𝑘 ) − 𝑡 (𝐽𝑘𝑇 − 𝑇𝐽𝑘 )∗ +𝑂 (𝑡2).

Since 𝐽𝑘 is a minimizing sequence, hence when 𝑘 → ∞, we have

lim inf
𝑘→∞

𝐸 (𝐽𝑡𝑘 ) − 𝐸 (𝐽𝑘 ) ≥ 0.

Hence, for |𝑡 | sufficiently small,

lim sup
𝑘

4𝑡
∫
𝑀
(Δ𝐽𝑘 ,Δ (𝐽𝑘𝑇 − 𝑇𝐽𝑘 ))𝑑𝑣 ≥ lim inf

𝑘
4𝑡

∫
𝑀
(Δ𝐽𝑘 ,Δ (𝐽𝑘𝑇 − 𝑇𝐽𝑘 ))𝑑𝑣 ≥ 0.

In particular, this implies that

lim sup
𝑘
(Δ𝐽𝑘 ,Δ (𝐽𝑘𝑇 − 𝑇𝐽𝑘 ))𝑑𝑣 = lim inf

𝑘

∫
𝑀
(Δ𝐽𝑘 ,Δ (𝐽𝑘𝑇 − 𝑇𝐽𝑘 ))𝑑𝑣 = 0.

Similar as in (2.10) and (2.11), we use the fact∫
𝑀
(Δ𝐽𝑘 ,Δ𝐽𝑘𝑇)𝑑𝑣 =

∫
𝑀
(Δ𝐽𝑘 , 𝑇Δ𝐽𝑘 )𝑑𝑣

to conclude that

lim
𝑘

∫
𝑀
(Δ𝐽𝑘 , 𝐽𝑘Δ𝑇 − Δ𝑇𝐽𝑘 )𝑑𝑣 + 2

∫
𝑀
(Δ𝐽𝑘 ,∇𝐽𝑘∇𝑇 − ∇𝑇∇𝐽𝑘 )𝑑𝑣 = 0.
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Since 𝐽𝑘 converges to 𝐽0 weakly in 𝑊2,2 and strongly in 𝑊1,2, the above implies that∫
𝑀
(Δ𝐽0, 𝐽0Δ𝑇 − Δ𝑇𝐽0)𝑑𝑣 + 2

∫
𝑀
(Δ𝐽0,∇𝐽0∇𝑇 − ∇𝑇∇𝐽0)𝑑𝑣 = 0.

By Proposition 2.4, 𝐽0 is a weak biharmonic almost complex structure. Hence it is smooth by regularity
results in [6]. �

An important question is to understand the homotopy class of 𝐽0. To proceed, we need the following
fact about the first Chern class.

Lemma 3.3 (Wood [16]). Given a compact almost Hermitian manifold (𝑀, 𝑔, 𝐽, 𝜔), then the first Chern
class can be represented by the following 2-form 𝛾 such that

2𝜋𝛾 = R(𝜔) + 𝜒, with 𝜒(𝑋,𝑌 ) :=
1
4
𝜔(∇𝑋 𝐽,∇𝑌 𝐽), (3.2)

where R(𝜔) is the curvature operator acting on the Kähler form 𝜔.

Lemma 3.3 has the following important consequence.

Lemma 3.4. The first Chern class 𝑐1 (𝐽0) = 𝑐1 (𝐽𝑘 ) for 𝐽𝑘 ∈ 𝜎.

Proof. The first Chern class 𝑐1 (𝐽) is the deformation invariant, and hence it remains the same in the
homotopy class 𝜎. By Lemma 3.3, the first Chern class is represented by the 2-form 𝛾. We write 𝛾𝑘
for 𝐽𝑘 and 𝛾0 for 𝐽0. Since 𝐽𝑘 converges strongly to 𝐽0 in 𝑊1,2, then for any smooth two form 𝜁 , (3.2)
implies that

lim
𝑘→∞

∫
𝑀
𝛾𝑘 ∧ 𝜁 =

∫
𝑀
𝛾0 ∧ 𝜁 .

It follows that [𝛾𝑘 ] = [𝛾0] ∈ 𝐻2 (𝑀,Z). �

Hence, the fist Chern class remains unchanged for the weak limit. If M is simply connected and
nonspin, Lemma 3.1 implies that 𝐽0 is in the homotopy class 𝜎.

Lemma 3.5. If M is simply connected and nonspin, then every homotopy class contains an energy-
minimizing biharmonic almost complex structure.

If M is simply connected and spin, the situation is more complicated. By Lemma 3.1, 𝐽0 is either in the
class 𝜎 or in 𝑝(𝜎). In the former case, 𝐽0 is an energy-minimizing biharmonic almost complex structure
in 𝜎; in the later case, we prove that there is an energy-minimizing biharmonic almost complex structure
in 𝑝(𝜎). To achieve this, we consider the homotopy class 𝜎 and 𝑝(𝜎) simultaneously. We consider
inf𝐽 ∈𝜎 E2(𝐽) and inf𝐽 ∈𝑝 (𝜎) E2(𝐽). We assume that inf𝐽 ∈𝜎 E2(𝐽) ≥ inf𝐽 ∈𝑝 (𝜎) E2 (𝐽). A minimizing
sequence 𝐽𝑘 in 𝑝(𝜎) will have a weak limit 𝐽0 and E2(𝐽0) ≥ inf𝐽 ∈𝑝 (𝜎) E2 (𝐽), since 𝐽0 is either in 𝜎 or
𝑝(𝜎). This will force that 𝐽0 is an energy-minimizing biharmonic almost complex structure.

Lemma 3.6. If M is simply connected and spin, then for each first Chern class c of an almost complex
structure, at least one homotopy class (among two homotopy classes corresponding to c) contains an
energy-minimizing biharmonic almost complex structures.

When M is not necessarily simply connected, Lemma 3.1 does not hold anymore. We need more
precise control of weak convergence to obtain the following.

Lemma 3.7. Let 𝐽𝑘 be an energy-minimizing sequence of E2 (𝐽) in the homotopy class 𝜎. Then the weak
limit 𝐽0 (of a convergent subsequence) lies in either 𝜎 or 𝑝(𝜎).
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The key is to prove a version of 𝜖-regularity for the minimizing sequence 𝐽𝑘 . As a consequence, 𝐽𝑘
converges strongly in 𝑊2,2 to 𝐽0 except around finitely many isolated points. This will imply that the
homotopy class of 𝐽0 is either 𝜎 or 𝑝(𝜎).

Now we are ready to state and prove the 𝜖-regularity for the minimizing sequence 𝐽𝑘 (see Lemma 3.8
and Lemma 3.9). Fix a sufficiently small positive number 𝜖0, which depends only on (𝑀, 𝑔) and will
be specified later. Let 𝜄 be the injectivity radius of (𝑀, 𝑔). Suppose a minimizing sequence 𝐽𝑘 ∈ 𝜎
converges weakly to 𝐽0 in 𝑊2,2 and strongly in 𝑊1,2. For 𝑟 ∈ (0, 𝜄), 𝑝 ∈ 𝑀 and 𝐽 ∈ 𝑊2,2, denote

𝐸 (𝑟, 𝑝) =
∫
𝐵𝑟 (𝑝)

|Δ𝐽 |2𝑑𝑣

𝐹 (𝑟, 𝑝) =
∫
𝐵𝑟 (𝑝)

( |∇2𝐽 |2 + |∇𝐽 |4)𝑑𝑣. (3.3)

We write 𝐸0(𝑟, 𝑝), 𝐹0 (𝑟, 𝑝), 𝐸𝑘 (𝑟, 𝑝), 𝐹𝑘 (𝑟, 𝑝) correspondingly for 𝐽0 and 𝐽𝑘 . Set S𝑟 = {𝑝 ∈ 𝑀 :
lim inf𝑘→∞ 𝐹𝑘 (𝑟, 𝑝) ≥ 𝜖0}. Clearly, S𝑟 ⊂ S𝑠 for 𝑟 < 𝑠. Denote

S := ∩𝑟>0S𝑟 = lim
𝑟→0

S𝑟 .

