

Semi-Slant Submanifolds of an Almost Paracontact Metric Manifold

Mehmet Atçeken

Abstract. In this paper, we define and study the geometry of semi-slant submanifolds of an almost paracontact metric manifold. We give some characterizations for a submanifold to be semi-slant submanifold to be semi-slant product and obtain integrability conditions for the distributions involved in the definition of a semi-slant submanifold.

1 Introduction

Slant submanifolds have been studied by many geometers in the last two decades. They arise naturally and play important roles in the study of the geometry of submanifolds [2, 3, 6]. Slant immersions in complex geometry were first introduced by B.-Y. Chen as a natural generalization of both holomorphic immersions and totally real immersions [4,5].

Later, A. Lotta introduced the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold and he proved some properties of slant immersions [7].

Recently, Papaghuic introduced a class of submanifolds in an almost Hermitian manifold, called the semi-slant submanifold such that the class of proper CR-submanifolds and the class of slant submanifolds appear as particular cases in the class of semi-slant submanifolds [1,9].

The purpose of the present paper is to define and study a paracontact version of semi-slant submanifolds so that both semi-invariant and paracontact slant submanifolds appear as particular cases of the introduced notion. Furthermore, we also give sufficient and necessary conditions for a distribution to be slant.

2 Preliminaries

In this section, we review basic formulas and definitions for almost paracontact metric manifolds and their submanifolds, which we shall use later.

Let M be an (m + 1)-dimensional differentiable manifold. If there exist on M a (1, 1) type tensor field F, a vector field ξ and 1-form η satisfying

(2.1)
$$F^2 = I - \eta \otimes \xi, \quad \eta(\xi) = 1,$$

Received by the editors April 5, 2007.

Published electronically December 4, 2009.

AMS subject classification: 53C15, 53C25, 53C4.

 $Keywords:\ paracontact\ metric\ manifold,\ slant\ distribution,\ semi-slant\ submanifold,\ semi-slant\ product.$

then M is said to be an almost paracontact manifold. In the almost paracontact manifold, the following relations hold:

$$(2.2) F\xi = 0, \quad \eta \circ F = 0, \quad \operatorname{rank}(F) = m.$$

An almost paracontact manifold M is said to be an almost paracontact metric manifold if Riemannian metric g satisfies

(2.3)
$$g(FX, FY) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$

for all $X, Y \in \Gamma(TM)$. From (2.2) and (2.3), we can easily derive the relation

$$(2.4) g(FX,Y) = g(X,FY).$$

Now let \bar{M} be an isometrically immersed submanifold in an almost paracontact metric manifold M. We denote by $\bar{\nabla}$ and ∇ the Levi–Civita connections on \bar{M} and M, respectively. Then the Gauss and Weingarten formulas are defined by

$$\nabla_X Y = \bar{\nabla}_X Y + h(X, Y)$$
 and $\nabla_X V = -A_V X + \nabla_X^{\perp} V$

for any $X,Y\in\Gamma(T\bar{M}), V\in\Gamma(T\bar{M}^\perp)$, where ∇^\perp is the connection in the normal bundle $T\bar{M}^\perp$, h is the second fundamental form of \bar{M} , and A_V is the shape operator. The second fundamental form h and the shape operator A are related by

(2.5)
$$g(A_V X, Y) = g(h(X, Y), V).$$

An almost paracontact metric manifold is said to be an almost paracontact manifold with (F, η, ξ, g) -connection if $\nabla F = 0$ and $\nabla \eta = 0$, where ∇ denotes a connection on M. Since $F^2 = I - \eta \oplus \xi$, the vector field ξ is also parallel with respect to ∇ [8].

In the rest of this paper, we assume that M is an almost paracontact metric manifold with a structure (F, η, ξ, g) .

Now let \bar{M} be an n-dimensional differentiable manifold and suppose that \bar{M} is an isometrically immersed submanifold in almost paracontact metric manifold M. We denote by g the induced Riemannian metric for \bar{M} as well as M. For any vector field X tangent to \bar{M} , we put

$$(2.6) FX = fX + \omega X,$$

where fX and ωX denote the tangential and normal components of FX, respectively. For any vector field N normal to \overline{M} , we also put

$$(2.7) FN = BN + CN,$$

where BN and CN denote the tangential and normal components of FN, respectively. The submanifold \bar{M} is said to be invariant if ω is identically zero, i.e., $FX = fX \in$

 $\Gamma(T\bar{M})$ for any $X \in \Gamma(T\bar{M})$. On the other hand, \bar{M} is said to be an anti-invariant submanifold if f is identically zero, *i.e.*, $FX = \omega X \in \Gamma(T\bar{M}^{\perp})$ for any $X \in \Gamma(T\bar{M})$.

