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1. Introduction

In [1] Neumann and Dey prove that the free product of two finitely generated
Hopf groups is Hopf and ask whether a similar result holds for direct products.
It is the purpose of this paper to show that this is not the case. We prove

THEOREM A. There exists a finitely generated group G satisfying the
following conditions:

(i) G is isomorphic to a proper direct factor of itself;
(ii) G is the direct product of two Hopf groups.

The method of proof can easily be adapted to give the following result:

THEOREM B. There exists a non-trivial finitely generated group Go iso-
morphic to its own direct square.

Theorem B provides an answer to a question raised by J. Wiegold and K. W.
Gruenberg in lectures, for Go is a finitely generated group having the property
that there is a bound on the number of generators of the direct power G<? as n
varies through the natural numbers.

The construction of G proceeds as follows: We first select a suitable member S
of the family of simple groups constructed by Camm in [2], and form the cartesian
power C = SN where N denotes the natural numbers. It is then possible to choose
a finitely generated subgroup G of C in such a way that conditions (i) and (ii)
of Theorem A are satisfied. The proof of (ii) is very long, so we merely sketch the
method of proof here, referring the reader to [3] for full details.

The construction of Go is very similar to that of G, except that, in this case
we use an HNN extension of one of Camm's groups as the 'base group' So.
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[2] Direct products and the Hopf property 175

It should be noted, however, that it is possible to use various other groups in
place of So: in particular, the description of the 'base group' may be considerably
simplified at the expense of increasing the number of generators of Go. The
possibility of such a simplification was pointed out to me by Miller, and his
example is to be found in [3].

I should like to thank Dr. P. M. Neumann, under whose supervision this
work was carried out, and Dr. C. F. Miller HI, with whom I had many valuable
discussions, for their help and advice. I am also indebted to the Science Research
Council for their financial support.

2. The proof of Theorem A

We begin with a brief description of Camm's simple groups. Let D = <a, p> and
£=<b,q> be two two-generator free groups. Let / be the set { + 1, + 2, + 3, "-Jand
let p, a and T be permutations of / . We put g, — atpp(i) and h; = b'q"U) for
each i e / . The elements gt then freely generate a subgroup U of D, and the elements
ht freely generate an isomorphic subgroup V of E. We form the free product
Sp,a,z of D and E amalgamating U with V under the isomorphism <f> defined by

4>(9i) = /»i(o for each i e I.

In [2] Camm shows that for suitable choices of p, a and T the groups Sp,a,r are
all simple. She does not define p, a and x completely. The definitions she stipulates
all map positive integers to positive integers, and other definitions can be made
arbitrarily, subject to only one condition, which states essentially that |p(n) | ,
| <r(n)| and | T(«) | are 'not much bigger' than | n\. It is easy to satisfy this condition
by defining p, a and T on the negative integers in such a way that each of them
fixes each block { - 20r, - 20r + 1, - 20r + 2, •••, - 20r + 19} (reN) set-wise.

We now construct our 'base group' S. This is to be a group Spff,t with p, a
and T defined in the following way:

(I) p, a and T are defined as in [2] wherever these definitions are made. In
particular

p(l) = 0(1) = T(l) = 1.

(II) The definitions of p, a and T on the positive integers are not completely

determined by (I). We make further definitions as follows:

p(ll) = o(ll) = T(11) = 11

p(12) = (T(12) = T(12) = 12

p(13) = T(13) = 13, <r(13) = 14.

All other definitions on the positive integers are made arbitrarily,
subject to the condition stipulated in [2].
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(III) The following definitions are made on the negative integers:

Let Pt = {2r: r > 0, reZ},

p2 = N\PU and let

A, = {neZ: - 20t ^ n ̂  - 20t + 19}.

