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Semi-Slant Submanifolds of an Almost
Paracontact Metric Manifold

Mehmet Atceken

Abstract. In this paper, we define and study the geometry of semi-slant submanifolds of an almost
paracontact metric manifold. We give some characterizations for a submanifold to be semi-slant sub-
manifold to be semi-slant product and obtain integrability conditions for the distributions involved in
the definition of a semi-slant submanifold.

1 Introduction

Slant submanifolds have been studied by many geometers in the last two decades.
They arise naturally and play important roles in the study of the geometry of sub-
manifolds [2, 3, 6]. Slant immersions in complex geometry were first introduced by
B.-Y. Chen as a natural generalization of both holomorphic immersions and totally
real immersions [4, 5].

Later, A. Lotta introduced the notion of slant immersion of a Riemannian mani-
fold into an almost contact metric manifold and he proved some properties of slant
immersions [7].

Recently, Papaghuic introduced a class of submanifolds in an almost Hermitian
manifold, called the semi-slant submanifold such that the class of proper CR-sub-
manifolds and the class of slant submanifolds appear as particular cases in the class
of semi-slant submanifolds [1,9].

The purpose of the present paper is to define and study a paracontact version of
semi-slant submanifolds so that both semi-invariant and paracontact slant subman-
ifolds appear as particular cases of the introduced notion. Furthermore, we also give
sufficient and necessary conditions for a distribution to be slant.

2  Preliminaries

In this section, we review basic formulas and definitions for almost paracontact met-
ric manifolds and their submanifolds, which we shall use later.

Let M be an (m + 1)-dimensional differentiable manifold. If there exist on M a
(1, 1) type tensor field F, a vector field € and 1-form 7 satisfying

(2.1) FP=I-n®¢ n¢=1,
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then M is said to be an almost paracontact manifold. In the almost paracontact
manifold, the following relations hold:

(2.2) FE=0, noF=0, rank(F)=m.

An almost paracontact manifold M is said to be an almost paracontact metric
manifold if Riemannian metric g satisfies

(2.3) g(FX,FY) = g(X,Y) —n(X)n(Y), n(X)=g(X,§)
forall X,Y € I'(TM). From (2.2]) and (2.3)), we can easily derive the relation
(2.4) g(FX,Y) = g(X, FY).

Now let M be an isometrically immersed submanifold in an almost paracontact
metric manifold M. We denote by V and V the Levi-Civita connections on M and
M, respectively. Then the Gauss and Weingarten formulas are defined by

VxY = VxY +h(X,Y) and ViV = —AyX+ V3V

forany X,Y € T'(TM), V € T(TM*1), where V-1 is the connection in the normal
bundle TM*, h is the second fundamental form of M, and Ay is the shape operator.
The second fundamental form 4 and the shape operator A are related by

An almost paracontact metric manifold is said to be an almost paracontact mani-
fold with (F, n, £, g)-connection if VF = 0 and V7 = 0, where V denotes a connec-
tion on M. Since F> = I — 1 @ &, the vector field ¢ is also parallel with respect to V
[8].

In the rest of this paper, we assume that M is an almost paracontact metric mani-
fold with a structure (F, 7, €, £).

Now let M be an n-dimensional differentiable manifold and suppose that M is an
isometrically immersed submanifold in almost paracontact metric manifold M. We
denote by g the induced Riemannian metric for M as well as M. For any vector field
X tangent to M, we put

(2.6) FX = fX +wX,

where fX and wX denote the tangential and normal components of FX, respectively.
For any vector field N normal to M, we also put

(2.7) FN = BN +CN,

where BN and CN denote the tangential and normal components of FN, respectively.
The submanifold M is said to be invariant if w is identically zero, i.e, FX = fX €
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I['(TM) for any X € T'(TM). On the other hand, M is said to be an anti-invariant
submanifold if f is identically zero, i.e., FX = wX € I'(TM™") for any X € I'(TM).

We note that for an invariant submanifold M of an almost paracontact metric
manifold M, if £ is normal to M, then the induced almost paracontact structure on
M is an almost product Riemannian structure. But if £ is tangent to M, then the
induced almost paracontact metric structure on M is an almost paracontact metric
structure.

