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Semi-Slant Submanifolds of an Almost
Paracontact Metric Manifold

Mehmet Atc.eken

Abstract. In this paper, we define and study the geometry of semi-slant submanifolds of an almost

paracontact metric manifold. We give some characterizations for a submanifold to be semi-slant sub-

manifold to be semi-slant product and obtain integrability conditions for the distributions involved in

the definition of a semi-slant submanifold.

1 Introduction

Slant submanifolds have been studied by many geometers in the last two decades.

They arise naturally and play important roles in the study of the geometry of sub-

manifolds [2, 3, 6]. Slant immersions in complex geometry were first introduced by

B.-Y. Chen as a natural generalization of both holomorphic immersions and totally

real immersions [4, 5].

Later, A. Lotta introduced the notion of slant immersion of a Riemannian mani-

fold into an almost contact metric manifold and he proved some properties of slant

immersions [7].

Recently, Papaghuic introduced a class of submanifolds in an almost Hermitian

manifold, called the semi-slant submanifold such that the class of proper CR-sub-

manifolds and the class of slant submanifolds appear as particular cases in the class

of semi-slant submanifolds [1, 9].

The purpose of the present paper is to define and study a paracontact version of

semi-slant submanifolds so that both semi-invariant and paracontact slant subman-

ifolds appear as particular cases of the introduced notion. Furthermore, we also give

sufficient and necessary conditions for a distribution to be slant.

2 Preliminaries

In this section, we review basic formulas and definitions for almost paracontact met-

ric manifolds and their submanifolds, which we shall use later.

Let M be an (m + 1)-dimensional differentiable manifold. If there exist on M a

(1, 1) type tensor field F, a vector field ξ and 1-form η satisfying

(2.1) F2
= I − η ⊗ ξ, η(ξ) = 1,
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then M is said to be an almost paracontact manifold. In the almost paracontact

manifold, the following relations hold:

(2.2) Fξ = 0, η ◦ F = 0, rank(F) = m.

An almost paracontact manifold M is said to be an almost paracontact metric

manifold if Riemannian metric g satisfies

(2.3) g(FX, FY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ)

for all X,Y ∈ Γ(TM). From (2.2) and (2.3), we can easily derive the relation

(2.4) g(FX,Y ) = g(X, FY ).

Now let M̄ be an isometrically immersed submanifold in an almost paracontact

metric manifold M. We denote by ∇̄ and ∇ the Levi–Civita connections on M̄ and

M, respectively. Then the Gauss and Weingarten formulas are defined by

∇XY = ∇̄XY + h(X,Y ) and ∇XV = −AV X + ∇⊥
X V

for any X,Y ∈ Γ(TM̄), V ∈ Γ(TM̄⊥), where ∇⊥ is the connection in the normal

bundle TM̄⊥, h is the second fundamental form of M̄, and AV is the shape operator.

The second fundamental form h and the shape operator A are related by

(2.5) g(AV X,Y ) = g(h(X,Y ),V ).

An almost paracontact metric manifold is said to be an almost paracontact mani-

fold with (F, η, ξ, g)-connection if ∇F = 0 and ∇η = 0, where ∇ denotes a connec-

tion on M. Since F2
= I − η ⊕ ξ, the vector field ξ is also parallel with respect to ∇

[8].

In the rest of this paper, we assume that M is an almost paracontact metric mani-

fold with a structure (F, η, ξ, g).

Now let M̄ be an n-dimensional differentiable manifold and suppose that M̄ is an

isometrically immersed submanifold in almost paracontact metric manifold M. We

denote by g the induced Riemannian metric for M̄ as well as M. For any vector field

X tangent to M̄, we put

(2.6) FX = f X + ωX,

where f X and ωX denote the tangential and normal components of FX, respectively.

For any vector field N normal to M̄, we also put

(2.7) FN = BN + CN,

where BN and CN denote the tangential and normal components of FN, respectively.

The submanifold M̄ is said to be invariant if ω is identically zero, i.e., FX = f X ∈
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Γ(TM̄) for any X ∈ Γ(TM̄). On the other hand, M̄ is said to be an anti-invariant

submanifold if f is identically zero, i.e., FX = ωX ∈ Γ(TM̄⊥) for any X ∈ Γ(TM̄).