We introduce the measures which are all totally bounded,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑𝜇𝑘 = (|∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣
𝑑𝜇0 = (|∇2𝐽0 |2 + |∇𝐽0 |4)𝑑𝑣
𝑑𝜉𝑘 = |Δ𝐽𝑘 |2𝑑𝑣
𝑑𝜉0 = |Δ𝐽0 |2𝑑𝑣.

(3.4)

By passing to a subsequence, 𝜇𝑘 converges weakly to a positive Radon measure 𝜇, and 𝜉𝑘 converges
weakly to a positive Radon measure 𝜉. By Fatou’s lemma, there exist positive Radon measures 𝜈 and 𝜆
(called the defect measure [8, 9]), such that{

𝑑𝜇 = 𝑑𝜈 + 𝑑𝜇0

𝑑𝜉 = 𝑑𝜆 + 𝑑𝜉0.

Certainly, 𝐽𝑘 converges to 𝐽0 strongly in 𝑊2,2 if and only if either 𝜈 ≡ 0 or 𝜆 ≡ 0. But 𝜈 and 𝜆 are
not necessarily the same in general. The interplay between two defect measures 𝜈 and 𝜆 makes our
discussions below more complicated than the theory of the harmonic maps, where only the measure
|∇𝑢 |2𝑑𝑣 comes to play. We have the following.

Lemma 3.8. The support of 𝜈 equals S , which contains at most finitely many points.

Proof. First, it is straightforward to see that S is contained in the support of 𝜈. Since 𝐽0 is smooth, we
have for any 𝑥 ∈ 𝑀 , lim𝑟→0 𝜇0 (𝐵𝑟 (𝑥)) = 0. If 𝑥 ∈ S , then

lim
𝑟→0

𝜈(𝐵𝑟 (𝑥)) = lim
𝑟→0

[𝜇(𝐵𝑟 (𝑥)) − 𝜇0(𝐵𝑟 (𝑥))] ≥ 𝜖0.

This shows that S is contained in the support of 𝜈.
Next, we claim the following. For 𝑟 ∈ (0, 𝑟0], where 𝑟0 is a fixed, sufficiently small number, if

𝜇(𝐵2𝑟 (𝑝)) < 𝜖0, then 𝜈 ≡ 0 in 𝐵𝑟/2(𝑝).
We sketch the idea of the proof briefly. If 𝜇(𝐵2𝑟 (𝑝)) < 𝜖0 for 𝜖0 sufficiently small, then after passing

to a subsequence, we have ∫
𝐵2𝑟 (𝑝)

( |∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣 < 2𝜖0

https://doi.org/10.1017/fms.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.21


10 W. He

for sufficiently large k. This implies that 𝐽𝑘 is close to its average in 𝐵2𝑟 and the same discussion holds
for 𝐽0. In particular, 𝐽𝑘 and 𝐽0, when restricted in 𝐵𝑟 , are homotopy to each other. The key is to construct
a new ‘almost minimizing’ sequence 𝐽𝑘 in the same homotopy class such that 𝐽𝑘 = 𝐽0 inside 𝐵𝑟/2(𝑝)
and 𝐽𝑘 = 𝐽𝑘 outside 𝐵𝑟 (𝑝), while the behavior in the annulus region is precisely controlled. This would
imply 𝜈, 𝜆 ≡ 0 in 𝐵𝑟/2(𝑝).

Suppose at the moment, the claim is established. If p is in the support of 𝜈, then 𝜇(𝐵2𝑟 (𝑝)) ≥ 𝜖0 for
all sufficiently small r. Hence 𝑝 ∈ S . Since the total energy is bounded, it follows that S contains, at
most, finitely many isolated points. We complete the proof given Lemma 3.9 below, where we establish
the claim. �

First, we specify the choice of 𝑟0. We can do the scaling 𝑔𝑟 = 𝑟−2𝑔 for 𝑟 ≤ 𝑟0. We choose 𝑟0
sufficiently small, such that 𝑔𝑟 is sufficiently close to the Euclidean metric in the ball 𝐵2(𝑝) (we identify
𝐵2 (𝑝) with the Euclidean ball 𝐵2 equipped with the metric 𝑔𝑟 ) such that

|𝑔𝑖 𝑗 − 𝛿𝑖 𝑗 | +
4∑

𝑘=1
|𝐷𝑘𝑔𝑖 𝑗 | < 𝛿0, (3.5)

where 𝛿0 measures how close the metric 𝑔𝑟 is with respect to the Euclidean metric in 𝐵2. We also
assume that 𝑔𝑖 𝑗 (0) = 𝛿𝑖 𝑗 , 𝜕𝑔𝑖 𝑗 (0) = 0.

Note that we choose 𝑟0, 𝛿0 and 𝜖0 uniformly for any point 𝑝 ∈ 𝑀 . The constants 𝑟0, 𝛿0 and 𝜖0 are all
fixed. Since r will also be fixed and the energy functionals are scaling invariant, we consider (𝑀, 𝑔𝑟 )
instead of (𝑀, 𝑔). In other words, we can assume that, by scaling if necessary, g satisfies (3.5) in
any geodesic ball 𝐵2(𝑝) ⊂ 𝑀 such that the injectivity radius of (𝑀, 𝑔) is bigger than 2. We identify
(𝐵2 (𝑝), 𝑔) with the Euclidean ball (𝐵2, 𝑔) via the exponential map exp𝑝 : 𝑇𝑝𝑀 → 𝑀 . Over (𝐵2, 𝑔),
the tangent bundle is trivial and we write 𝐽 : 𝑇𝑀 → 𝑇𝑀 over (𝐵2, 𝑔) as a matrix-value function 𝐽 (𝑥).
We use ∇,∇2, etc. to denote covariant derivatives of with respect to g over 𝐵2. We will also use 𝐷, 𝐷2

to denote the Euclidean derivatives over 𝐵2. After this choice of the scaling and local coordinates, an
almost complex structure J over (𝐵2, 𝑔) is a matrix-valued function, which we still denote as J. We
establish the main technical lemma.

Lemma 3.9. Suppose 𝜇(𝐵2 (𝑝)) ≤ 𝜖0. Then 𝜈 ≡ 0 in 𝐵1 (𝑝).

The proof of this lemma involves a construction of a sequence of ‘almost energy-minimizing’ almost
complex structures 𝐽𝑘 in 𝜎 such that

𝐽𝑘 (𝑥) =
{
𝐽𝑘 (𝑥), 𝑥 ∈ 𝑀 \ 𝐵1 (𝑝)
𝐽0(𝑥), 𝑥 ∈ 𝐵1− 𝑗−1 (𝑝),

(3.6)

where 𝑘 ≥ 𝑘 𝑗 = 𝑘 ( 𝑗) is sufficiently large depending on j. In the end, we will let 𝑗 → ∞ (and 𝑘 𝑗 → ∞
accordingly) to get an almost energy-minimizing subsequence. Such a construction is a type of extension
of an almost complex structure which equals 𝐽𝑘 in 𝑀 \ 𝐵1(𝑝) and which equals 𝐽0 in 𝐵1− 𝑗−1 (𝑝). The
construction happens in a small annulus 𝐵1 (𝑝) \ 𝐵1− 𝑗−1 (𝑝). The small energy condition 𝜇(𝐵2 (𝑝)) ≤ 𝜖0
plays a very important role. In particular, this implies that 𝐽𝑘 is still in 𝜎, using a theorem of White [15].