Furthermore, we say that M is a semi-invariant submanifold if there exist two
orthogonal distributions D; and D, such that

(i) TM has the orthogonal direct sum TM = D; @ D,,
(ii) the distribution D is invariant, i.e., F(D;) = Dy,
(iii) the distribution D, is anti-invariant, i.e., F(D,) C TM*.

Given any submanifold M of M, from (2.4) and (2.6) we have
(2.8) g(fX,Y) =g(X, fY)

forany X, Y € I'(TM).

Henceforth we suppose that the vector field £ is tangent to M. If we denote by D
the orthogonal distribution to £ in TM, then we can consider the orthogonal direct
sum TM =D & €.

For each nonzero vector X tangent to M at x such that X is not proportional to &,,
we denote by #(X) the angle between FX and T, M. In fact, since F€ = 0, 6 agrees
with the angle between FX and D,. Then M is said to be slant if the angle 6(X) is
constant, which is independent of the choice of x € M and X € T:M — sp{&,}. The
angle 6 of a slant immersion is called the slant angle of the immersion. Invariant and
anti-invariant immersions are slant immersions with slant angle # = 0 and § = 7/2,
respectively. A slant immersion that is neither invariant nor anti-invariant is called a
proper slant immersion.

3 Slant Submanifolds in Almost Paracontact Metric Manifolds

Next we will give an example of a slant submanifold in an almost paracontact metric
manifold to illustrate our results.

Example 3.1 LetR” be the Euclidean space endowed with the usual Euclidean met-
ric and with coordinates (x;,x2, ¥1, ¥2, ¥3, y4,t). We define an almost paracontact
metric structure on R” by

(0

= dt.
atﬂ?
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-2 .0 4,0 7
Forany Z = X5~ + i gy, YV € TR’, we have
1 J
§(Z,2) = \F + M? +v* and g(FZ,FZ) = \; + M?

F*Z = A,»i

o +M187j =Z-n2)§ and () =1.

fori = 1,2, j = 1,2,3,4. It follows that g(FZ,FZ) = ¢g(Z,Z) — n(Z)n(Z). Now,
consider, for any u, v € (0, 7) and constant k # 0,

p(u,v) = (u,v, —ksin u, —ksin v, k cos u, k cos v)

l—kz)

defines a slant submanifold in R” with slant angle § = cos™!( )

The following theorem is a useful characterization of slant submanifolds in an
almost paracontact manifold.

Theorem 3.2 Let M be an immersed submanifold of an almost paracontact metric
manifold M.

(i)  Let & be tangent to M. In this case, M is slant if and only if there exist a constant
A € [0, 1] such that > = A\(I —n® &).

(i) Let £ be normal to M. In this case, M is slant if and only if there exist a constant
A € [0,1] such that f* = ML

Furthermore, if  is the slant angle of M, it satisfies A = cos® 0.

Proof (i) We suppose that ¢ is tangent to M and M is a slant submanifold. Also, we

assume cos 0(X) = %, where 6(X) is the slant angle. From (2.4) and (2.6) we have

(X, X) = g(fX, fX) = cos’ O(X)g(FX, FX)
= cos? 9(X)g(F2X,X) = cos? 0(X)g(X — n(X)¢, X)
for all X € T'(TM). Since g is a Riemannian metric, we induce
sz = cos® (X — n(X)&).
Let A = cos’ . Then A € [0,1] and f2 = (I — n ® &).
Conversely, we suppose that there exists a constant A € [0, 1] such that f2 =

AI —n ®&). Then by using and (2.4)) we have

cosf(X) = = -
IEXIILFXI EXI X [EXI]FX]
_ L SXPX)  gFXFX) | [FX]
EXIIIAXI NEXX) X

for any X € I'(TM). On the other hand, since cos §(X) = %, we conclude that
cos? 9(X) = ), that is, 8(X) is a constant and so M is slant.
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(ii) If £ is a normal vector field to M, then we conclude that n(X) = 0. Thus from
Theorem B.2{(i), we mean that M is a slant submanifold if and only if there exists a
constant A € [0, 1] such that f2 = M. Moreover, if 0 is the slant angle of M, it
satisfies A = cos® 6. [ ]