We note that for an invariant submanifold \bar{M} of an almost paracontact metric manifold M, if ξ is normal to \bar{M} , then the induced almost paracontact structure on \bar{M} is an almost product Riemannian structure. But if ξ is tangent to \bar{M} , then the induced almost paracontact metric structure on \bar{M} is an almost paracontact metric structure.

Furthermore, we say that \bar{M} is a semi-invariant submanifold if there exist two orthogonal distributions D_1 and D_2 such that

- (i) $T\bar{M}$ has the orthogonal direct sum $T\bar{M} = D_1 \oplus D_2$,
- (ii) the distribution D_1 is invariant, *i.e.*, $F(D_1) = D_1$,
- (iii) the distribution D_2 is anti-invariant, i.e., $F(D_2) \subset T\bar{M}^{\perp}$.

Given any submanifold \bar{M} of M, from (2.4) and (2.6) we have

$$(2.8) g(fX,Y) = g(X,fY)$$

for any $X, Y \in \Gamma(T\overline{M})$.

Henceforth we suppose that the vector field ξ is tangent to \bar{M} . If we denote by D the orthogonal distribution to ξ in $T\bar{M}$, then we can consider the orthogonal direct sum $T\bar{M} = D \oplus \mathcal{E}$.

For each nonzero vector X tangent to \bar{M} at x such that X is not proportional to ξ_x , we denote by $\theta(X)$ the angle between FX and $T_x\bar{M}$. In fact, since $F\xi=0$, θ agrees with the angle between FX and D_x . Then \bar{M} is said to be slant if the angle $\theta(X)$ is constant, which is independent of the choice of $x \in \bar{M}$ and $X \in T_x\bar{M} - sp\{\xi_x\}$. The angle θ of a slant immersion is called the slant angle of the immersion. Invariant and anti-invariant immersions are slant immersions with slant angle $\theta=0$ and $\theta=\pi/2$, respectively. A slant immersion that is neither invariant nor anti-invariant is called a proper slant immersion.

3 Slant Submanifolds in Almost Paracontact Metric Manifolds

Next we will give an example of a slant submanifold in an almost paracontact metric manifold to illustrate our results.

Example 3.1 Let \mathbb{R}^7 be the Euclidean space endowed with the usual Euclidean metric and with coordinates $(x_1, x_2, y_1, y_2, y_3, y_4, t)$. We define an almost paracontact metric structure on \mathbb{R}^7 by

$$F\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial x_i}, \quad F\left(\frac{\partial}{\partial y_j}\right) = -\frac{\partial}{\partial y_j}, \ i = 1, 2, \ j = 1, 2, 3, 4, \quad F\left(\frac{\partial}{\partial t}\right) = 0,$$
$$\xi = \frac{\partial}{\partial t}, \eta = dt.$$

For any $Z = \lambda_i \frac{\partial}{\partial x_i} + \mu_j \frac{\partial}{\partial v_i} + v \frac{\partial}{\partial t} \in T\mathbb{R}^7$, we have

$$g(Z, Z) = \lambda_i^2 + \mu_j^2 + v^2$$
 and $g(FZ, FZ) = \lambda_i^2 + \mu_j^2$

$$F^2Z = \lambda_i \frac{\partial}{\partial x_i} + \mu_j \frac{\partial}{\partial y_j} = Z - \eta(Z)\xi$$
 and $\eta(\xi) = 1$.

for $i=1,2,\ j=1,2,3,4$. It follows that $g(FZ,FZ)=g(Z,Z)-\eta(Z)\eta(Z)$. Now, consider, for any $u,v\in(0,\frac{\pi}{2})$ and constant $k\neq 0$,

$$\varphi(u, v) = (u, v, -k \sin u, -k \sin v, k \cos u, k \cos v)$$

defines a slant submanifold in \mathbb{R}^7 with slant angle $\theta = \cos^{-1}(\frac{1-k^2}{1+k^2})$.

The following theorem is a useful characterization of slant submanifolds in an almost paracontact manifold.

Theorem 3.2 Let \bar{M} be an immersed submanifold of an almost paracontact metric manifold M.