For each teP2, P, a and T fix A, point-wise. For each tePu p, a and x fix A,
set-wise, and induce on A, permutations pt, a, and T, defined (in the usual notation,
as products of disjoint cycles) by

pt= ( - 2 0 * + 9 , - 2 0 f + 10),

a, = ( - 20f, - 20/ + 7, - 20t + 4, - 20f + 3, - 20f + 1)
• ( - 20t + 2, - 20t + 5, - 20f + 6),

xt = ( - 20( + 2, - 20< + 3).

Let C be the cartesian power SN, and let D be the subgroup of C consisting
of all functions of finite support. An element / of C will be written as an infinite
vector (/i,/2,/3, •••). where the jth entry ft denotes the value of / at i. Then G is
the subgroup of C generated by

x = (p~1afb~ia,b~la,-")

y = (P,P,P,---)

We define Sf to be the subgroup {/ e C: / ( / ) = 1 for a l l ; / i} of C, so that St

is isomorphic to S for each j e N.

PROPOSITION 1. G S S X G.|

PROOF. We first prove that G intersects Sx non-trivially. Thus we wish to
find some element w =£ 1 of S such that

We prove that the element

of G has this form.
The value of w at ( e N is
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Now by definitions (III), p, a and x each fix - 20f + 11, - 20f + 12 and - 20/ + 13

for each t > 0. Also, by definitions (I), p, a and T each fix 1, so for t > 1,

_ 2 0 ( r - l ) - l l £ -20 (r - l )+12

_ " - 2 0 ( t - l ) + l l - 2 0 « - i ; + l l x - l " - 2 0 ( r - l ) + 12 - 2 0 ( r - l j + 12\

2 0 « l ) + l l N l / a 2 0 ( t l ) + 1 2 -20(t - l )+12x

Thus the value of w at f is 1 for all t > 1. But the value of w at 1 is

and, by definitions (II),

= q~llbq13 = (ft1 V ) - 1 ^ 1 2 ^ 1 2 ) ^ = (allpn)~l(al2pl2)q = p~llapl2q.

Thus the value of w at 1 is q, and consequently G intersects St. But S is simple,
and the set {/(l):/eG} is the whole of S. Thus G Ci Si = Su showing that
St is a direct factor of G. Let a: C -*• C be the monomorphism given by

(j - 1) for i > 1
for i = 1,

and let Gt = Ga. Then Gĵ  is generated by

Xi = (l,b-ta,b-ta,b-ta,-)

yi - 0-,P,P,P,—)

and is clearly a direct complement for St in G. Moreover a | c is an isomorphism

from G onto Gj . Consequently G s S x G, as required.

Let Ct and C 2 denote the cartesian powers SFi and S P 2 , regarded in the

obvious way as subgroups of C. For each fe G we define functions / ^ , / B e C as

follows:

| / (0 if iePl
JAK) \ 1 otherwise
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| / ( 0 if ieP2
JBW \ 1 otherwise.

Let A and B denote the subgroups {/A:/eC} and {/B:/eC} of C respectively.
In the usual notation we denote a commutator a~lb~lab by [a,b].

PROPOSITION 2. G = A x B.

PROOF. We need only show that A ^ G. Using definitions (HI), we see that
the following relations hold in S:

(b-la)(p2Oiap-2°'+i)ia-xb) = P
20'ap-20t+1 if teP2, and

(fc-1a)Q>2>P~2O'+1Xa~1'>) = p 2 0 ( + 1 a V 2 0 ( + 1 if tePt.

Consequently

I*-1,*"1] = (p2lap-20,p*lap-*°,l,p'lap-0,l,l,-)

(where zA is defined as above),

which shows that zA and all its conjugates by powers of y lie in G. But we also
have

' 2 0 3 2 0 4 ^ 2 o 6 2 o 1 fovall tePt,

and so
x(y

which shows that xAyA lies in G. Further

- ^ ) = P
20'-9ap-20'+11 for all tePu

and so

which shows that yA lies in G. Thus A = ^^. j^ .z^) ^ G, and the result follows.
By Proposition 1, G is non-Hopf, and by Proposition 2, G = A x B. Thus

we need only show that /I and B are Hopf. We give sketches of the proofs, re-
ferring the reader to [3] for details.