Corollary 3.3 Let M be a slant submanifold of an almost paracontact metric manifold
M with slant angle 0 such that £ is tangent to M. Then we have

(3.1) g(fX, fY) = cos® 0{g(X,Y) — n(X)n(Y)},
(3.2) g(wX,wY) = sin® H{g(X,Y) — n(X)n(Y)}

forany X,Y € T'(TM).

Proof From (2.8) and Theorem[3.2(i), a direct expansion gives (3.I)). To prove (3.2)),
it is enough to take into account (23] and (2.6)). [ |

Let M be an immersed submanifold of an almost paracontact metric manifold M.
Then from 2.1), (2.6)), and (2.7) we have
(3.3) X —n(X¢ = f2X + wfX + BwX + CwX

for any X € T'(TM). If the vector field £ is tangent to M, then from the tangential
and normal components of (3.3)), we have

(3.4) fP+Bu=1-n®E¢,

(3.5) wf+Cw = 0.

On the other hand, if the vector field £ is normal to M, then, (3.4) and (3.5) become

(3.6) I = f*+ Buw,
(3.7) —N®E=wf+Cuw.

Thus we have the following results.

Corollary 3.4 Let M be an immersed submanifold of an almost paracontact metric
manifold M.

(i) Let & be tangent to M. In this case, M is a slant submanifold of M if and only if
there exists a constant i € [0, 1] such that Bu = u(I — n ® §).

(i) Let & be normal to M. In this case, M is a slant submanifold of M if and only if
there exists a constant y € [0, 1] such that Bw = pl.

Furthermore, if 0 is the slant angle of M, it satisfies j1 = sin® .

Proof If £ is tangent to M, then from Theorem 3.2[(i) and we get the proof of
(i). On the other hand, if ¢ is normal to M, then Theorem 3.2(ii) and (3.6) give (ii),
where 1 = 1 — ), which satisfies our assertion. [ ]
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4 Semi-Slant Submanifolds in Almost Paracontact Metric Manifolds

Let M be an immersed submanifold of an almost paracontact metric manifold M.

Definition 4.1 We call a differentiable distribution D on M a slant distribution if for
each x € M and each nonzero X € D,, the angle 6, between FX and Dj is a constant
that is independent of the choice x € M and X € D,. In this case, the constant angle
0, is called the slant angle of the distribution D,.

Let M be an immersed submanifold of almost paracontact metric manifold M and
D be a differentiable distribution on M. We denote by D+ the orthogonal distribu-

tion to D in M. Also, P, and P, denote the orthogonal projections on D and D+,
respectively. Then for any X € I'(TM), we can write

(4.1) FX = P, fX + P, fX + wX.

Thus we have the following theorem.

Theorem 4.2 Let D be a differentiable distribution on M such that £ is tangent to D.
Then D is a slant distribution if and only if there exists a constant A € [0, 1] such that

(4.2) (P =M —n®E).
Furthermore, in such a case, if 0 is the slant angle of D, then A = cos? 6.

Proof We suppose that there exists a constant A € [0, 1] such that
(PLf)*X = XX — n(X)€)
for any X € I'(D). Then from (2.4) and (4.2]) we have

§(FX, P, fX) §X,FP fX) _ g(X,(Pif)’X)

cosf(X) = = —
IEX] - ([PofX]) IEXT - (IPofXI (1EX - (1P fXl
XX -08 | gXPX) _ |IFX|
[EX]| - (1P fX]| [EX| - 1P fX] ([P fX|
1P fX]|

Moreover, we know that cos 6(X) = . Thus we can derive A\ = cos? 6, i.e., 0 is
a constant and so D is slant.
Conversely, we assume that D is a slant distribution. Then from (&) and

IP1 fX|| = cos 8||FX]| we have

EX|

(X, (P1f)*X) = cos* 0g(FX, FX) = cos’ 0g(X, F*X) = cos® g(X, X — n(X)¢),
which implies (P; f)2X = cos? 8(X — n(X)€) for any X € I'(D). Setting A = cos?® 0,

we get the desired result. Here we note that if ¢ is normal to M, then ([&2]) becomes
(P1f)? = AL n
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Lemma 4.3 Let M be a submanifold of an almost paracontact metric manifold M
and D be a distribution on M. Then M is a slant submanifold if and only if D is a slant
distribution with the same slant angle.