- (i) Let ξ be tangent to \bar{M} . In this case, \bar{M} is slant if and only if there exist a constant $\lambda \in [0,1]$ such that $f^2 = \lambda (I \eta \otimes \xi)$.
- (ii) Let ξ be normal to \bar{M} . In this case, \bar{M} is slant if and only if there exist a constant $\lambda \in [0,1]$ such that $f^2 = \lambda I$.

Furthermore, if θ is the slant angle of \bar{M} , it satisfies $\lambda = \cos^2 \theta$.

Proof (i) We suppose that ξ is tangent to \bar{M} and \bar{M} is a slant submanifold. Also, we assume $\cos \theta(X) = \frac{\|fX\|}{\|FX\|}$, where $\theta(X)$ is the slant angle. From (2.4) and (2.6) we have

$$g(f^2X, X) = g(fX, fX) = \cos^2 \theta(X)g(FX, FX)$$
$$= \cos^2 \theta(X)g(F^2X, X) = \cos^2 \theta(X)g(X - \eta(X)\xi, X)$$

for all $X \in \Gamma(T\bar{M})$. Since g is a Riemannian metric, we induce

$$f^2X = \cos^2\theta(X - \eta(X)\xi).$$

Let $\lambda = \cos^2 \theta$. Then $\lambda \in [0, 1]$ and $f^2 = \lambda (I - \eta \otimes \xi)$.

Conversely, we suppose that there exists a constant $\lambda \in [0,1]$ such that $f^2 = \lambda(I - \eta \otimes \xi)$. Then by using (2.3) and (2.4) we have

$$\begin{split} \cos\theta(X) &= \frac{g(FX,fX)}{\|FX\|\|fX\|} = \frac{g(X,f^2X)}{\|FX\|\|fX\|} = \lambda \frac{g(X,X-\eta(X)\xi)}{\|FX\|\|fX\|} \\ &= \lambda \frac{g(X,F^2X)}{FX\|\|fX\|} = \lambda \frac{g(FX,FX)}{\|FX\|\|fX\|} = \lambda \frac{\|FX\|}{\|fX\|}, \end{split}$$

for any $X \in \Gamma(T\bar{M})$. On the other hand, since $\cos \theta(X) = \frac{\|fX\|}{\|FX\|}$, we conclude that $\cos^2 \theta(X) = \lambda$, that is, $\theta(X)$ is a constant and so \bar{M} is slant.

(ii) If ξ is a normal vector field to \bar{M} , then we conclude that $\eta(X) = 0$. Thus from Theorem 3.2(i), we mean that \bar{M} is a slant submanifold if and only if there exists a constant $\lambda \in [0,1]$ such that $f^2 = \lambda I$. Moreover, if θ is the slant angle of \bar{M} , it satisfies $\lambda = \cos^2 \theta$.

Corollary 3.3 Let \bar{M} be a slant submanifold of an almost paracontact metric manifold M with slant angle θ such that ξ is tangent to \bar{M} . Then we have

(3.1)
$$g(fX, fY) = \cos^2 \theta \{ g(X, Y) - \eta(X) \eta(Y) \},$$

(3.2)
$$g(\omega X, \omega Y) = \sin^2 \theta \{ g(X, Y) - \eta(X) \eta(Y) \}$$

for any $X, Y \in \Gamma(T\overline{M})$.

Proof From (2.8) and Theorem 3.2(i), a direct expansion gives (3.1). To prove (3.2), it is enough to take into account (2.3) and (2.6).

Let \bar{M} be an immersed submanifold of an almost paracontact metric manifold M. Then from (2.1), (2.6), and (2.7) we have

(3.3)
$$X - \eta(X\xi = f^2X + \omega fX + B\omega X + C\omega X$$

for any $X \in \Gamma(T\bar{M})$. If the vector field ξ is tangent to \bar{M} , then from the tangential and normal components of (3.3), we have

$$(3.4) f^2 + B\omega = I - \eta \otimes \xi,$$

$$(3.5) \omega f + C\omega = 0.$$

On the other hand, if the vector field ξ is normal to \bar{M} , then, (3.4) and (3.5) become

$$(3.6) I = f^2 + B\omega,$$

$$(3.7) -\eta \otimes \xi = \omega f + C\omega.$$

Thus we have the following results.

Corollary 3.4 Let \bar{M} be an immersed submanifold of an almost paracontact metric manifold M.

- (i) Let ξ be tangent to \bar{M} . In this case, \bar{M} is a slant submanifold of M if and only if there exists a constant $\mu \in [0,1]$ such that $B\omega = \mu(I \eta \otimes \xi)$.
- (ii) Let ξ be normal to \bar{M} . In this case, \bar{M} is a slant submanifold of M if and only if there exists a constant $\mu \in [0,1]$ such that $B\omega = \mu I$.