We note that for an invariant submanifold M̄ of an almost paracontact metric

manifold M, if ξ is normal to M̄, then the induced almost paracontact structure on

M̄ is an almost product Riemannian structure. But if ξ is tangent to M̄, then the

induced almost paracontact metric structure on M̄ is an almost paracontact metric

structure.

Furthermore, we say that M̄ is a semi-invariant submanifold if there exist two

orthogonal distributions D1 and D2 such that

(i) TM̄ has the orthogonal direct sum TM̄ = D1 ⊕ D2,

(ii) the distribution D1 is invariant, i.e., F(D1) = D1,

(iii) the distribution D2 is anti-invariant, i.e., F(D2) ⊂ TM̄⊥.

Given any submanifold M̄ of M, from (2.4) and (2.6) we have

(2.8) g( f X,Y ) = g(X, f Y )

for any X,Y ∈ Γ(TM̄).

Henceforth we suppose that the vector field ξ is tangent to M̄. If we denote by D

the orthogonal distribution to ξ in TM̄, then we can consider the orthogonal direct

sum TM̄ = D ⊕ ξ.

For each nonzero vector X tangent to M̄ at x such that X is not proportional to ξx,

we denote by θ(X) the angle between FX and TxM̄. In fact, since Fξ = 0, θ agrees

with the angle between FX and Dx. Then M̄ is said to be slant if the angle θ(X) is

constant, which is independent of the choice of x ∈ M̄ and X ∈ TxM̄ − sp{ξx}. The

angle θ of a slant immersion is called the slant angle of the immersion. Invariant and

anti-invariant immersions are slant immersions with slant angle θ = 0 and θ = π/2,

respectively. A slant immersion that is neither invariant nor anti-invariant is called a

proper slant immersion.

3 Slant Submanifolds in Almost Paracontact Metric Manifolds

Next we will give an example of a slant submanifold in an almost paracontact metric

manifold to illustrate our results.

Example 3.1 Let R
7 be the Euclidean space endowed with the usual Euclidean met-

ric and with coordinates (x1, x2, y1, y2, y3, y4, t). We define an almost paracontact

metric structure on R
7 by

F
( ∂

∂xi

)

=
∂

∂xi

, F
( ∂

∂y j

)

= −
∂

∂y j

, i = 1, 2, j = 1, 2, 3, 4, F
( ∂

∂t

)

= 0,

ξ =
∂

∂t
, η = dt.
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For any Z = λi
∂

∂xi
+ µ j

∂
∂y j

+ v ∂
∂t

∈ TR
7, we have

g(Z, Z) = λ2
i + µ2

j + v2 and g(FZ, FZ) = λ2
i + µ2

j

F2Z = λi
∂

∂xi

+ µ j
∂

∂y j

= Z − η(Z)ξ and η(ξ) = 1.

for i = 1, 2, j = 1, 2, 3, 4. It follows that g(FZ, FZ) = g(Z, Z) − η(Z)η(Z). Now,

consider, for any u, v ∈ (0, π
2

) and constant k 6= 0,

ϕ(u, v) = (u, v,−k sin u,−k sin v, k cos u, k cos v)

defines a slant submanifold in R
7 with slant angle θ = cos−1( 1−k2

1+k2 ).

The following theorem is a useful characterization of slant submanifolds in an

almost paracontact manifold.

Theorem 3.2 Let M̄ be an immersed submanifold of an almost paracontact metric

manifold M.

(i) Let ξ be tangent to M̄. In this case, M̄ is slant if and only if there exist a constant

λ ∈ [0, 1] such that f 2
= λ(I − η ⊗ ξ).

(ii) Let ξ be normal to M̄. In this case, M̄ is slant if and only if there exist a constant

λ ∈ [0, 1] such that f 2
= λI.

Furthermore, if θ is the slant angle of M̄, it satisfies λ = cos2 θ.