PROPOSITION 3. A is Hopf.

PROOF. We must prove that every ependomorphism of A is an automorphism.
To this end, we factor out a characteristic subgroup of A, and look at the ependo-
morphisms of the corresponding factor group.

Let D, be the subgroup of Ct consisting of all functions of finite support.
An easy extension of the proof of Proposition 1 shows that Dt ^ A. In fact Z)t

is the direct product of the minimal normal subgroups of A, for it is easily seen
that any normal subgroup N of A intersects all those S, (i 6 P J for which there
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is some neN such that n(i) # 1. Consequently, for any ependomorphism <j) of A
we have </>(Di) ^ D1. We investigate the ependomorphisms of the factor group
A = AjDu denoting the images of xA, yA and zA in A by x, y and z. We put
xy = r, j;3zy~3 = M, and prove

LEMMA 3.1. L = (y,u} and M = <f,w> are both two-generator free groups. Let

H = (y-"uy\keZ,k # 11,12,13) y-lluyi2,y-12uyi3,y-liuyx '> ^ L,

/ef 0 fee the map from H to K defined by

0{y-"uyk) = r"ut" for all k g 14, and for all k ^ 1,

8(y-2uy2) = r2
M/,9 e^"3^3) = rl0«r2, 6(y-*uy*) = l"3«r'u(3,

0(y-5u>-5) = r W , % " V 6 ) = r8Mrl«/5,0o>~Vy7) = r6w/8.

^ " V 8 ) = t-9uf, 6(y-9uy9) = rsu/6, 0^- 'V1 0) = r7
u*10,

0(y-uuyl2)= rllutll,e(y-12uyl3) = rl3ut13, 6(y-l3uyu) = / - | 2 u t ' 2 .

T/ien 0 is an isomorphism, and A = *(L,M;H,K,8), the free product of L and
M amalgamating H with K under the isomorphism 9.

PROOF. A relation w(x, y, z) = 1 holds in A if and only if the corresponding
word wA = w(xA,yA,zA) of A lies in £>x. that is, if and only if the value wA(i)
— w{b~la,p,p2Oiap~2Oi*1) of wA at i is trivial for all but finitely many integers
iePi. Thus we may find relations in A by making calculations within S.

As the subgroups <p,p2Oi + 3ap"2 O l"2> and <q,q20i + 3bq-20i-2> of S are
free for each iePu the above reasoning shows that the subgroups <>>,w> and
<f, M) of A are free. It follows from cancellation arguments in the free groups L
and M that H and K are free on the stated generators, so that 6 is indeed an
isomorphism. Moreover the elements {y':ieZ} and {t':ieZ} form complete
sets of coset representatives for H in L and K in M respectively. (An argument
similar to that required here may be found in [2], Lemma 3.) Using definitions
(III), we may check that the relations determined by 0 all hold in A, so that A is
a homomorphic image of R = *(L,M;H,K,6).

If A were a proper homomorphic image of R, there would be an element w
of normal form length greater than one in R, such that w has trivial image in A.
Let w be a word of length n in R, say w = hsls2 ••• sn where heH and for each
index i the factor s( is a power of y or of f, taken alternately. We note that in S
the powers of p form a transversal for V in D and the powers of q form a trans-
versal for V in £. We note further that for each generator g of H the value of gA
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at i lies in the amalgamated subgroup U of S for all but finitely many
Now h is a word involving only finitely many of the generators of H, so it follows
that the value of hA at i lies in the amalgamated subgroup U of S for all but
finitely many i e Pt. Moreover the values of yA and tA at i are p and q respectively.
Consequently, for all but finitely many i e Pu the value of wA at j is reduced as
written and has normal form length n in S, so that the image of w in A is not
equal to 1. Thus A = R, as required.

Having determined the structure of A, we are now in a position to find its
ependomorphisms. We shall need the following two theorems, both to be found
in [4] (Theorem 4.5, p. 209 and Corollary N4, p. 169 respectively).