Furthermore, if θ is the slant angle of \bar{M} , it satisfies $\mu = \sin^2 \theta$.

Proof If ξ is tangent to \bar{M} , then from Theorem 3.2(i) and (3.6) we get the proof of (i). On the other hand, if ξ is normal to \bar{M} , then Theorem 3.2(ii) and (3.6) give (ii), where $\mu = 1 - \lambda$, which satisfies our assertion.

4 Semi-Slant Submanifolds in Almost Paracontact Metric Manifolds

Let \bar{M} be an immersed submanifold of an almost paracontact metric manifold M.

Definition 4.1 We call a differentiable distribution D on M a *slant distribution* if for each $x \in M$ and each nonzero $X \in D_x$, the angle θ_x between FX and D_x is a constant that is independent of the choice $x \in M$ and $X \in D_x$. In this case, the constant angle θ_x is called the *slant angle* of the distribution D_x .

Let \overline{M} be an immersed submanifold of almost paracontact metric manifold M and D be a differentiable distribution on \overline{M} . We denote by D^{\perp} the orthogonal distribution to D in \overline{M} . Also, P_1 and P_2 denote the orthogonal projections on D and D^{\perp} , respectively. Then for any $X \in \Gamma(T\overline{M})$, we can write

$$(4.1) FX = P_1 fX + P_2 fX + \omega X.$$

Thus we have the following theorem.

Theorem 4.2 Let D be a differentiable distribution on \bar{M} such that ξ is tangent to D. Then D is a slant distribution if and only if there exists a constant $\lambda \in [0, 1]$ such that

$$(4.2) (P_1 f)^2 = \lambda (I - \eta \otimes \xi).$$

Furthermore, in such a case, if θ is the slant angle of D, then $\lambda = \cos^2 \theta$.

Proof We suppose that there exists a constant $\lambda \in [0, 1]$ such that

$$(P_1 f)^2 X = \lambda (X - \eta(X) \mathcal{E})$$

for any $X \in \Gamma(D)$. Then from (2.4) and (4.2) we have

$$\begin{aligned} \cos \theta(X) &= \frac{g(FX, P_1 f X)}{\|FX\| \cdot \|P_1 f X\|} = \frac{g(X, FP_1 f X)}{\|FX\| \cdot \|P_1 f X\|} = \frac{g(X, (P_1 f)^2 X)}{\|FX\| \cdot \|P_1 f X\|} \\ &= \lambda \frac{g(X, X - \eta(X)\xi)}{\|FX\| \cdot \|P_1 f X\|} = \lambda \frac{g(X, F^2 X)}{\|FX\| \cdot \|P_1 f X\|} = \lambda \frac{\|FX\|}{\|P_1 f X\|}. \end{aligned}$$

Moreover, we know that $\cos \theta(X) = \frac{\|P_1 f X\|}{\|FX\|}$. Thus we can derive $\lambda = \cos^2 \theta$, *i.e.*, θ is a constant and so D is slant.

Conversely, we assume that D is a slant distribution. Then from (4.1) and $||P_1 fX|| = \cos \theta ||FX||$ we have

$$g(X, (P_1 f)^2 X) = \cos^2 \theta g(FX, FX) = \cos^2 \theta g(X, F^2 X) = \cos^2 \theta g(X, X - \eta(X)\xi),$$

which implies $(P_1 f)^2 X = \cos^2 \theta (X - \eta(X)\xi)$ for any $X \in \Gamma(D)$. Setting $\lambda = \cos^2 \theta$, we get the desired result. Here we note that if ξ is normal to \bar{M} , then (4.2) becomes $(P_1 f)^2 = \lambda I$.

Lemma 4.3 Let \bar{M} be a submanifold of an almost paracontact metric manifold M and D be a distribution on \bar{M} . Then \bar{M} is a slant submanifold if and only if D is a slant distribution with the same slant angle.