Proof It is obvious that if M is a slant submanifold, then it is easy to see that D is a
slant distribution with the same slant angle, because (X) = 0p(X) forany X € I'(D).
Conversely, given X € I'(TM) — sp{{}, we have

IAXTEX]T /X2 = 2 (X)
On the other hand, taking into account X — n(X)¢ € I'(D), we derive

|P&X —n(x0)Q)|
. Op =
) T X =0l

where P denotes the orthogonal projection of F on D. But in almost paracontact

manifolds, by virtue of /|| X]|> — n?(X) = || X — n(X)|| and fX = P(X — n(X)§),
is equal to (4.4]), which gives our assertion. [ |

Semi-slant submanifolds are generalizations of semi-invariant submanifolds.

Definition 4.4 We define M to be a semi-slant submanifold of an almost paracon-
tact metric manifold M if there exist two orthogonal distributions D; and D, on M
such that

(i) TM admits the orthogonal direct sum TM = D; & D, & sp{¢},
(ii) the distribution D is invariant, i.e., F(D;) = Dy,
(iii) the distribution D, is slant with slant angle § # 0, 7 /2.

In this case, we call 6 the slant angle of submanifold M.

It is easily seen that the invariant and anti-invariant distributions of a semi-slant
submanifold are slant distributions with slant angle = 0 and § = 7/2, respectively.
Thus it is obvious that semi-invariant submanifolds are particular cases of semi-slant
submanifolds. Furthermore, if we denote the dimension of D; by d; for i = 1, 2, then
we have the following cases.

(i) Ifd, = 0, then M becomes an invariant submanifold.

(ii) Ifd, = 0and @ = 7/2, then M becomes an anti-invariant submanifold.

(iii) Ifd;, = 0 and @ # 0,7/2, then M becomes a proper slant submanifold with
slant angle 6.

(iv) Ifd,-d, # 0and 0 # 0,7/2, then M becomes a proper semi-slant submanifold.

Next, given a semi-slant submanifold M in an almost paracontact metric manifold
M, we denote P; the projections on the distributions D; for i = 1, 2. Then we have

(4.5) X =P X+P,X and FX = fPX+ fPX+wPX
and

(4.6) g(fX, fP,Y) = cos® 0g(X,P,Y) and g(wX,wP,Y) = sin’ 0g(X,PY),
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forany X,Y € I'(TM).
Now let M be an immersed submanifold of an almost paracontact metric manifold
M. From the Gauss—Weingarten formulas and (2.6)) and (2.7])) we have

(4.7) (VxfY) = AuyX + Bh(X,Y),
(4.8) (Vxw)Y = Ch(X,Y) — h(X, fY),

for any X,Y € I'(TM), where the covariant derivatives of f and w are defined by
VxfY = VxfY — f(VxY) and (Vxw)Y = VywY —w(VxY).

Next we shall characterize semi-slant submanifolds in almost paracontact metric
manifolds by the following theorems.

Theorem 4.5 Let M be an immersed submanifold of an almost paracontact metric

manifold M. Then M is a semi-slant submanifold if and only if there exists a constant

A € [0, 1) such that

(i) D' ={X| f2X = \X} is a distribution on M.

(ii) For any X € T'(TM) orthogonal to D', wX = 0. Furthermore, if 0 is the slant
angle of M, in this case it satisfies A = cos® 0.

Proof Let M be a semi-slant submanifold and TM = D; ¢ D, @ sp{£{}, where D; is
invariant and D, is slant. We put A = cos® §. For any X € D ,if X € Dy, then

X = F* X —n(X)¢ = F*X = (fP))*X = A\X.