Proof (i) We suppose that ξ is tangent to M̄ and M̄ is a slant submanifold. Also, we

assume cos θ(X) =
‖ f X‖
‖FX‖ , where θ(X) is the slant angle. From (2.4) and (2.6) we have

g( f 2X, X) = g( f X, f X) = cos2 θ(X)g(FX, FX)

= cos2 θ(X)g(F2X, X) = cos2 θ(X)g(X − η(X)ξ, X)

for all X ∈ Γ(TM̄). Since g is a Riemannian metric, we induce

f 2X = cos2 θ(X − η(X)ξ).

Let λ = cos2 θ. Then λ ∈ [0, 1] and f 2
= λ(I − η ⊗ ξ).

Conversely, we suppose that there exists a constant λ ∈ [0, 1] such that f 2
=

λ(I − η ⊗ ξ). Then by using (2.3) and (2.4) we have

cos θ(X) =
g(FX, f X)

‖FX‖‖ f X‖
=

g(X, f 2X)

‖FX‖‖ f X‖
= λ

g(X, X − η(X)ξ)

‖FX‖‖ f X‖

= λ
g(X, F2X)

FX‖‖ f X‖
= λ

g(FX, FX)

‖FX‖‖ f X‖
= λ

‖FX‖

‖ f X‖
,

for any X ∈ Γ(TM̄). On the other hand, since cos θ(X) =
‖ f X‖
‖FX‖ , we conclude that

cos2 θ(X) = λ, that is, θ(X) is a constant and so M̄ is slant.
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(ii) If ξ is a normal vector field to M̄, then we conclude that η(X) = 0. Thus from

Theorem 3.2(i), we mean that M̄ is a slant submanifold if and only if there exists a

constant λ ∈ [0, 1] such that f 2
= λI. Moreover, if θ is the slant angle of M̄, it

satisfies λ = cos2 θ.

Corollary 3.3 Let M̄ be a slant submanifold of an almost paracontact metric manifold

M with slant angle θ such that ξ is tangent to M̄. Then we have

g( f X, f Y ) = cos2 θ{g(X,Y ) − η(X)η(Y )},(3.1)

g(ωX, ωY ) = sin2 θ{g(X,Y ) − η(X)η(Y )}(3.2)

for any X,Y ∈ Γ(TM̄).

Proof From (2.8) and Theorem 3.2(i), a direct expansion gives (3.1). To prove (3.2),

it is enough to take into account (2.3) and (2.6).

Let M̄ be an immersed submanifold of an almost paracontact metric manifold M.

Then from (2.1), (2.6), and (2.7) we have

(3.3) X − η(Xξ = f 2X + ω f X + BωX + CωX

for any X ∈ Γ(TM̄). If the vector field ξ is tangent to M̄, then from the tangential

and normal components of (3.3), we have

f 2 + Bω = I − η ⊗ ξ,(3.4)

ω f + Cω = 0.(3.5)

On the other hand, if the vector field ξ is normal to M̄, then, (3.4) and (3.5) become

I = f 2 + Bω,(3.6)

−η ⊗ ξ = ω f + Cω.(3.7)

Thus we have the following results.

Corollary 3.4 Let M̄ be an immersed submanifold of an almost paracontact metric

manifold M.

(i) Let ξ be tangent to M̄. In this case, M̄ is a slant submanifold of M if and only if

there exists a constant µ ∈ [0, 1] such that Bω = µ(I − η ⊗ ξ).

(ii) Let ξ be normal to M̄. In this case, M̄ is a slant submanifold of M if and only if

there exists a constant µ ∈ [0, 1] such that Bω = µI.

Furthermore, if θ is the slant angle of M̄, it satisfies µ = sin2 θ.

Proof If ξ is tangent to M̄, then from Theorem 3.2(i) and (3.6) we get the proof of

(i). On the other hand, if ξ is normal to M̄, then Theorem 3.2(ii) and (3.6) give (ii),

where µ = 1 − λ, which satisfies our assertion.
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4 Semi-Slant Submanifolds in Almost Paracontact Metric Manifolds

Let M̄ be an immersed submanifold of an almost paracontact metric manifold M.