The construction involves several delicate choices of small constants and cutoff functions. We shall
first briefly explain the process of construction, leaving details to be proved below. We work on (𝐵2, 𝑔).
Let 𝜓 𝑗 : [0,∞) → [0, 1] be a smooth cutoff function depending on j such that

𝜓 𝑗 (𝑠) =
{

1, 𝑠 ≥ 1
0, 𝑠 ≤ 1 − 𝑗−1
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with bounds |𝜓′

𝑗 | ≤ 3 𝑗 , |𝜓′′

𝑗 | ≤ 10 𝑗2. For 𝑥 ∈ 𝐵2, we denote

𝐽𝑘, 𝑗 (𝑥) = 𝐽𝑘 (𝑥) + (𝐽0(𝑥) − 𝐽𝑘 (𝑥)) (1 − 𝜓 𝑗 (|𝑥 |)).

Note that

𝐽𝑘, 𝑗 (𝑥) =
{
𝐽𝑘 (𝑥), |𝑥 | ≥ 1
𝐽0 (𝑥), |𝑥 | ≤ 1 − 𝑗−1.

(3.7)

We extend 𝐽𝑘, 𝑗 to M such that it equals 𝐽𝑘 outside 𝐵1(𝑝). Note that 𝐽𝑘, 𝑗 might not even be invertible
for some points |𝑥 | ∈ (1 − 𝑗−1, 1) since the convergence of 𝐽𝑘 → 𝐽0 does not imply the convergence
in 𝐿∞. To overcome this difficulty, we construct a smooth approximation of 𝐽𝑘, 𝑗 using a local average
technique (a modification of mollifier).

Let 𝜙(𝑥) = 𝜙(|𝑥 |) be a nonnegative smooth radial cutoff function which is supported in 𝐵 = 𝐵1 with∫
𝐵
𝜙𝑑𝑥 = 1. For any given J and 𝜌 > 0, we denote

𝐽𝜌 (𝑥) =
∫
𝐵𝜌 (𝑥)

𝜙𝜌 (𝑦 − 𝑥)𝐽 (𝑦)𝑑𝑦 =
∫
𝐵
𝜙(𝑧)𝐽 (𝑥 + 𝜌𝑧)𝑑𝑧, (3.8)

where we use the notation, 𝜙𝜌 (𝑥) = 𝜌−4𝜙
(
𝑥
𝜌

)
. When 𝜌 = 0, 𝜙𝜌 is the delta-function and 𝐽𝜌 (𝑥) = 𝐽 (𝑥)

(this is also clear from the second equality in (3.8)). Certainly, 𝐽𝜌 is the smooth approximation of J,
and 𝐽𝜌 converges to J (in a certain norm depending on the regularity of J) when 𝜌 → 0. However, such
a smooth approximation does not preserve (3.7) in general. Hence, we allow 𝜌 to be dependent of |𝑥 |
and we write 𝜌 : [0, 2] → [0, 1]. Such a technique is a modification of Schoen-Uhlenbeck [12]. The
support of 𝜌 is contained in (1 − 𝑗−1, 1). In other words,

𝜌(𝑠) = 0, 𝑠 ∈ [0, 1 − 𝑗−1] ∪ [1, 2] . (3.9)

We choose 𝜌(1 − (2 𝑗)−1) = max 𝜌 = �̄�, where �̄� is a small positive number and it can be chosen
such that 4𝐶0 �̄� 𝑗

2 = 1, where 𝐶0 is a uniform constant, specified below. By choosing �̄�, we require the
derivatives of 𝜌 satisfying

|𝜌′ | + |𝜌′′ | ≤ 4𝐶0 �̄� 𝑗
2 = 1. (3.10)

For 𝑥 ∈ 𝐵2, we also denote 𝜌(𝑥) = 𝜌(|𝑥 |). The choice of the function 𝜌 depends crucially on the cutoff
function 𝜓 𝑗 , and this is the first key point in our construction.

Given such a function 𝜌, we construct, for 𝑥 ∈ 𝐵 = 𝐵1,

𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) =
∫
𝐵𝜌(𝑥) (𝑥)

𝜙𝜌 (𝑦 − 𝑥)𝐽𝑘, 𝑗 (𝑦)𝑑𝑦 =
∫
𝐵
𝜙(𝑧)𝐽𝑘, 𝑗 (𝑥 + 𝜌(𝑥)𝑧)𝑑𝑧. (3.11)

By the choice of 𝜌(𝑥), which is zero when 1 ≤ |𝑥 | ≤ 2 or |𝑥 | ≤ 1 − 𝑗−1, 𝐽𝑘, 𝑗,𝜌(𝑥) can be extended to M
and satisfies (3.7). Similarly, we denote

𝐽0, 𝜌(𝑥) (𝑥) =
∫
𝐵𝜌(𝑥) (𝑥)

𝜙𝜌 (𝑦 − 𝑥)𝐽0 (𝑦)𝑑𝑦 =
∫
𝐵
𝜙(𝑧)𝐽0(𝑥 + 𝜌(𝑥)𝑧)𝑑𝑧.

𝐽𝑘, 𝜌(𝑥) (𝑥) =
∫
𝐵𝜌(𝑥) (𝑥)

𝜙𝜌 (𝑦 − 𝑥)𝐽𝑘 (𝑦)𝑑𝑦 =
∫
𝐵
𝜙(𝑧)𝐽𝑘 (𝑥 + 𝜌(𝑥)𝑧)𝑑𝑧. (3.12)

Note that 𝐽0, 𝜌(𝑥) (𝑥), 𝐽𝑘, 𝜌(𝑥) (𝑥) and 𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) are neither almost complex structures nor compat-
ible with the metric g in general. It is straightforward to see that 𝐽0, 𝜌(𝑥) (𝑥) is close to 𝐽0(𝑥) given �̄� is
sufficiently small (𝐽0 is smooth and 𝐽0, 𝜌 is a standard approximation). We will also show that 𝐽𝑘, 𝜌(𝑥) (𝑥)
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is close to an almost complex structure and it is almost compatible with the metric g, using the Poincare
inequality and small energy assumption. One difficulty is to prove that 𝐽𝑘, 𝑗, 𝜌 is also close to an almost
complex structure, with a suitable choice of 𝜌 and �̄� and 𝑘 = 𝑘 ( �̄�, 𝑗). The dependence of k on �̄� and j
is inevitable. In particular, we need to choose 𝜌 depending on 𝜓 𝑗 .

Once we construct 𝐽𝑘, 𝑗, 𝜌, we use the technique in [5] to construct a unique almost complex structure
𝐽𝑘 using 𝐽𝑘, 𝑗, 𝜌, such that it is compatible with g. We assert that∫

𝑀
|∇𝐽𝑘 − ∇𝐽𝑘 |4𝑑𝑣 ≤ 𝐶𝜖0 (3.13)

which implies that 𝐽𝑘 ∈ 𝜎 using a theorem of White [15, Theorem 2 and Section 6].
Here comes another essential point of the proof. By the construction, 𝐽𝑘 equals 𝐽𝑘 outside 𝐵1 and

agrees with 𝐽0 in 𝐵1− 𝑗−1 . If 𝐽𝑘 is an energy-minimizing sequence in 𝜎, this implies that 𝜆 ≡ 0 in 𝐵1 and
completes the proof. Unfortunately, we are not able to prove∫

𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 → 0 (3.14)

for 𝑘 ≥ 𝑘 𝑗 and 𝑗 → ∞. Instead, we prove the following inequality approximately.∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 � 𝐶

∫
𝐵1\𝐵1− 𝑗−1

(|∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣. (3.15)

Given (3.15) and the fact that {𝐽𝑘 } is an energy-minimizing sequence, we can obtain that

𝜆(𝐵1) ≤ 𝐶𝜈(𝜕𝐵1). (3.16)

Since the defect measure 𝜈(𝜕𝐵1) can be strictly positive on 𝜕𝐵1, this does not directly lead to the con-
clusion 𝜆 ≡ 0. However, the construction above actually works on any ball 𝐵𝑟 ⊂ 𝐵2, 𝑟 ∈ [1/4, 7/4]
(replacing 𝐵1 by 𝐵𝑟 ), and the arguments can be directly carried over. Hence, we will prove for
𝑟 ∈ [1/4, 7/4],

𝜆(𝐵𝑟 ) ≤ 𝐶𝜈(𝜕𝐵𝑟 ). (3.17)

In particular, we have for 𝑟 ∈ [3/2, 7/4],

𝜆(𝐵3/2) ≤ 𝐶𝜈(𝜕𝐵𝑟 ). (3.18)

Since 𝜈 is a totally bounded positive Radon measure, then 𝜈(𝜕𝐵𝑟 ) = 0 for infinitely many r (actually
𝜈(𝜕𝐵𝑟 ) > 0 for at most countably many r). Hence, this proves that 𝜆 ≡ 0 in 𝐵3/2. It is then a standard
practice to prove that 𝜈 ≡ 0 in 𝐵1.