It follows that A = 1, but this is a contradicton to A € [0, 1), thatis, D’ C D,. On
the other hand, since D, is a slant distribution, we have f2X = (fP;)’X = A\X. It
follows that D, C D’. Thus we conclude that D, = D’.

Conversely, we consider the orthogonal direct sum TM = D @ D @ sp{¢}.
It is obvious that fD C D. For any X € Dt and Y € D, from we have
¢(FX,Y) = g(X,FY) = g(X, fY) = 0, that is, D™ is an invariant submanifold. The
last statement of Theorem[£.2limplies that D is a slant distribution with slant angle 6
satisfying A = cos? . [

Theorem 4.6 Let M be a semi-slant submanifold of almost paracontact metric mani-
fold M. Then we have

(1)  The distribution D; is integrable if and only if
(4.9) h(X, fY) = h(fX,Y)

forany X, Y € T'(Dy).
(ii) The distribution D, is integrable if and only if

Pi(VxfY = VyfX) = Pi(Aup,y X — Aup,xY)

forany X,Y € I'(D,).
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Proof (i) From the Gauss—Weingarten formulas and making use of (4.5)), we have
VxFY = FVyY,

VxfY +h(X, fY) = F(VxY) + Fh(X,Y)
(4.10) = fP\(VxY) + fP,(VxY) + w(VxY) + Bh(X,Y)
+Ch(X,Y),
for any X,Y € I'(D;). From the normal components of (4.10) we have
h(X, fY) = wP,(VxY) + Ch(X,Y).
Taking account of / being symmetric, we arrive at

(4.11) wP[X,Y] = h(X, fY) — h(fX,Y).

Hence if D is integrable, then (£.11]) holds directly form (£3).

Conversely, making use of ([4.9) and (AI1), it follow that wP,[X,Y] = 0. So we
can easily deduce that P,[X, Y] must vanish.

(ii) Since D, is a slant distribution, we have

VxfPY + h(X, fP,Y) — Aup,y X + VywP,Y
= f(VxY) +wVxY + Bh(X,Y) + Ch(X,Y).

Since h is symmetric, it follows that
(4.12) fIX,Y] = VxfPY — Vy fP,X + Aup,xY — Aupy X
forany X,Y € I'(D,). Applying P; to (4.12]), we conclude that

Pif[X,Y] = Pi{VxfP,Y — Vy fP,X} — Pi{AupyX — Aup,xY }.

Hence D, is integrable if and only if P, f[X, Y] = 0. ]

Lemma 4.7 Let M be a mixed-geodesic semi-slant submanifold of an almost paracon-
tact metric manifold M. Then the distribution D, is integrable if and only if the shape
operator of M satisfies FANX = ANEX forany N € T(TM*), X € T'(D)).

Proof Since M is mixed-geodesic, from we find that AyX has no component
on D,. Thus we conclude g(FANX — ANEX,Y) = g(h(X,FY) — h(FX,Y),N) for
any X,Y € T'(D;). Also considering Theorem [£.6(i), it is easy to verify that D; is
integrable if and only if FANX = AyFX. ]

The condition V f = 0 also plays an important role in almost paracontact mani-
folds as well as locally product manifolds. The following theorem characterizes it.
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Theorem 4.8 Let M be a semi-slant submanifold of an almost paracontact metric
manifold M. If Vf = 0, then the distributions Dy and D, are integrable and their
leaves are totally geodesic in M.