Proof It is obvious that if \bar{M} is a slant submanifold, then it is easy to see that D is a slant distribution with the same slant angle, because $\theta(X) = \theta_D(X)$ for any $X \in \Gamma(D)$. Conversely, given $X \in \Gamma(T\bar{M}) - \operatorname{sp}\{\xi\}$, we have

(4.3)
$$\cos \theta(X) = \frac{g(fX, FX)}{\|fX\| \|FX\|} = \frac{\|fX\|}{\sqrt{\|X\|^2 - \eta^2(X)}}.$$

On the other hand, taking into account $X - \eta(X)\xi \in \Gamma(D)$, we derive

(4.4)
$$\cos \theta_D = \frac{\|P(X - \eta(X)\xi)\|}{\|X - \eta(X)\xi\|},$$

where P denotes the orthogonal projection of F on D. But in almost paracontact manifolds, by virtue of $\sqrt{\|X\|^2 - \eta^2(X)} = \|X - \eta(X)\|$ and $fX = P(X - \eta(X)\xi)$, (4.3) is equal to (4.4), which gives our assertion.

Semi-slant submanifolds are generalizations of semi-invariant submanifolds.

Definition 4.4 We define \bar{M} to be a semi-slant submanifold of an almost paracontact metric manifold M if there exist two orthogonal distributions D_1 and D_2 on \bar{M} such that

- (i) $T\bar{M}$ admits the orthogonal direct sum $T\bar{M} = D_1 \oplus D_2 \oplus \operatorname{sp}\{\xi\}$,
- (ii) the distribution D_1 is invariant, *i.e.*, $F(D_1) = D_1$,
- (iii) the distribution D_2 is slant with slant angle $\theta \neq 0, \pi/2$.

In this case, we call θ the slant angle of submanifold \bar{M} .

It is easily seen that the invariant and anti-invariant distributions of a semi-slant submanifold are slant distributions with slant angle $\theta = 0$ and $\theta = \pi/2$, respectively. Thus it is obvious that semi-invariant submanifolds are particular cases of semi-slant submanifolds. Furthermore, if we denote the dimension of D_i by d_i for i = 1, 2, then we have the following cases.

- (i) If $d_2 = 0$, then \bar{M} becomes an invariant submanifold.
- (ii) If $d_1 = 0$ and $\theta = \pi/2$, then \bar{M} becomes an anti-invariant submanifold.
- (iii) If $d_1 = 0$ and $\theta \neq 0, \pi/2$, then \bar{M} becomes a proper slant submanifold with slant angle θ .
- (iv) If $d_1 \cdot d_2 \neq 0$ and $\theta \neq 0, \pi/2$, then \bar{M} becomes a proper semi-slant submanifold.

Next, given a semi-slant submanifold \bar{M} in an almost paracontact metric manifold M, we denote P_i the projections on the distributions D_i for i = 1, 2. Then we have

(4.5)
$$X = P_1X + P_2X$$
 and $FX = fP_1X + fP_2X + \omega P_2X$

and

(4.6)
$$g(fX, fP_2Y) = \cos^2\theta g(X, P_2Y)$$
 and $g(\omega X, \omega P_2Y) = \sin^2\theta g(X, P_2Y)$,

for any $X, Y \in \Gamma(T\overline{M})$.

Now let \bar{M} be an immersed submanifold of an almost paracontact metric manifold M. From the Gauss–Weingarten formulas and (2.6) and (2.7) we have

(4.7)
$$(\bar{\nabla}_X f Y) = A_{\omega Y} X + Bh(X, Y),$$

$$(\nabla_X \omega) Y = Ch(X, Y) - h(X, fY),$$

for any $X, Y \in \Gamma(T\overline{M})$, where the covariant derivatives of f and ω are defined by

$$\bar{\nabla}_X f Y = \bar{\nabla}_X f Y - f(\bar{\nabla}_X Y)$$
 and $(\nabla_X \omega) Y = \nabla_X^{\perp} \omega Y - \omega(\bar{\nabla}_X Y)$.

Next we shall characterize semi-slant submanifolds in almost paracontact metric manifolds by the following theorems.

Theorem 4.5 Let \bar{M} be an immersed submanifold of an almost paracontact metric manifold M. Then \bar{M} is a semi-slant submanifold if and only if there exists a constant $\lambda \in [0,1)$ such that

- (i) $D' = \{X \mid f^2X = \lambda X\}$ is a distribution on \bar{M} .
- (ii) For any $X \in \Gamma(T\overline{M})$ orthogonal to D', $\omega X = 0$. Furthermore, if θ is the slant angle of \overline{M} , in this case it satisfies $\lambda = \cos^2 \theta$.