We state two versions of the Poincare inequality which are needed in the proof. For
𝑓 ∈ 𝑊1,2 (𝐵𝑅), 𝐵𝑅 ⊂ R𝑛, denote 𝑓 to be its average in the ball,

𝑓 =
1

Vol(𝐵𝑅)

∫
𝐵𝑅

𝑓 (𝑦)𝑑𝑦.

Then we have

𝑅−𝑛
∫
𝐵𝑅

| 𝑓 − 𝑓 |2𝑑𝑦 ≤ 𝐶𝑅2−𝑛
∫
𝐵𝑅

|𝐷 𝑓 |2𝑑𝑦, (3.19)
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where C is a uniform dimensional constant. Suppose 𝜙 is a cutoff function supported in 𝐵𝑅 such that∫
𝐵𝑅

𝜙(𝑦)𝑑𝑦 = 1. We denote

𝑓∗ =
∫
𝐵𝑅

𝜙(𝑦) 𝑓 (𝑦)𝑑𝑦,

and then we have

𝑅−𝑛
∫
𝐵𝑅

| 𝑓 − 𝑓∗ |2𝑑𝑦 ≤ 𝐶𝑅2−𝑛
∫
𝐵𝑅

|𝐷 𝑓 |2𝑑𝑦. (3.20)

We should mention that f can be taken as vector-valued and matrix-valued functions as a direct
generalization. Now we carry out the details to prove Lemma 3.9.

Proof. Step one: the construction of an ‘almost’ almost complex structure 𝐽𝑘, 𝑗,𝜌(𝑥) .
Note that J is g-compatible if 𝐽 + 𝐽∗ = 0. With the localization over 𝐵2, J is g-compatible if

(𝐽 + 𝑔𝐽𝑡𝑔−1) (𝑥) = 0 holds as a matrix-valued equation for all 𝑥 ∈ 𝐵2, where 𝐽𝑡 is the transpose of J. If
J is compatible with g, then 𝐽𝜌 is almost g-compatible if �̄� is sufficiently small (we assume that |𝐽 | is
bounded, of course). We estimate

| (𝐽𝜌 + 𝑔𝐽𝑡𝜌𝑔
−1) (𝑥) | =

�����
∫
𝐵𝜌 (𝑥)

𝜙𝜌 (𝑦 − 𝑥) (𝐽 (𝑦) + 𝑔(𝑥)𝐽𝑡 (𝑦)𝑔−1 (𝑥))𝑑𝑦

�����
≤𝜌−4

∫
𝐵𝜌

��𝐽 (𝑦) + 𝑔(𝑥)𝐽𝑡 (𝑦)𝑔−1(𝑥)
��𝑑𝑦

≤𝜌−4
∫
𝐵𝜌

��−𝑔(𝑦)𝐽𝑡 (𝑦)𝑔−1(𝑦) + 𝑔(𝑥)𝐽𝑡 (𝑦)𝑔−1 (𝑥)
��𝑑𝑦

≤𝐶𝛿0 �̄�, (3.21)

where we use the facts |𝑔(𝑥) − 𝑔(𝑦) | ≤ 𝐶𝛿0 �̄� for |𝑦 − 𝑥 | ≤ 𝜌 and

𝑔(𝑥)𝐽𝑡 (𝑦)𝑔−1(𝑥) − 𝑔(𝑦)𝐽𝑡 (𝑦)𝑔−1(𝑦) = (𝑔(𝑥) − 𝑔(𝑦))𝐽𝑡 (𝑦)𝑔−1(𝑥) + 𝑔(𝑥)𝐽𝑡 (𝑦) (𝑔−1(𝑥) − 𝑔−1 (𝑦))

It is clear that (3.21) holds for all the cases 𝐽 = 𝐽0, 𝐽𝑘 and 𝐽𝑘, 𝑗 .
Next we show that 𝐽𝑘, 𝑗, 𝜌 is ‘almost’ an almost complex structure in the sense that |𝐽𝑘, 𝑗, 𝜌𝐽𝑘, 𝑗, 𝜌 + id|

is very small pointwise. Now we specify 𝜌 further and discuss the properties of 𝐽𝑘, 𝑗, 𝜌. For
|𝑥 | ∈ [0, 1 − 𝑗−1] ∪ [1, 2], since 𝜌(𝑥) = 0, we have

𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) = 𝐽𝑘, 𝑗 (𝑥) =
{
𝐽𝑘 (𝑥), |𝑥 | ∈ [1, 2],
𝐽0 (𝑥), |𝑥 | ∈ [0, 1 − 𝑗−1] .

(3.22)

Fix 𝛿1 > 0 sufficiently small (which can be taken as 𝑗−1). We write (1− 𝑗−1, 1) as three subintervals

(1 − 𝑗−1, 1 − 𝑗−1 + 𝛿1 𝑗
−1] ∪ (1 − 𝑗−1 + 𝛿1 𝑗

−1, 1 − 𝛿1 𝑗
−1) ∪ [1 − 𝛿1 𝑗

−1, 1).

The discussions in each subinterval are different. We choose 𝜌 such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜌(1 − (2 𝑗)−1) = �̄�

𝜌(1 − 𝑗−1 + 𝛿1 𝑗
−1) = 𝜌(1 − 𝛿1 𝑗

−1) = 𝛿1 �̄�

𝜌(𝑠) < 𝛿1 �̄�, 𝑠 ∈ (1 − 𝑗−1, 1 − 𝑗−1 + 𝛿1 𝑗
−1) ∪ (1 − 𝛿1 𝑗

−1, 1)
𝜌(𝑠) ≥ 𝛿1 �̄�, 𝑠 ∈ (1 − 𝑗−1 + 𝛿1 𝑗

−1, 1 − 𝛿1 𝑗
−1).

(3.23)
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Let ℎ(𝑠) be a smooth nonnegative function supported over [0, 2], satisfying the following.

ℎ(1) = 1 = max ℎ, and ℎ(𝑠) = ℎ(2 − 𝑠),
ℎ( 𝑗−1) = 𝑗−1, ℎ′(𝑠) ≥ 0, 𝑠 ∈ [0, 1],
|ℎ′ | + |ℎ′′ | ≤ 𝐶0. (3.24)

Denote 𝜌(𝑠) = �̄� ℎ(2 + 2 𝑗 (𝑠 − 1)). Then 𝜌(𝑠) is supported in [1 − 𝑗−1, 1], satisfying (3.23). We now
choose �̄� such that

|𝜌′ | + |𝜌′′ | ≤ 4�̄� 𝑗2(|ℎ′ | + |ℎ′′ |) ≤ 4𝐶0 �̄� 𝑗
2 = 1.

For |𝑥 | ∈ (1 − 𝑗−1, 1 − 𝑗−1 + 𝛿1 𝑗
−1], we have

|𝑥 + 𝜌(𝑥)𝑧 | ≤ 1 − 𝑗−1 + 𝛿1 𝑗
−1 + 𝛿1 �̄�.