Proof If Vf = 0, then from (4.7) we have Bh(Y,X) = 0, for any Y € T'(D;) and
X € I(TM). Thus we get g(h(X,Y),wP,Z) = 0, and g(Fh(X,Y),wP,Z) = 0 for any
Y € I'(D,) and X, Z € T(TM). Thus we arrive at

g(WPZVXY, Fh(X, Y)) = g(wPZVXY, vxFY) — g(wPZVXY7 FVXY)
= g(wPZVXY, h(X, FY)) - g(wPZVXY, wPZVXY)
= —sin*0{g(P,VxY, P,VxY) — n*(P,VxY)} = 0,

which is equivalent to P,VxY = 0, that is VxY € I'(D;). Since M is a Riemannian
manifold, its metric is a Riemannian metric, and D, is orthogonal D;, we conclude
that D; is also integrable. ]

Theorem 4.9 Let M be a semi-slant submanifold of an almost paracontact metric
manifold M. If Vw = 0, then M is a mixed geodesic submanifold. Furthermore, if
X,Y € T(D,), then either M is D,-geodesic, or h(X,Y) is an eigenvector of C* with
eigenvalue cos* 0. If X,Y € T(D), then either M is a D-geodesic submanifold or
h(X,Y) is an eigenvector of C* with eigenvalue 1.

Proof If Vw = 0 for any X,Y € I'(TM), then from (438) we have Ch(X,Y) =
h(X, fY). Since D, is a slant distribution with a slant angle # and D is an invariant
distribution, we have

(4.13) C*h(X,Y) = Ch(X, fY) = h(X, f?Y) = cos* Oh(X,Y),
(4.14) C*h(X,Y) = Ch(Y, fX) = h(Y, f*X) = h(Y, F’X) = h(Y, X)

forany X € T'(D;) and Y € T'(D,). By virtue of [AI3) and (4I4), we have
sin® Oh(X,Y) = 0, which implies A(X,Y) = 0 because § # 0,7/2. Thus M is a
mixed-geodesic semi-slant submanifold.

Similarly, we have

(4.15) C*h(X,Y) = Ch(X, fY) = h(X, f2Y) = h(X,Y)

for any X,Y € T'(D;) and by using (£.13)) we arrive at

(4.16) C*h(X,Y) = cos*0Ch(X,Y)

for any X, Y € T'(D,). Thus ([413) and (£.16)) give our assertion. [ ]

Theorem 4.10 Let M be a semi-slant submanifold of an almost paracontact metric
manifold M. Then M is a semi-slant product if and only if its second fundamental form
satisfies

(4.17) Bh(Z,X) =0 and h(Z, fX) = Ch(Z,X)

for any Z € T(TM) and X € T'(Dy).
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Proof If M is a semi-slant product, then D; and D, are totally geodesic distributions
in M. From Theorem 4.8} (£7)), and (4.8)) we have

(Vz)X =VzfX = f(VzX) = BW(X,Z) = 0

and
(Vzw)X = ViwX — w(VzX) = 0.

It follows that Ch(Z, X) = h(Z, fX) for any Z € T'(TM) and X € T'(D)).
Conversely, let us assume that (4.17) is satisfied. Then (£.8)) implies that

(V)X = —w(VzX) =0,

that is, VX € I'(D). Since D, is orthogonal to Dy, we get VY € I'(D,) for any
X e T(Dy),Y € T'(D;), and Z € T(TM). Hence the proof is complete. [ |

Corollary 4.11 Let M be a semi-slant submanifold of an almost paracontact met-
ric manifold M. Then Vw = 0 if and only if the shape operator of M satisfies
AcNZ = ANfZ forany N € T(TM*),Z € T(TM).
Proof From (2.9), (2.7), and (4.8) we have
g((Vxw)Y,N) = g(Ch(X,Y),N) — g(h(X, fY),N)
=g(h(X,Y),FN) — ¢(h(X, fY),N) = g(AcNY — AN fY, X)

for any X,Y € I'(TM) and N € I'(TM*). It follows that Vw = 0 if and only if
ACNZ = ANfZ [ ]

Corollary 4.12 Let M be a semi-slant submanifold of an almost paracontact met-
ric manifold M. Then Vf = 0 if and only if the shape operator of M satisfies
AupxY = —A,p,yX forany X, Y € T'(TM).
Proof Taking into account and ([@.7), we have
g(Vx)Y,Z2) = g(Aup,y X, Z) + g(Bh(X,Y), Z)
= g(Aur,y X, Z) + g(Aup,zX, Z)

forany X,Y,Z € T(TM). It is equivalent to our assertion. [ |
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