Proof Let \bar{M} be a semi-slant submanifold and $T\bar{M} = D_1 \oplus D_2 \oplus \operatorname{sp}\{\xi\}$, where D_1 is invariant and D_2 is slant. We put $\lambda = \cos^2 \theta$. For any $X \in D'$, if $X \in D_1$, then

$$X = F^2 X - \eta(X)\xi = F^2 X = (fP_1)^2 X = \lambda X.$$

It follows that $\lambda = 1$, but this is a contradicton to $\lambda \in [0, 1)$, that is, $D' \subseteq D_2$. On the other hand, since D_2 is a slant distribution, we have $f^2X = (fP_2)^2X = \lambda X$. It follows that $D_2 \subseteq D'$. Thus we conclude that $D_2 = D'$.

Conversely, we consider the orthogonal direct sum $T\bar{M}=D\oplus D^{\perp}\oplus \operatorname{sp}\{\xi\}$. It is obvious that $fD\subseteq D$. For any $X\in D^{\perp}$ and $Y\in D$, from (2.4) we have g(FX,Y)=g(X,FY)=g(X,fY)=0, that is, D^{\perp} is an invariant submanifold. The last statement of Theorem 4.2 implies that D is a slant distribution with slant angle θ satisfying $\lambda=\cos^2\theta$.

Theorem 4.6 Let \bar{M} be a semi-slant submanifold of almost paracontact metric manifold M. Then we have

(i) The distribution D_1 is integrable if and only if

$$(4.9) h(X, fY) = h(fX, Y)$$

for any $X, Y \in \Gamma(D_1)$.

(ii) The distribution D_2 is integrable if and only if

$$P_1(\nabla_X f Y - \nabla_Y f X) = P_1(A_{\omega P, Y} X - A_{\omega P, X} Y)$$

for any $X, Y \in \Gamma(D_2)$.

Proof (i) From the Gauss–Weingarten formulas and making use of (4.5), we have

$$\nabla_X FY = F \nabla_X Y$$
,

$$\bar{\nabla}_X f Y + h(X, f Y) = F(\bar{\nabla}_X Y) + Fh(X, Y)$$

$$= f P_1(\bar{\nabla}_X Y) + f P_2(\bar{\nabla}_X Y) + \omega(\bar{\nabla}_X Y) + Bh(X, Y)$$

$$+ Ch(X, Y),$$

for any $X, Y \in \Gamma(D_1)$. From the normal components of (4.10) we have

$$h(X, fY) = \omega P_2(\nabla_X Y) + Ch(X, Y).$$

Taking account of h being symmetric, we arrive at

(4.11)
$$\omega P_2[X,Y] = h(X,fY) - h(fX,Y).$$

Hence if D_1 is integrable, then (4.11) holds directly form (4.9).

Conversely, making use of (4.9) and (4.11), it follow that $\omega P_2[X,Y] = 0$. So we can easily deduce that $P_2[X,Y]$ must vanish.

(ii) Since D_2 is a slant distribution, we have

$$\begin{split} \bar{\nabla}_X f P_2 Y + h(X, f P_2 Y) - A_{\omega P_2 Y} X + \nabla_X^{\perp} \omega P_2 Y \\ &= f(\bar{\nabla}_X Y) + \omega \bar{\nabla}_X Y + Bh(X, Y) + Ch(X, Y). \end{split}$$

Since *h* is symmetric, it follows that

(4.12)
$$f[X,Y] = \bar{\nabla}_X f P_2 Y - \bar{\nabla}_Y f P_2 X + A_{\omega P_2 X} Y - A_{\omega P_2 Y} X$$

for any $X, Y \in \Gamma(D_2)$. Applying P_1 to (4.12), we conclude that

$$P_1 f[X, Y] = P_1 \{ \bar{\nabla}_X f P_2 Y - \bar{\nabla}_Y f P_2 X \} - P_1 \{ A_{\omega P_2 Y} X - A_{\omega P_2 X} Y \}.$$

Hence D_2 is integrable if and only if $P_1 f[X, Y] = 0$.

Lemma 4.7 Let \bar{M} be a mixed-geodesic semi-slant submanifold of an almost paracontact metric manifold M. Then the distribution D_1 is integrable if and only if the shape operator of \bar{M} satisfies $FA_NX = A_NFX$ for any $N \in \Gamma(T\bar{M}^\perp)$, $X \in \Gamma(D_1)$.

Proof Since \bar{M} is mixed-geodesic, from (2.5) we find that A_NX has no component on D_2 . Thus we conclude $g(FA_NX - A_NFX, Y) = g(h(X, FY) - h(FX, Y), N)$ for any $X, Y \in \Gamma(D_1)$. Also considering Theorem 4.6(i), it is easy to verify that D_1 is integrable if and only if $FA_NX = A_NFX$.