Definition 4.1 We call a differentiable distribution D on M a slant distribution if for

each x ∈ M and each nonzero X ∈ Dx, the angle θx between FX and Dx is a constant

that is independent of the choice x ∈ M and X ∈ Dx. In this case, the constant angle

θx is called the slant angle of the distribution Dx.

Let M̄ be an immersed submanifold of almost paracontact metric manifold M and

D be a differentiable distribution on M̄. We denote by D⊥ the orthogonal distribu-

tion to D in M̄. Also, P1 and P2 denote the orthogonal projections on D and D⊥,

respectively. Then for any X ∈ Γ(TM̄), we can write

(4.1) FX = P1 f X + P2 f X + ωX.

Thus we have the following theorem.

Theorem 4.2 Let D be a differentiable distribution on M̄ such that ξ is tangent to D.

Then D is a slant distribution if and only if there exists a constant λ ∈ [0, 1] such that

(4.2) (P1 f )2
= λ(I − η ⊗ ξ).

Furthermore, in such a case, if θ is the slant angle of D, then λ = cos2 θ.

Proof We suppose that there exists a constant λ ∈ [0, 1] such that

(P1 f )2X = λ(X − η(X)ξ)

for any X ∈ Γ(D). Then from (2.4) and (4.2) we have

cos θ(X) =
g(FX, P1 f X)

‖FX‖ · ‖P1 f X‖
=

g(X, FP1 f X)

‖FX‖ · ‖P1 f X‖
=

g(X, (P1 f )2X)

‖FX‖ · ‖P1 f X‖

= λ
g(X, X − η(X)ξ)

‖FX‖ · ‖P1 f X‖
= λ

g(X, F2X)

‖FX‖ · ‖P1 f X‖
= λ

‖FX‖

‖P1 f X‖
.

Moreover, we know that cos θ(X) =
‖P1 f X‖
‖FX‖ . Thus we can derive λ = cos2 θ, i.e., θ is

a constant and so D is slant.

Conversely, we assume that D is a slant distribution. Then from (4.1) and

‖P1 f X‖ = cos θ‖FX‖ we have

g(X, (P1 f )2X) = cos2 θg(FX, FX) = cos2 θg(X, F2X) = cos2 θg(X, X − η(X)ξ),

which implies (P1 f )2X = cos2 θ(X − η(X)ξ) for any X ∈ Γ(D). Setting λ = cos2 θ,

we get the desired result. Here we note that if ξ is normal to M̄, then (4.2) becomes

(P1 f )2
= λI.

https://doi.org/10.4153/CMB-2010-003-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-003-0


212 M. Atc.eken

Lemma 4.3 Let M̄ be a submanifold of an almost paracontact metric manifold M

and D be a distribution on M̄. Then M̄ is a slant submanifold if and only if D is a slant

distribution with the same slant angle.

Proof It is obvious that if M̄ is a slant submanifold, then it is easy to see that D is a

slant distribution with the same slant angle, because θ(X) = θD(X) for any X ∈ Γ(D).

Conversely, given X ∈ Γ(TM̄) − sp{ξ}, we have

(4.3) cos θ(X) =
g( f X, FX)

‖ f X‖‖FX‖
=

‖ f X‖
√

‖X‖2 − η2(X)
.

On the other hand, taking into account X − η(X)ξ ∈ Γ(D), we derive

(4.4) cos θD =
‖P(X − η(X)ξ)‖

‖X − η(X)ξ‖
,

where P denotes the orthogonal projection of F on D. But in almost paracontact

manifolds, by virtue of
√

‖X‖2 − η2(X) = ‖X − η(X)‖ and f X = P(X − η(X)ξ),

(4.3) is equal to (4.4), which gives our assertion.

Semi-slant submanifolds are generalizations of semi-invariant submanifolds.

Definition 4.4 We define M̄ to be a semi-slant submanifold of an almost paracon-

tact metric manifold M if there exist two orthogonal distributions D1 and D2 on M̄

such that

(i) TM̄ admits the orthogonal direct sum TM̄ = D1 ⊕ D2 ⊕ sp{ξ},

(ii) the distribution D1 is invariant, i.e., F(D1) = D1,

(iii) the distribution D2 is slant with slant angle θ 6= 0, π/2.