THEOREM 1. Let G = *(A,B;H,K,<j>), and suppose that x,yeG are such
that xy = yx. Then either

(i) x or y is in a conjugate of H, or
(ii) if neither x nor y is in a conjugate of H, but x is in a conjugate of a

factor, then y is in that same conjugate of a factor, or
(iii) if neither x nor y is in a conjugate of a factor, then x — ghg'1 • WJ

and y = gh'g~l • Wk, where g,WeG, h,h'eH and ghg~\ gh'g-1 and
W commute in pairs.

THEOREM 2. Let Aut(G) be the automorphism group of a group G, and let
Inn{G) be the normal subgroup of Aut(G) consisting of inner automorphisms.
Let F2 denote a free group of rank two and A2 a free abelian group of rank
two. Then

Moreover Aut (A2) is isomorphic to GL(2,Z), that is, the multiplicative group of
2 x 2 matrices with integer entries, and determinant + 1.

We now sketch a proof of

LEMMA 3.2. Every ependomorphism of A is an inner automorphism.

PROOF. Let (j> be an ependomorphism of A. Using the relations given in
Lemma 3.1, the words x(y'zy~ l)x~x of A may be evaluated for each ieZ. We find
that x commutes with y'zy~l if and only ifi ^ 3 o r i ;g — 11. Thus <f>(x) commutes
with <f)(y'zy~') for these values of i, and we may apply Theorem 1 to establish
the normal form structure of the images under (j> of elements of A. Without loss
of generality we may assume that <f>(x) is cyclically reduced. Suppose first that
(j>(x) lies in a factor, but not in a conjugate of H. By Theorem 1, (j>(y3zy~3) and
(j>{yAzy~A) both lie in that same factor or in a conjugate of H. A length argument
shows that even in the latter case they must both lie in the same factor as
Now the factors are free, and so it follows that $(x), <j)(y3zy~3) and
are all powers of the same element. Thus, in particular,
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We may conjugate this relation by powers of <f>{y) and by <t>(x). Using the fact
that <f>{x) commutes with 00'Vy"') for all i 2: 3 or g - 11, and using the relation

which holds in A, we may now deduce that <f>(y) = 1. Having established this,
it is not difficult to deduce from the relations of A that <£(z) = 1 also, and con-
sequently that <j> is not an ependomorphism. A similar argument deals with the
case where <j)(y3zy~3) lies in a conjugate of a factor, but not in a conjugate of H.

We next consider the case when both <j)(x) and <j>(y3zy~3) lie in (possibly
different) conjugates of H. This case can also be eliminated. The argument is
basically the same as that used in the above case, but the proof is longer and the
normal form theorem, with associated length and cancellation arguments, is
used more strongly. We refer the reader to [3] for details.

Next we assume that <f>{y3zy~3) lies in a conjugate of H. Without loss of
generality we may assume that <j)(x) is cyclically reduced. The above results show
that (t>(x) cannot lie in a factor, so <p(x) has normal form length greater than one.
An easy length argument then shows that </>(y'zy~') lies in H for all i S 3 or
^ — 11. The next step is to establish the structure of <j>(y). It is easy to eliminate
the case in which <j>{y)eH: if this were true, we would have <p(y'zy~')eH for
each i e Z, and then applying (j> to the relation

x(y~3zy3)x~1 = y~6zy6(xy)

of A would yield an equation in which the right-hand side is cyclically reduced
of length greater than one, but in which the left-hand side is not cyclically reduced
unless it lies in a factor. A similar argument eliminates the case where <j)(y) does
not lie in a conjugate of a factor, and yet another argument of the same nature
shows that we may assume that <f>(y) lies within a factor. (A conjugation may be
necessary to establish this, but it does not affect the fact that <j>{x) is cyclically
reduced.)