Using 𝜓 𝑗 (1 − 𝑗−1) = 0 and |𝜓′
𝑗 | ≤ 3 𝑗 , we get

𝜓 𝑗 (|𝑥 + 𝜌(𝑥)𝑧 |) ≤ 3 𝑗 (𝛿1 𝑗
−1 + 𝛿1 �̄�) ≤ 4𝛿1.

We compute

|𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) − 𝐽0, 𝜌(𝑥) (𝑥) | =
����∫

𝐵
𝜙(𝑧)𝜓 𝑗 (|𝑥 + 𝜌(𝑥)𝑧) |(𝐽0 − 𝐽𝑘 ) (𝑥 + 𝜌(𝑥)𝑧)𝑑𝑧

���� ≤ 100𝛿1.

Similarly, for |𝑥 | ∈ [1 − 𝛿1 𝑗
−1, 1), we have

|𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) − 𝐽𝑘, 𝜌(𝑥) (𝑥) | ≤ 100𝛿1. (3.25)

We can estimate

|𝐽0, 𝜌(𝑥) (𝑥) − 𝐽0 (𝑥) | ≤
∫
𝐵
𝜙(𝑧) |𝐽0(𝑥 + 𝜌(𝑥)𝑧) − 𝐽0 (𝑥) |𝑑𝑧 ≤ 𝐶1 �̄�, (3.26)

where 𝐶1 = 𝐶1 (max |∇𝐽0 |) is a uniform constant. We derive

|𝐽𝑘, 𝑗, 𝜌(𝑥) − 𝐽0 (𝑥) | ≤ 100𝛿1 + 𝐶1 �̄�, |𝑥 | ∈ (1 − 𝑗−1, 1 − 𝑗−1 + 𝛿1 𝑗
−1] . (3.27)

This implies that 𝐽𝑘, 𝑗, 𝜌(𝑥) is close to an almost complex structure for |𝑥 | ∈ (1 − 𝑗−1, 1 − 𝑗−1 + 𝛿1 𝑗
−1),

provided that 100𝛿1 +𝐶1 �̄� is sufficiently small. Since |∇𝐽𝑘 | might not be uniformly bounded, we do not
have an effective pointwise estimate on |𝐽𝑘, 𝜌(𝑥) (𝑥) − 𝐽𝑘 (𝑥) | as above. Instead, we apply the Poincare
inequality (3.20) in the ball 𝐵𝜌 (𝑥) to 𝐽 (𝑦) with 𝐽∗ = 𝐽𝜌 (𝑥) =

∫
𝐵𝜌 (𝑥)

𝜙𝜌 (𝑦 − 𝑥)𝐽 (𝑦)𝑑𝑦,

𝜌−4
∫
𝐵𝜌 (𝑥)

|𝐽 (𝑦) − 𝐽𝜌 (𝑥) |2𝑑𝑣 ≤ 𝐶𝜌−2
∫
𝐵𝜌 (𝑥)

|𝐷𝐽 (𝑦) |2𝑑𝑦, (3.28)

Replacing J by 𝐽𝑘 , we can get that

𝜌−4
∫
𝐵𝜌 (𝑥)

|𝐽𝑘 (𝑦) − 𝐽𝑘, 𝜌(𝑥) (𝑥) |2𝑑𝑦 ≤ 𝐶𝜌−2
∫
𝐵𝜌 (𝑥)

|𝐷𝐽𝑘 (𝑦) |2𝑑𝑦. (3.29)
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By the Hölder inequality, we see that

𝜌−2
∫
𝐵𝜌 (𝑥)

|𝐷𝐽𝑘 (𝑦) |2𝑑𝑦 ≤ 𝐶

(∫
𝐵𝜌 (𝑥)

|𝐷𝐽𝑘 |4𝑑𝑦
) 1

2

.

Using the fact that ∇𝐽 = 𝐷𝐽 + 𝜕𝑔 ∗ 𝐽 and (3.5), it follows that

𝜌−4
∫
𝐵𝜌 (𝑥)

|𝐽𝑘 (𝑦) − 𝐽𝑘, 𝜌(𝑥) (𝑥) |2𝑑𝑦 ≤ 𝐶

(∫
𝐵𝜌 (𝑥)

|𝐷𝐽𝑘 |4𝑑𝑦
) 1

2

≤ 𝐶 (√𝜖0 +
√
𝛿0). (3.30)

Hence, (3.30) implies that there are many ys in 𝐵𝜌 (𝑥) such that

|𝐽𝑘 (𝑦) − 𝐽𝑘, 𝜌(𝑥) (𝑥) | ≤ 𝐶 ( 4√𝜖0 + 4
√
𝛿0).

In particular, this implies that

|𝐽𝑘, 𝜌(𝑥) (𝑥)𝐽𝑘, 𝜌(𝑥) (𝑥) + id| ≤ 𝐶 ( 4√𝜖0 + 4
√
𝛿0).

Using (3.25) and the above, we get that

|𝐽𝑘, 𝑗, 𝜌(𝑥) 𝐽𝑘, 𝑗, 𝜌(𝑥) + id| ≤ 𝐶 (𝛿1 + 4√𝜖0 + 4
√
𝛿0), |𝑥 | ∈ [1 − 𝛿1 𝑗

−1, 1). (3.31)

Next we consider |𝑥 | ∈ (1 − 𝑗−1 + 𝛿1 𝑗
−1, 1 − 𝛿1 𝑗

−1), where 𝜌(𝑥) ≥ 𝛿1 �̄�. We compute

|𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) − 𝐽0, 𝜌(𝑥) (𝑥) | ≤
∫
𝐵
𝜙(𝑧) |(𝐽0 − 𝐽𝑘 ) (𝑥 + 𝜌(𝑥)𝑧) |𝑑𝑧. (3.32)

We have ∫
𝐵
𝜙(𝑧) |(𝐽0 − 𝐽𝑘 ) (𝑥 + 𝜌(𝑥)𝑧) |𝑑𝑧 ≤𝜌(𝑥)−4

∫
𝐵𝜌(𝑥) (𝑥)

|𝐽0 (𝑦) − 𝐽𝑘 (𝑦) |𝑑𝑦

≤𝐶𝜌−2‖𝐽0 − 𝐽𝑘 ‖𝐿2 (𝐵3/2) .

Since 𝐽𝑘 converges to 𝐽0 strongly in 𝑊1,2 and 𝜌 ≥ 𝛿1 �̄� for |𝑥 | ∈ (1 − 𝑗−1 + 𝛿1 𝑗
−1, 1 − 𝛿1 𝑗

−1), we can
choose 𝑘0 = 𝑘0 (𝛿1, �̄�) sufficiently large such that

𝐶𝜌−2‖𝐽0 − 𝐽𝑘 ‖𝐿2 ≤ �̄�.

Hence, we get, for 𝑘 ≥ 𝑘0,

𝜌−4
∫
𝐵𝜌(𝑥) (𝑥)

|𝐽0 (𝑦) − 𝐽𝑘 (𝑦) |𝑑𝑦 ≤ �̄�. (3.33)

Using (3.33) and (3.32), we have that, for 𝑘 ≥ 𝑘0,

|𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) − 𝐽0, 𝜌(𝑥) (𝑥) | ≤ �̄�.

This together with (3.26) implies that, for 𝑘 ≥ 𝑘0,

|𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) − 𝐽0(𝑥) | ≤ 𝐶�̄�,
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and in particular, we have

|𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥)𝐽𝑘, 𝑗 ,𝜌(𝑥) (𝑥) + id| ≤ 𝐶�̄�.

Step two: construction of almost complex structure 𝐽𝑘 by projecting 𝐽𝑘, 𝑗, 𝜌(𝑥) w.r.t g.