In this case, we call θ the slant angle of submanifold M̄.

It is easily seen that the invariant and anti-invariant distributions of a semi-slant

submanifold are slant distributions with slant angle θ = 0 and θ = π/2, respectively.

Thus it is obvious that semi-invariant submanifolds are particular cases of semi-slant

submanifolds. Furthermore, if we denote the dimension of Di by di for i = 1, 2, then

we have the following cases.

(i) If d2 = 0, then M̄ becomes an invariant submanifold.

(ii) If d1 = 0 and θ = π/2, then M̄ becomes an anti-invariant submanifold.

(iii) If d1 = 0 and θ 6= 0, π/2, then M̄ becomes a proper slant submanifold with

slant angle θ.

(iv) If d1 ·d2 6= 0 and θ 6= 0, π/2, then M̄ becomes a proper semi-slant submanifold.

Next, given a semi-slant submanifold M̄ in an almost paracontact metric manifold

M, we denote Pi the projections on the distributions Di for i = 1, 2. Then we have

(4.5) X = P1X + P2X and FX = f P1X + f P2X + ωP2X

and

(4.6) g( f X, f P2Y ) = cos2 θg(X, P2Y ) and g(ωX, ωP2Y ) = sin2 θg(X, P2Y ),
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for any X,Y ∈ Γ(TM̄).

Now let M̄ be an immersed submanifold of an almost paracontact metric manifold

M. From the Gauss–Weingarten formulas and (2.6) and (2.7) we have

(∇̄X f Y ) = AωY X + Bh(X,Y ),(4.7)

(∇Xω)Y = Ch(X,Y ) − h(X, f Y ),(4.8)

for any X,Y ∈ Γ(TM̄), where the covariant derivatives of f and ω are defined by

∇̄X f Y = ∇̄X f Y − f (∇̄XY ) and (∇Xω)Y = ∇⊥
X ωY − ω(∇̄XY ).

Next we shall characterize semi-slant submanifolds in almost paracontact metric

manifolds by the following theorems.

Theorem 4.5 Let M̄ be an immersed submanifold of an almost paracontact metric

manifold M. Then M̄ is a semi-slant submanifold if and only if there exists a constant

λ ∈ [0, 1) such that

(i) D
′

= {X | f 2X = λX} is a distribution on M̄.

(ii) For any X ∈ Γ(TM̄) orthogonal to D ′, ωX = 0. Furthermore, if θ is the slant

angle of M̄, in this case it satisfies λ = cos2 θ.

Proof Let M̄ be a semi-slant submanifold and TM̄ = D1 ⊕ D2 ⊕ sp{ξ}, where D1 is

invariant and D2 is slant. We put λ = cos2 θ. For any X ∈ D
′

, if X ∈ D1, then

X = F2X − η(X)ξ = F2X = ( f P1)2X = λX.

It follows that λ = 1, but this is a contradicton to λ ∈ [0, 1), that is, D ′ ⊆ D2. On

the other hand, since D2 is a slant distribution, we have f 2X = ( f P2)2X = λX. It

follows that D2 ⊆ D ′. Thus we conclude that D2 = D ′.

Conversely, we consider the orthogonal direct sum TM̄ = D ⊕ D⊥ ⊕ sp{ξ}.

It is obvious that f D ⊆ D. For any X ∈ D⊥ and Y ∈ D, from (2.4) we have

g(FX,Y ) = g(X, FY ) = g(X, f Y ) = 0, that is, D⊥ is an invariant submanifold. The

last statement of Theorem 4.2 implies that D is a slant distribution with slant angle θ
satisfying λ = cos2 θ.

Theorem 4.6 Let M̄ be a semi-slant submanifold of almost paracontact metric mani-

fold M. Then we have

(i) The distribution D1 is integrable if and only if

(4.9) h(X, f Y ) = h( f X,Y )

for any X,Y ∈ Γ(D1).