The proof continues in a similar manner (see [3]) until we obtain the following
situation:

There exists an element heH and elements c and d belonging to different
factors F(c), F(d) of A such that

<Ky3zy~3) = h

4>{y) = c

<j){x) = dc-1

and such that h and c together generate F(c) and h and d together generate F(d).

https://doi.org/10.1017/S144678870001675X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001675X


182 J. M. Tyrer Jones [9]

We consider first the case in which F(c) = L and F(d) = M. Now h is equal
to a word w in the generators of H. Since h and c generate L, h is a primitive
element of the two-generator free group L, so we may apply Theorem 2. This
shows that the sum of the exponents of y3zy~3 and the sum of the exponents of y
appearing in w must be coprime. Suppose that the total sum of the exponents
of all generators y'(y3zy~3)y~' (i =£ — 11, —12, —13) appearing in w is a0, and
suppose that y ~ u (y3zy~3)y12 appears to total exponent ax,that y~l2(y3zy~3)y13

appears to total exponent a2 and that y~l3(yizy~3)yil appears to total exponent
a3. Suppose further that <xx + <x2 — 2a3 ^ 0. Now h and c generate L, and
c~'hc'eH for all but finitely many ieZ. It is not difficult to deduce from this
information that y~'hy'eH for all but finitely many ieZ. But this cannot be the
case if at + <x2 - 2a3 # 0. Thus <xt + a2 - 2a3 = 0, so applying Theorem 2, we
see that a0 + o^ + a2 + a3 = + 1. We now use the full strength of Theorem 2,
in the form

Aut (F2)

Since L is a free group of rank two we may deduce that there exists an element e
of L and integers r, s, = + 1 , and e2 = + 1 such that

But e = h'yJ for some h'e H and some integer J. Thus, modulo an inner auto-
morphism by h', we have

<j>{y3zy-3) = (y3+Jz

Now </>(^3zy~3) and ^>(xy) together generate M, and so, by a further application
of Theorem 2, we obtain

for some integers /, m and e3 = + 1 .
Having found specific values for $(x), <j>(y) and </>(z), we may now check

through the defining relations of A to see whether any of the above maps
are, in fact, ependomorphisms of A. We discover that the only case in which $
is an ependomorphism of A is that in which el = s2 = e3 = 1 and j = r = I
= m = 0. Consequently, modulo an inner automorphism, <j> is the identity map.
It follows that <p is an inner automorphism of A. The case F(c) = M, F(d) = L
can be dealt with similarly, and eliminated.

The only remaining case is that in which 4>(y3zy~3) has cyclically reduced
length greater than one. This case may also be eliminated. The proof is long, but
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very similar to that for the case in which <p(y3zy~3) lies in a conjugate of H.
We refer the reader to [3] for details. This completes the proof of Lemma 3.2.

We are now in a position to complete the proof of Proposition 3. Let </> be an
ependomorphism of A. As noted at the beginning of the proof of Proposition 3,
we have $(£>!) ^ Dx and so <t> induces on A an ependomorphism, which, by
Lemma 3.2, is an inner automorphism. Consequently there exist an element g
of A, and elements <!;, tj and £ of Dj such that

<j>(xA) = gxAg-l£,

We choose an integer r such that £, n and £ all lie in T = {feDl:f(i) = 1 for
all J > 2r}. It is now clear that for any n > r, we have <j>{.S2n) = S2n,

 a n d that
ker(<£) ^ T. Further <f> maps !>! onto Dx and T onto T. But T is a direct product
of finitely many simple groups and, as such, is Hopf. Consequently ker($) is
trivial, so that <j> is an automorphism of A. Thus A is Hopf, as required.

We now turn our attention to the group B. We recall the definition of xB, yB

and xB made just before the statement of Proposition 2.

PROPOSITION 4. B is Hopf.