Next we construct a sequence 𝐽𝑘 (𝑥) using 𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) by the technique we have used in [5, see
(4.15), (4.16)]. We briefly recall the construction. In the following, we consider 𝑘 ≥ 𝑘 𝑗 for each j. For
|𝑥 | ∈ [0, 1 − 𝑗−1] ∪ [1, 2], 𝜌 = 0, and we have

𝐽𝑘 = 𝐽𝑘, 𝑗, 𝜌 = 𝐽𝑘, 𝑗 =

{
𝐽0, |𝑥 | ≤ 1 − 𝑗−1

𝐽𝑘 , |𝑥 | ≥ 1
(3.34)

Now consider |𝑥 | ∈ (1 − 𝑗−1, 1). Let 𝑆𝑔 (𝑥) and 𝐴𝑔 (𝑥) be the g-symmetric and g-skew symmetric part
of 𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥), respectively. We have by (3.21)

|𝑆𝑔 (𝑥) | =
1
2
| (𝐽𝑘, 𝑗, 𝜌(𝑥) (𝑥) + 𝑔(𝑥)𝐽𝑡𝑘, 𝑗 , 𝜌(𝑥) (𝑥)𝑔

−1 (𝑥)) | ≤ 𝐶𝛿0 �̄�.

It follows that

|𝐴2
𝑔 + id| < 𝐶 4√𝜖0 + 𝐶𝛿0 �̄�.

Note that −𝐴2
𝑔 is g-symmetric and that it is close to the identity matrix pointwise; in particular, it

is positive definite. Denote 𝑄𝑔 to be the g-symmetric matrix such that 𝑄2
𝑔 = −𝐴2

𝑔. Note that 𝑄𝑔 is
uniquely determined and it commutes with 𝐴𝑔. Denote 𝐽𝑘 (𝑥) = 𝑄−1

𝑔 (𝑥)𝐴𝑔 (𝑥) for 𝑥 ∈ 𝐵2. Then 𝐽𝑘 (𝑥)
is a g-compatible almost complex structure in 𝐵2. We extend 𝐽𝑘 to M by simply putting 𝐽𝑘 = 𝐽𝑘 on
𝑀 \ 𝐵1(𝑝). Now we establish (3.13). We only need to consider over 𝐵1(𝑝). Note that the 𝐿∞ norm of
𝐽𝑘, 𝑗 , 𝑄𝑔, 𝐴𝑔, 𝑄

−1
𝑔 and 1/|𝑄−1

𝑔 | are all uniformly bounded by a dimensional constant. Since 𝑄2
𝑔 = −𝐴2

𝑔

and |𝐴2
𝑔 + id| � 1, we have the following expansion of the matrix.

𝑄𝑔 =
√

id − (id + 𝐴2
𝑔) =

∞∑
𝑙=0

(
1/2
𝑙

)
(id + 𝐴2

𝑔)𝑙 . (3.35)

We can compute directly that |∇𝑄𝑔 | ≤ 𝐶 |𝐴𝑔 | |∇𝐴𝑔 | ≤ 𝐶 |∇𝐴𝑔 |. Hence, we obtain |∇𝐽𝑘 | ≤ 𝐶 |∇𝐴𝑔 |. We
also need (using ∇𝑔 = 0)

|∇𝑆𝑔 | = |∇𝐽𝑘, 𝑗,𝜌 + 𝑔∇𝐽𝑡𝑘, 𝑗 ,𝜌𝑔
−1 | ≤ 𝐶 |∇𝐽𝑘, 𝑗,𝜌 |.

We compute

|∇𝐽𝑘, 𝑗,𝜌 | ≤ 𝐶

∫
𝐵
𝜙(𝑧) |∇𝐽𝑘, 𝑗 (𝑥 + 𝜌(𝑥)𝑧) |(1 + |𝜌′ |)𝑑𝑧.

Hence, we have

|∇𝐽𝑘, 𝑗,𝜌 |4 ≤ 𝐶

∫
𝐵
|∇𝐽𝑘, 𝑗 (𝑥 + 𝜌(𝑥)𝑧) |4𝑑𝑧.

Moreover, we have |∇𝐴𝑔 | ≤ |∇𝐽𝑘, 𝑗,𝜌 | + |∇𝑆𝑔 | ≤ 𝐶 |∇𝐽𝑘, 𝑗,𝜌 |. It follows that∫
𝐵
|∇𝐽𝑘 |4𝑑𝑣 ≤ 𝐶

∫
𝐵

(∫
𝐵
|∇𝐽𝑘, 𝑗 (𝑥 + 𝜌(𝑥)𝑧) |4𝑑𝑧

)
𝑑𝑣𝑥 ≤ 𝐶

∫
𝐵3/2

|∇𝐽𝑘, 𝑗 |4𝑑𝑣.
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Since ∇𝐽𝑘, 𝑗 = ∇𝐽𝑘 + (1 − 𝜓 𝑗 ) (∇𝐽0 − ∇𝐽𝑘 ) − (𝐽0 − 𝐽𝑘 )∇𝜓 𝑗 and |∇𝜓 𝑗 | ≤ 3 𝑗 , it follows that∫
𝐵3/2

|∇𝐽𝑘, 𝑗 |4𝑑𝑣 ≤ 𝐶

∫
𝐵2

(|∇𝐽𝑘 |4 + |∇𝐽0 |4)𝑑𝑣 + 𝐶 𝑗4
∫
𝐵
|𝐽0 − 𝐽𝑘 |4𝑑𝑣. (3.36)

Using the Sobolev inequality, we know that

‖𝐽0 − 𝐽𝑘 ‖𝐿4 ≤ 𝐶‖𝐽0 − 𝐽𝑘 ‖𝑊 1,2 .

By choosing 𝑘 𝑗 = 𝑘 ( 𝑗) sufficiently large such that for 𝑘 ≥ 𝑘 𝑗 , we can assume that

𝐶 𝑗4
∫
𝐵1

(|𝐽0 − 𝐽𝑘 |2 + |𝐽0 − 𝐽𝑘 |4 + |∇𝐽0 − ∇𝐽𝑘 |2)𝑑𝑣 ≤ 𝑗−1 ≤ 𝜖0. (3.37)

This establishes (3.13) and hence 𝐽𝑘 and 𝐽𝑘 are in the same homotopy class, for 𝑘 ≥ 𝑘 𝑗 .

Step three: the comparison of 𝐽𝑘 and 𝐽𝑘 implies 𝜆(𝐵1) ≤ 𝐶𝜈(𝜕𝐵1).

Fix 𝜖 > 0. Since 𝐽𝑘 is an energy-minimizing sequence, for k sufficiently large we have,∫
𝑀

|Δ𝐽𝑘 |2𝑑𝑣 ≤
∫
𝑀

|Δ𝐽𝑘 |2𝑑𝑣 + 𝜖 .

By the construction of 𝐽𝑘 , we get∫
𝐵1

|Δ𝐽𝑘 |2𝑑𝑣 ≤
∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 +
∫
𝐵1− 𝑗−1

|Δ𝐽0 |2𝑑𝑣 + 𝜖 .

By taking 𝑗 → ∞ (hence 𝑘 ≥ 𝑘 𝑗 → ∞), we get (since 𝐵1 is open)

𝜆(𝐵1) +
∫
𝐵1

|Δ𝐽0 |2𝑑𝑣 ≤ lim inf
∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 +
∫
𝐵1− 𝑗−1

|Δ𝐽0 |2𝑑𝑣 + 𝜖 .

Hence, we get

𝜆(𝐵1) ≤ lim inf
𝑗→∞

∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 + 𝜖 .

Since 𝜖 > 0 is arbitrary, we have established the estimate

𝜆(𝐵1) ≤ lim inf
𝑗→∞

∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣. (3.38)

Now we need estimates as in (3.15) to control the right-hand side of (3.38). Recall that we have the
unique decomposition 𝐽𝑘, 𝑗, 𝜌 = 𝐴𝑔 + 𝑆𝑔 and 𝐽𝑘 = 𝑄−1

𝑔 𝐴𝑔, where 𝑄𝑔 is the unique square root of −𝐴2
𝑔.