(ii) The distribution D2 is integrable if and only if

P1(∇X f Y −∇Y f X) = P1(AωP2Y X − AωP2XY )

for any X,Y ∈ Γ(D2).
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Proof (i) From the Gauss–Weingarten formulas and making use of (4.5), we have

∇XFY = F∇XY,

∇̄X f Y + h(X, f Y ) = F(∇̄XY ) + Fh(X,Y )

= f P1(∇̄XY ) + f P2(∇̄XY ) + ω(∇̄XY ) + Bh(X,Y )

+ Ch(X,Y ),

(4.10)

for any X,Y ∈ Γ(D1). From the normal components of (4.10) we have

h(X, f Y ) = ωP2(∇XY ) + Ch(X,Y ).

Taking account of h being symmetric, we arrive at

(4.11) ωP2[X,Y ] = h(X, f Y ) − h( f X,Y ).

Hence if D1 is integrable, then (4.11) holds directly form (4.9).

Conversely, making use of (4.9) and (4.11), it follow that ωP2[X,Y ] = 0. So we

can easily deduce that P2[X,Y ] must vanish.

(ii) Since D2 is a slant distribution, we have

∇̄X f P2Y + h(X, f P2Y ) − AωP2Y X + ∇⊥
X ωP2Y

= f (∇̄XY ) + ω∇̄XY + Bh(X,Y ) + Ch(X,Y ).

Since h is symmetric, it follows that

(4.12) f [X,Y ] = ∇̄X f P2Y − ∇̄Y f P2X + AωP2XY − AωP2Y X

for any X,Y ∈ Γ(D2). Applying P1 to (4.12), we conclude that

P1 f [X,Y ] = P1{∇̄X f P2Y − ∇̄Y f P2X} − P1{AωP2Y X − AωP2XY}.

Hence D2 is integrable if and only if P1 f [X,Y ] = 0.

Lemma 4.7 Let M̄ be a mixed-geodesic semi-slant submanifold of an almost paracon-

tact metric manifold M. Then the distribution D1 is integrable if and only if the shape

operator of M̄ satisfies FAN X = AN FX for any N ∈ Γ(TM̄⊥), X ∈ Γ(D1).

Proof Since M̄ is mixed-geodesic, from (2.5) we find that AN X has no component

on D2. Thus we conclude g(FAN X − AN FX,Y ) = g(h(X, FY ) − h(FX,Y ), N) for

any X,Y ∈ Γ(D1). Also considering Theorem 4.6(i), it is easy to verify that D1 is

integrable if and only if FAN X = AN FX.

The condition ∇ f = 0 also plays an important role in almost paracontact mani-

folds as well as locally product manifolds. The following theorem characterizes it.
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Theorem 4.8 Let M̄ be a semi-slant submanifold of an almost paracontact metric

manifold M. If ∇ f = 0, then the distributions D1 and D2 are integrable and their

leaves are totally geodesic in M̄.

Proof If ∇ f = 0, then from (4.7) we have Bh(Y, X) = 0, for any Y ∈ Γ(D1) and

X ∈ Γ(TM̄). Thus we get g(h(X,Y ), ωP2Z) = 0, and g(Fh(X,Y ), ωP2Z) = 0 for any

Y ∈ Γ(D1) and X, Z ∈ Γ(TM̄). Thus we arrive at

g(ωP2∇XY, Fh(X,Y )) = g(ωP2∇XY, ∇̄XFY ) − g(ωP2∇XY, F∇XY )

= g(ωP2∇XY, h(X, FY )) − g(ωP2∇XY, ωP2∇XY )

= −sin2θ{g(P2∇XY, P2∇XY ) − η2(P2∇XY )} = 0,

which is equivalent to P2∇XY = 0, that is ∇XY ∈ Γ(D1). Since M̄ is a Riemannian

manifold, its metric is a Riemannian metric, and D2 is orthogonal D1, we conclude

that D2 is also integrable.

Theorem 4.9 Let M̄ be a semi-slant submanifold of an almost paracontact metric

manifold M. If ∇ω = 0, then M is a mixed geodesic submanifold. Furthermore, if

X,Y ∈ Γ(D2), then either M̄ is D2-geodesic, or h(X,Y ) is an eigenvector of C2 with

eigenvalue cos2 θ. If X,Y ∈ Γ(D1), then either M̄ is a D-geodesic submanifold or

h(X,Y ) is an eigenvector of C2 with eigenvalue 1.