PROOF. Let D2 be the subgroup of C2 consisting of all functions of finite
support. Using the method of Proposition 3, we see that B contains D2 and that
D2 is the direct product of the minimal normal subgroups of B. We put B = B\D2

and consider the structure of B.
Let C be the cartesian power C = AN, and let D be the subgroup of C con-

sisting of all functions of finite support. Let T be the subgroup of C generated by

X = (x,x,x,---)

Y = (y,y,y,-)

Z = (y20zy-20,ywzy-«>,y60zy-60,...).
We prove

LEMMA 4.1. T contains D. Further the map (a from B to C defined by

a*xB) = X

a*yB) = Y

co(zB) = Z

is a homomorphism of B onto T with kernel D2. (Consequently B is isomorphic
to T, and may be identified with it under a>.)
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PROOF. Consideration of the elements [X~\{Y~20'Z y20')"1] (teN) of T
shows, by an argument similar to that used in the proof of Proposition 2, that
D ^ T. Let co be the map from B onto T defined above. Now a relation
R{xB,yB,zB) = 1 holds in B if and only if

for each ieP2. Similarly a relation S(X,Y,Z) = 1 holds in T if and only if

S(X,F,Z)(O = 1

for each i e N, that is if and only if the relation

S(x,y,y20tzy-20')=l

holds in A for each ieN. Now A = ,4/Z),, so that S(x,y,y20izy-20i) = 1 in A
if and only if the relation

holds in S for all but finitely many teP1. With this in mind it is not difficult to
show that co is a homomorphism. The fact that the kernel of co is equal to D2

may be proved in a similar way. However, the argument is rather more complica-
ted, and it is necessary in the courseof the proof to use the normal form theorem
in S. We refer the reader to [3] for details. This shows that co is an isomorphism
between BjD2 = B and T, so we may identify E with T under co. From now on,
we shall make this identification without further comment. This completes the
proof of Lemma 4.1.

We next consider B = BjD, and, by abuse of notation, we use x, y and z

to denote the images of X, Fand Z in B.

LEMMA 4.2. E = (y,y3zy~3y and F = (xy,y3zy~3y are both two-genera-
tor free groups. Let

K = <(xyy(y3zy-3Xxyr': ieZ} g F,

and let 6 be the isomorphism between H and K defined by

for each ieZ. Then B = *(E,F;H,K,6).

PROOF. A word w = w(x, j>, z) is equal to 1 in B if and only if the corres-
ponding word wB = w(X,Y,Z) of S lies in D. Hence w = 1 in B if and only if
the value wB(i) of wB at j is trivial for all but finitely many i e N. The proof is
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now completed analogously with that of Lemma 3.1, using the normal form
theorem in A.

We wish to prove that every ependomorphism of B is an automorphism.
Proceeding as in the proof of Proposition 3, we have shown that every ependo-
morphism of B induces one of E. We must now show that every ependomorphism
of E induces one of B. To this end we prove

LEMMA 4.3. B is residually finite.

PROOF. We wish to prove that given any non-trivial element g of B there is
a normal subgroup Ng of finite index in B such that g $ Ng. Suppose first that
g$H = K. Now H is normal in B and BjH is a free group of rank two, so the
result follows, in this case, from the fact that free groups are residually finite.
(See, e.g., [4], p. 144, problem 14.)

Now suppose that g e H. Since E is free, we may find a normal subgroup Af x

of finite index in E such that g £ M t . Let M2 be the image of M1 under the map
X: E -> F given by

x(y3zy~3) = y3zy~3

X(y) = xy.

Since the restriction of x to H is equal to the amalgamation map 6, it follows
that g $ M2. If M is the normal closure in B of the subgroup of B generated by
Mj and M 2, then

B/M s *(£/M1,F/M2;HM1/M1,XM2/M2,7i)

where n is the induced amalgamation map from HM1jMl to KM2IM2- Thus

BjM is the generalised free product of two finite groups, and so there is a finite

homomorphic image (the permutational product) of BjM embedding £/Mj

and F/M2. (See [5]). Since g has non-trivial image in EjMu the result follows.

LEMMA 4.4. D is the intersection of all the normal subgroups of finite
index in E.