Using (3.35), we have

|∇𝑄𝑔 | ≤ 𝐶 |∇𝐴𝑔 |, |Δ𝑄𝑔 | ≤ 𝐶 (|Δ𝐴𝑔 | + |∇𝐴𝑔 |2).

It follows that

|Δ (𝑄−1
𝑔 𝐴𝑔) | ≤ 𝐶 (|Δ𝐴𝑔 | + |∇𝐴𝑔 |2) ≤ 𝐶 (|Δ𝐽𝑘, 𝑗, 𝜌 | + |∇𝐽𝑘, 𝑗, 𝜌 |2).
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Hence, we obtain ∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 ≤ 𝐶

∫
𝐵1\𝐵1− 𝑗−1

(
|Δ𝐽𝑘, 𝑗, 𝜌 |2 + |∇𝐽𝑘, 𝑗, 𝜌 |4

)
𝑑𝑣. (3.39)

We compute

|∇𝐽𝑘, 𝑗 | =|∇𝐽𝑘 + (1 − 𝜓 𝑗 ) (∇𝐽0 − ∇𝐽𝑘 ) − ∇𝜓 𝑗 (𝐽0 − 𝐽𝑘 ) |
=|𝜓 𝑗∇𝐽𝑘 + (1 − 𝜓 𝑗 )∇𝐽0 − ∇𝜓 𝑗 (𝐽0 − 𝐽𝑘 ) |
≤|∇𝐽𝑘 | + |∇𝐽0 | + 𝐶 𝑗 |𝐽0 − 𝐽𝑘 |.

Similarly, we compute

|Δ𝐽𝑘, 𝑗 | =|Δ𝐽𝑘 + Δ [(1 − 𝜓 𝑗 ) (𝐽0 − 𝐽𝑘 )] |
≤|∇2𝐽𝑘 | + |∇2𝐽0 | + 𝐶 𝑗2(|𝐽0 − 𝐽𝑘 | + |∇𝐽0 − ∇𝐽𝑘 |).

Write 𝑦 = 𝑥 + 𝜌(𝑥)𝑧. Then we have���� 𝜕𝑦𝑖𝜕𝑥 𝑗

���� ≤ 𝐶 (1 + |𝜌′ |),
���� 𝜕2𝑦𝑖
𝜕𝑥 𝑗𝜕𝑥𝑘

���� ≤ 𝐶 (1 + |𝜌′ | + |𝜌′′ |).

Using |𝜌′ | + |𝜌′′ | ≤ 1, |𝜓′

𝑗 | + |𝜓′′

𝑗 | ≤ 20 𝑗2, we can then get

|∇𝐽𝑘, 𝑗, 𝜌 | =
����∫

𝐵
𝜙(𝑧)∇𝑥𝐽𝑘, 𝑗 (𝑥 + 𝜌(𝑥)𝑧)𝑑𝑧

����
≤𝐶

∫
𝐵
𝜙(𝑧) |∇𝑧𝐽𝑘, 𝑗 | (1 + |𝜌′ |)𝑑𝑧

≤𝐶
∫
𝐵1

𝜙(𝑧) (|∇𝐽𝑘 | + |∇𝐽0 | + 𝑗 |𝐽0 − 𝐽𝑘 |)𝑑𝑧,

where the function is evaluated at 𝑦 = 𝑥+𝜌(𝑥)𝑧. For any open set𝑈 ⊂ 𝐵2, denote𝑈�̄� = {𝑥 : dist(𝑥,𝑈) <
�̄�}. We have∫

𝑈
|∇𝐽𝑘, 𝑗, 𝜌 |4𝑑𝑣𝑥 ≤𝐶

∫
𝑈

(∫
𝐵1

𝜙(𝑧) (|∇𝐽𝑘 | (𝑦) + |∇𝐽0 | (𝑦) + 𝑗 |𝐽0 − 𝐽𝑘 | (𝑦))𝑑𝑧
)4
𝑑𝑣𝑥

≤𝐶
∫
𝑈�̄�

(|∇𝐽𝑘 |4 + |∇𝐽0 |4 + 𝑗4 |𝐽0 − 𝐽𝑘 |4)𝑑𝑣, (3.40)

where we have used a standard technique to estimate the 𝐿𝑝 norm of mollifier approximation (see [4,
Lemma 7.2, (7.15)]). Similarly, we compute

|Δ𝐽𝑘, 𝑗, 𝜌 | =
����∫

𝐵
𝜙(𝑧)Δ 𝑥

(
𝐽𝑘, 𝑗 (𝑥 + 𝜌(𝑥)𝑧)

)
𝑑𝑧

����
≤𝐶

∫
𝐵
𝜙(𝑧)

(
|∇2𝐽𝑘 | + |∇2𝐽0 | + 𝑗2 (|∇𝐽0 − ∇𝐽𝑘 | + |𝐽0 − 𝐽𝑘 |)

)
𝑑𝑧.

It follows that∫
𝑈
|Δ𝐽𝑘, 𝑗, 𝜌 |2𝑑𝑣𝑥 ≤ 𝐶

∫
𝑈�̄�

(
|∇2𝐽𝑘 |2 + |∇2𝐽0 |2 + 𝑗4 |𝐽0 − 𝐽𝑘 |2 + 𝑗4 |∇𝐽0 − ∇𝐽𝑘 |2

)
𝑑𝑣𝑥 . (3.41)
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Take 𝑈 = 𝐵1 \ 𝐵1− 𝑗−1 in the above. We obtain,∫
𝑈
(|∇𝐽𝑘, 𝑗, 𝜌 |4 + |∇2𝐽𝑘, 𝑗, 𝜌 |2)𝑑𝑣 ≤ 𝐶

∫
𝑈�̄�

(|∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣 + 𝐶 (𝑅1 + 𝑅2), (3.42)

where the remainder terms read,

𝑅1 =
∫
𝑈�̄�

(|∇𝐽0 |4 + |Δ𝐽0 |2)𝑑𝑣,

𝑅2 = 𝑗4
∫
𝑈�̄�

(|𝐽0 − 𝐽𝑘 |2 + |𝐽0 − 𝐽𝑘 |4 + |∇𝐽0 − ∇𝐽𝑘 |2)𝑑𝑣.

Recall we assume that 𝑘 ≥ 𝑘 𝑗 , such that (3.37) holds. Hence, 𝑅2 ≤ 𝑗−1. Certainly when 𝑗 → ∞, the
Lebesgue measure 𝑈�̄� → 0 and hence 𝑅1 → 0. By (3.42), we obtain

lim inf
𝑗→∞

∫
𝐵1\𝐵1− 𝑗−1

(|∇𝐽𝑘, 𝑗, 𝜌 |4 + |Δ𝐽𝑘, 𝑗, 𝜌 |2)𝑑𝑣 ≤ 𝐶 lim inf
𝑗→∞

∫
𝑈�̄�

(|∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣. (3.43)

Hence, we obtain, by (3.39) and (3.43),

lim inf
𝑗→∞

∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 ≤ 𝐶 lim inf
𝑗→∞

∫
𝑈�̄�

(|∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣. (3.44)

Note that 𝑈 = 𝐵1 \ 𝐵1− 𝑗−1 , �̄� = 𝑗−2/10. Fix 𝜖 > 0. Denote

𝐵1, 𝜖 = {𝑥 : dist(𝑥, 𝜕𝐵1) < 𝜖}.