Proof If ∇ω = 0 for any X,Y ∈ Γ(TM̄), then from (4.8) we have Ch(X,Y ) =

h(X, f Y ). Since D2 is a slant distribution with a slant angle θ and D1 is an invariant

distribution, we have

C2h(X,Y ) = Ch(X, f Y ) = h(X, f 2Y ) = cos2 θh(X,Y ),(4.13)

C2h(X,Y ) = Ch(Y, f X) = h(Y, f 2X) = h(Y, F2X) = h(Y, X)(4.14)

for any X ∈ Γ(D1) and Y ∈ Γ(D2). By virtue of (4.13) and (4.14), we have

sin2 θh(X,Y ) = 0, which implies h(X,Y ) = 0 because θ 6= 0, π/2. Thus M̄ is a

mixed-geodesic semi-slant submanifold.

Similarly, we have

(4.15) C2h(X,Y ) = Ch(X, f Y ) = h(X, f 2Y ) = h(X,Y )

for any X,Y ∈ Γ(D1) and by using (4.13) we arrive at

(4.16) C2h(X,Y ) = cos2θCh(X,Y )

for any X,Y ∈ Γ(D2). Thus (4.15) and (4.16) give our assertion.

Theorem 4.10 Let M̄ be a semi-slant submanifold of an almost paracontact metric

manifold M. Then M is a semi-slant product if and only if its second fundamental form

satisfies

(4.17) Bh(Z, X) = 0 and h(Z, f X) = Ch(Z, X)

for any Z ∈ Γ(TM̄) and X ∈ Γ(D1).
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Proof If M̄ is a semi-slant product, then D1 and D2 are totally geodesic distributions

in M̄. From Theorem 4.8, (4.7), and (4.8) we have

(∇̄Z f )X = ∇̄Z f X − f (∇̄ZX) = Bh(X, Z) = 0

and

(∇Zω)X = ∇⊥
Z ωX − ω(∇̄ZX) = 0.

It follows that Ch(Z, X) = h(Z, f X) for any Z ∈ Γ(TM̄) and X ∈ Γ(D1).

Conversely, let us assume that (4.17) is satisfied. Then (4.8) implies that

(∇Zω)X = −ω(∇̄ZX) = 0,

that is, ∇̄ZX ∈ Γ(D1). Since D2 is orthogonal to D1, we get ∇̄ZY ∈ Γ(D2) for any

X ∈ Γ(D1), Y ∈ Γ(D2), and Z ∈ Γ(TM̄). Hence the proof is complete.

Corollary 4.11 Let M̄ be a semi-slant submanifold of an almost paracontact met-

ric manifold M. Then ∇ω = 0 if and only if the shape operator of M̄ satisfies

ACN Z = AN f Z for any N ∈ Γ(TM̄⊥), Z ∈ Γ(TM̄).

Proof From (2.5), (2.7), and (4.8) we have

g((∇Xω)Y, N) = g(Ch(X,Y ), N) − g(h(X, f Y ), N)

= g(h(X,Y ), FN) − g(h(X, f Y ), N) = g(ACNY − AN f Y, X)

for any X,Y ∈ Γ(TM̄) and N ∈ Γ(TM̄⊥). It follows that ∇ω = 0 if and only if

ACN Z = AN f Z.

Corollary 4.12 Let M̄ be a semi-slant submanifold of an almost paracontact met-

ric manifold M. Then ∇̄ f = 0 if and only if the shape operator of M̄ satisfies

AωP2XY = −AωP2Y X for any X,Y ∈ Γ(TM̄).

Proof Taking into account (2.5) and (4.7), we have

g((∇̄X f )Y, Z) = g(AωP2Y X, Z) + g(Bh(X,Y ), Z)

= g(h(X, Z), ωP2Y ) + g(h(X, Z), ωP2Z)

= g(AωP2Y X, Z) + g(AωP2ZX, Z)

for any X,Y, Z ∈ Γ(TM̄). It is equivalent to our assertion.
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