The condition $\nabla f = 0$ also plays an important role in almost paracontact manifolds as well as locally product manifolds. The following theorem characterizes it.

Theorem 4.8 Let \bar{M} be a semi-slant submanifold of an almost paracontact metric manifold M. If $\nabla f = 0$, then the distributions D_1 and D_2 are integrable and their leaves are totally geodesic in \bar{M} .

Proof If $\nabla f = 0$, then from (4.7) we have Bh(Y,X) = 0, for any $Y \in \Gamma(D_1)$ and $X \in \Gamma(T\bar{M})$. Thus we get $g(h(X,Y),\omega P_2 Z) = 0$, and $g(Fh(X,Y),\omega P_2 Z) = 0$ for any $Y \in \Gamma(D_1)$ and $X,Z \in \Gamma(T\bar{M})$. Thus we arrive at

$$\begin{split} g(\omega P_2 \nabla_X Y, Fh(X,Y)) &= g(\omega P_2 \nabla_X Y, \bar{\nabla}_X FY) - g(\omega P_2 \nabla_X Y, F \nabla_X Y) \\ &= g(\omega P_2 \nabla_X Y, h(X,FY)) - g(\omega P_2 \nabla_X Y, \omega P_2 \nabla_X Y) \\ &= -sin^2 \theta \{ g(P_2 \nabla_X Y, P_2 \nabla_X Y) - \eta^2 (P_2 \nabla_X Y) \} = 0, \end{split}$$

which is equivalent to $P_2\nabla_XY=0$, that is $\nabla_XY\in\Gamma(D_1)$. Since \bar{M} is a Riemannian manifold, its metric is a Riemannian metric, and D_2 is orthogonal D_1 , we conclude that D_2 is also integrable.

Theorem 4.9 Let \bar{M} be a semi-slant submanifold of an almost paracontact metric manifold M. If $\nabla \omega = 0$, then M is a mixed geodesic submanifold. Furthermore, if $X, Y \in \Gamma(D_2)$, then either \bar{M} is D_2 -geodesic, or h(X, Y) is an eigenvector of C^2 with eigenvalue $\cos^2 \theta$. If $X, Y \in \Gamma(D_1)$, then either \bar{M} is a D-geodesic submanifold or h(X, Y) is an eigenvector of C^2 with eigenvalue 1.

Proof If $\nabla \omega = 0$ for any $X, Y \in \Gamma(T\overline{M})$, then from (4.8) we have Ch(X, Y) = h(X, fY). Since D_2 is a slant distribution with a slant angle θ and D_1 is an invariant distribution, we have

(4.13)
$$C^2h(X,Y) = Ch(X,fY) = h(X,f^2Y) = \cos^2\theta h(X,Y),$$

(4.14)
$$C^2h(X,Y) = Ch(Y,fX) = h(Y,f^2X) = h(Y,F^2X) = h(Y,X)$$

for any $X \in \Gamma(D_1)$ and $Y \in \Gamma(D_2)$. By virtue of (4.13) and (4.14), we have $\sin^2 \theta h(X,Y) = 0$, which implies h(X,Y) = 0 because $\theta \neq 0, \pi/2$. Thus \bar{M} is a mixed-geodesic semi-slant submanifold.

Similarly, we have

(4.15)
$$C^{2}h(X,Y) = Ch(X,fY) = h(X,f^{2}Y) = h(X,Y)$$

for any $X, Y \in \Gamma(D_1)$ and by using (4.13) we arrive at

$$(4.16) C2h(X,Y) = cos2\theta Ch(X,Y)$$

for any $X, Y \in \Gamma(D_2)$. Thus (4.15) and (4.16) give our assertion.

Theorem 4.10 Let \bar{M} be a semi-slant submanifold of an almost paracontact metric manifold M. Then M is a semi-slant product if and only if its second fundamental form satisfies

(4.17)
$$Bh(Z, X) = 0$$
 and $h(Z, fX) = Ch(Z, X)$

for any $Z \in \Gamma(T\overline{M})$ and $X \in \Gamma(D_1)$.