For any j sufficiently large, 𝑈�̄� ⊂ 𝐵1, 𝜖 . Hence, we have

lim
𝑘→∞

∫
𝐵1, 𝜖

(|∇2𝐽𝑘 |2 + |∇𝐽𝑘 |4)𝑑𝑣 = lim
𝑘→∞

𝜇𝑘 (𝐵1, 𝜖 ) ≤ 𝜇(𝐵1, 𝜖 ),

where we use the fact that 𝜇𝑘 converges to 𝜇 weakly and 𝐵1, 𝜖 is a closed set. Together with (3.44), we
get that

lim
𝑗→∞

∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 ≤ 𝐶𝜇(𝐵1, 𝜖 ). (3.45)

Note that ∩𝜖 >0𝐵1, 𝜖 = 𝜕𝐵1. We obtain lim𝜖→0 𝜇(𝐵1, 𝜖 ) = 𝜈(𝜕𝐵1). With (3.45), we obtain

lim
𝑗→∞

∫
𝐵1\𝐵1− 𝑗−1

|Δ𝐽𝑘 |2𝑑𝑣 ≤ 𝐶𝜈(𝜕𝐵1). (3.46)

Hence, we have obtained the desired estimate

𝜆(𝐵1) ≤ 𝐶𝜈(𝜕𝐵1). (3.47)

If we replace 𝐵1 by 𝐵𝑟 , for 1 ≤ 𝑟 ≤ 3
2 , replace 𝐵1 \ 𝐵1− 𝑗−1 by 𝐵𝑟 \ 𝐵𝑟− 𝑗−1 and apply the same arguments

as in the proof (3.47), we obtain

𝜆(𝐵𝑟 ) ≤ 𝐶𝜈(𝜕𝐵𝑟 ). (3.48)
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Since 𝜈 is totally bounded, this implies that 𝜆(𝐵𝑟 ) ≡ 0 for 𝑟 ≤ 3/2. This completes the proof of
Lemma 3.9. �

With Lemma 3.9, we prove Lemma 3.7, which asserts that the homotopy class of 𝐽0 is either 𝜎 or
𝑝(𝜎), for a minimizing sequence 𝐽𝑘 in 𝜎.

Proof of Lemma 3.7. Lemma 3.9 implies that 𝐽𝑘 converges to 𝐽0 strongly in 𝑊2,2 (𝑀\𝑈𝑟/2), where U
is the collection of finitely many disjoint geodesic balls 𝐵(𝑝𝑖), 𝑖 = 1, · · · 𝑁 with radius 𝑟/2, for any
sufficiently small positive number r. Moreover, for any point 𝑝 ∈ 𝑀\𝑈𝑟 , we have that∫

𝐵𝑟/2 (𝑝)
|∇𝐽𝑘 |4 + |∇2𝐽𝑘 |2 ≤ 𝜖0.

Hence, we can construct 𝐽𝑘 such that

𝐽𝑘 (𝑝) = 𝐽0 (𝑝), 𝑝 ∈ 𝑀\𝑈2𝑟 ,

𝐽𝑘 (𝑝) = 𝐽𝑘 (𝑝), 𝑝 ∈ 𝑈𝑟/2

and ∫
𝑀

|∇𝐽𝑘 − ∇𝐽𝑘 |4 ≤ 𝐶𝜖0.

This implies that 𝐽𝑘 is in 𝜎. In short, we construct 𝐽𝑘 in the same homotopy class which coincides 𝐽0
over 𝑀\𝑈2𝑟 , where the convergence is strongly in 𝑊2,2.

Given a homotopy class 𝜎 of almost complex structures on M, we recall the construction of 𝑝(𝜎)
(see Donaldson [3, Section 6]). A compatible almost complex structure J on an oriented Riemannian
four-manifold M can be considered as a section of the associated 𝑆𝑂 (4)/𝑈 (2)-bundle over M (the
sphere bundle of Λ2

+, known as the ‘twistor space’). Suppose there are two almost complex structures
𝐽1 and 𝐽2, which agree each other outside a small ball in M. Over this ball B, 𝐽1 and 𝐽2 compare by a
map from 𝑆4 to the fibre of the twistor bundle, hence defining an element in [𝑆4, 𝑆2] = Z/2. If 𝜎 is
a homotopy class, 𝑝(𝜎) agrees with 𝜎 outside a small ball, and over the ball the two compare by the
nonzero element of [𝑆4, 𝑆2] = Z/2. Hence, if 𝐽1 and 𝐽2 agree outside a small ball, then either they are
in the same homotopy class or their homotopy classes are related by the map p.

Applying this to 𝐽𝑘 and 𝐽0 above, the homotopy classes differ by the composition 𝑝𝑘 , for some
𝑘 ≤ 𝑁 . Since 𝑝 ◦ 𝑝 = 𝑖𝑑, it follows that 𝐽0 is either in 𝜎 or 𝑝(𝜎). �

Theorem 1.3 follows as an immediate consequence of Lemma 3.7.

Proof of Theorem 1.3. Given a pair of homotopy classes 𝜎 and 𝑝(𝜎), choose a minimizing sequence
𝐽𝑘 of bi-energy functional over 𝜎 and 𝑝(𝜎) with respect to (𝑀, 𝑔). By passing to a subsequence, we
assume that 𝐽𝑘 remains in homotopy class 𝜎 and it converges to a biharmonic almost complex structure
𝐽0 weakly in𝑊2,2. Either 𝐽0 is in 𝜎 or in 𝑝(𝜎). Hence, there is an energy-minimizing biharmonic almost
complex structure in the pair 𝜎 and 𝑝(𝜎). Indeed, in this case, since 𝐽𝑘 is a minimizing sequence over
𝜎 and 𝑝(𝜎), and all 𝐽𝑘 remains in 𝜎, the limit 𝐽0 has to be in 𝜎 as well since no extra energy can be
concentrated. �

4. An intuitive conjectural picture

A 𝐾3 surface is a compact simply connected complex surface S with trivial canonical bundle. Let 𝜎
denote the homotopy class of the standard complex structures on S with 𝑐1 = 0. S. Donaldson [3,
Corollary 6.5] proved, using his polynomial invariants, the following.
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Theorem 4.1 (Donaldson). The homotopy class 𝑝(𝜎) on S with 𝑐1 = 0 does not contain any integrable
representative.

Theorem 1.3 does not specify precisely whether 𝜎 or 𝑝(𝜎) contains an energy-minimizing bihar-
monic almost complex structure. There could be a couple options, as follows.

1. Both 𝜎 and 𝑝(𝜎) contain an energy-minimizing biharmonic almost complex structure, which might
or might not have the same energy.

2. Only one homotopy contains an energy-minimizing biharmonic almost complex structure, while the
other does not.

We believe the following and Theorem 4.1 serves as an example.

Conjecture 4.2. Given two homotopy classes 𝜎 and 𝑝(𝜎) on M, exactly one homotopy class among the
pair (𝜎, 𝑝(𝜎)) contains an energy-minimizing biharmonic almost complex structure. Suppose 𝜎 is the
class containing a minimizer. Then 𝑝(𝜎) does not contain a minimizer, and a minimizing sequence in
𝑝(𝜎) converges weakly in 𝑊2,2 to a minimizer in 𝜎, which bubbles off a nonconstant biharmonic map
from R4 to 𝑆2 with a nontrivial relative homotopy class.

In the process of energy-minimizing, the formation of a bubble gives a nonconstant extrinsic bihar-
monic map from R4 to 𝑆2 by a blowup argument. But it does not seem to be straightforward to specify
its relative homotopy class, even though it is intuitive that it should correspond to the nonzero element
in 𝜋4 (𝑆2) topologically. We believe the following.

Conjecture 4.3. In the nontrivial (relative) homotopy class of R4 to 𝑆2 corresponding to the nonzero
element 𝜋4 (𝑆2), there exists an energy-minimizing extrinsic biharmonic map. For maps from 𝑆4 to 𝑆2

in the homotopy class corresponding to nonzero element 𝜋4 (𝑆2), there exists no energy-minimizing
extrinsic biharmonic maps.
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