Proof If \bar{M} is a semi-slant product, then D_1 and D_2 are totally geodesic distributions in \bar{M} . From Theorem 4.8, (4.7), and (4.8) we have

$$(\bar{\nabla}_Z f)X = \bar{\nabla}_Z fX - f(\bar{\nabla}_Z X) = Bh(X, Z) = 0$$

and

$$(\nabla_Z \omega) X = \nabla_Z^{\perp} \omega X - \omega(\bar{\nabla}_Z X) = 0.$$

It follows that Ch(Z, X) = h(Z, fX) for any $Z \in \Gamma(T\overline{M})$ and $X \in \Gamma(D_1)$. Conversely, let us assume that (4.17) is satisfied. Then (4.8) implies that

$$(\nabla_Z \omega) X = -\omega(\bar{\nabla}_Z X) = 0,$$

that is, $\bar{\nabla}_Z X \in \Gamma(D_1)$. Since D_2 is orthogonal to D_1 , we get $\bar{\nabla}_Z Y \in \Gamma(D_2)$ for any $X \in \Gamma(D_1)$, $Y \in \Gamma(D_2)$, and $Z \in \Gamma(T\bar{M})$. Hence the proof is complete.

Corollary 4.11 Let \bar{M} be a semi-slant submanifold of an almost paracontact metric manifold M. Then $\nabla \omega = 0$ if and only if the shape operator of \bar{M} satisfies $A_{CN}Z = A_N f Z$ for any $N \in \Gamma(T\bar{M}^\perp), Z \in \Gamma(T\bar{M})$.

Proof From (2.5), (2.7), and (4.8) we have

$$g((\nabla_X \omega)Y, N) = g(Ch(X, Y), N) - g(h(X, fY), N)$$

= $g(h(X, Y), FN) - g(h(X, fY), N) = g(A_{CN}Y - A_N fY, X)$

for any $X,Y\in \Gamma(T\bar{M})$ and $N\in \Gamma(T\bar{M}^{\perp})$. It follows that $\nabla\omega=0$ if and only if $A_{CN}Z=A_NfZ$.

Corollary 4.12 Let \bar{M} be a semi-slant submanifold of an almost paracontact metric manifold M. Then $\bar{\nabla} f = 0$ if and only if the shape operator of \bar{M} satisfies $A_{\omega P,X}Y = -A_{\omega P,Y}X$ for any $X,Y \in \Gamma(T\bar{M})$.

Proof Taking into account (2.5) and (4.7), we have

$$g((\bar{\nabla}_X f)Y, Z) = g(A_{\omega P_2 Y} X, Z) + g(Bh(X, Y), Z)$$

$$= g(h(X, Z), \omega P_2 Y) + g(h(X, Z), \omega P_2 Z)$$

$$= g(A_{\omega P, Y} X, Z) + g(A_{\omega P, Z} X, Z)$$

for any $X, Y, Z \in \Gamma(T\overline{M})$. It is equivalent to our assertion.

Acknowledgement The author would like to thank the referee(s) for several comments and suggestions.

References

- [1] Bejancu, A. and Papaghiuc, N.: Semi-Invariant Submanifolds of a Sasakian Manifold. An. Stiint. Al.I. Cuza Univ. Iasi.27(1981),163-170.
- [2] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M. and Fernandez.M.: Slant Submanifolds in Sasakian Manifolds. Glasgow Math. J. 42(2000), 125-138. doi:10.1017/S0017089500010156
- [3] Cabrerizo, J.L., Čarriazo, A., Fernandez, L.M. and Fernandez, M.: Semi-Slant Submanifolds of A Sasakian Manifold. Geometriae Dedicata 78:183-199,1999. doi:10.1023/A:1005241320631
- [4] B.-Y. Chen, Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Louvain, 1990.
- [5] B.-Y. Chen and Y. Tazawa, Slant Submanifolds of Complex Projective and Complex Hyperbolic Spaces. Glasgow. Math.J. 42(2000), no. 3, 439–454. doi:10.1017/S0017089500030111
- [6] H. Li and X Liu, Semi-slant submanifolds of a locally Riemannian product manifold. Georgian Math. J. 12(2005), 273–282.
- [7] Lotto, A.: Slant Submanifolds in Contact Geometry. Bull. Math. Soc. Roumanie 39(1996), 183-198.
- [8] Nikic, J.: Conditions For Invariant Submanifold of A Manifold with the (φ, ξ, η, G) -Structure. Kragujevac J. Math. 25(2003), 147-154.
- [9] Papaghiuc, N.: Semi-Slant Submanifolds of A Kaehlerian Manifold. An. Stiint. Al.I. Cuza Univ. Iasi. 40(1994), 55-61.

GOP University, Faculty of Arts and Sciences, Department of Mathematics, 60200 Tokat, Turkey e-mail: matceken@gop.edu.tr