PROOF. Let R be the intersection of the normal subgroups of finite index
in E. Since E/D is residually finite, it follows that R ^ D. For each i e N, we
define At to be { / eC : f(J) = 1 for all j # i}. Then for each ieN, we have
At ^ D and At s A. If Q is any normal subgroup of finite index in B, then
Q n A, is of finite index in At. However, it is easy to prove that for any integer t,
the adjunction of the relation y' = 1 to the relations of A causes A to collapse
onto the identity. Consequently A has no normal subgroups of finite index.
Thus Qr\At — At for each i e N and so D ^ Q. This is true for each such Q,
and so D ^ R. Thus D = R, as required.
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Now B is finitely generated, and so it follows from Lemma 4.4 that <j>(D) = D
for every ependomorphism <f> of B. We now find the ependomorphisms of B and
see which of these are induced from ependomorphisms of B. Finally, we investigate
which of these are induced from ependomorphisms of B.

LEMMA 4.5. Every ependomorphism i]/ of B may be written, modulo an
inner automorphism, in one of the following forms, where e,- = + 1 for each
i = 1,2,3, and k, r and s are integers.

0)
(ii) j,(y) = y"(ykzy-kyxr, ij,(x) = (ykzy-*)'\

PROOF. Since B is finitely generated and residually finite it is Hopf. (See,

e.g., [4], p. 415.) Thus every ependomorphism of B is an automorphism. Further,

it is easy to check from the defining relations of B that

x(y'zy~l)x~l = y'zy~' for each ieZ.

Consequently \//(x) commutes with \l/(y'zy~') for each ieZ, and we may use
Theorem 1 to investigate the normal form structure of iK*), <K}0 a n d "Kz)-
Suppose first that one of \j/(x) and ip(y3zy~3) lies in a conjugate of a factor, but
not in a conjugate of H. It follows, as in the proof of Lemma 3.2, that

*K[y3zy-3,y*zy-AD = i-
But

[y3zy-3,y*zy-4] * 1,

so this contradicts the fact that \j/ is an automorphism of B. Next suppose that
ij/(x) has cyclically reduced length greater than one. Without loss of generality,
we may assume that \j/{x) is cyclically reduced, and then, by a length argument,
we see that every element of B which commutes with ij/(x) is also cyclically re-
duced. Now x commutes with every element of H, that is, with every element of
(y3zy~3}B, the normal closure of y3zy~3 in B. Thus ij/(x) commutes with every
element of (,ip(y3zy~3)yB. But if \J/(y3zy~3) does not lie in a conjugate of H, then
its normal closure contains some elements which are not cyclically reduced
and which therefore cannot commute with t^(x). Consequently ij/(y3zy~3) lies in a
conjugate of H. A similar argument deals with the case in which $(y3zy~3) has
cyclically reduced length greater than one. Consequently one of i]/(x) and
\p(y3zy~3) lies in a conjugate of if.

We will deal with the case in which \j/{y3zy~3) lies in a conjugate of H. The

other case may be dealt with in a similar way. Since H is normal in B, we must

have ip(y3zy~3) = h for some heH. Further BjH is a free group of rank two
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generated by the images of x and y under the canonical map B -»B/H, and \j/

induces a map i/^ of BjH onto B/</i> B. Since free groups are Hopf (see, e.g., [4],

Theorem 2.13, p. 109) it follows that <h>B = H, and that \\/1 is an automorphism

of BjH. Thus Theorem 2 may be applied to B/H and its automorphism i/^. We

wish to find the total exponent to which y appears in ^(x). We write \p(x) in normal

form

where h^eH and au ftsZ for each i = l ,2 , - - ,n , and we use the fact that i]/(x)

commutes with every element of <ft>B = H, and the relations of B to deduce that

and that hy = I. Theorem 2 now shows that there exist elements ge(x,y}, h' eH
and integers s, (,6! = + 1 and e2 = + 1, such that

>Kx) = gx»g-1

My) = gxs
y
eix'g-'h'.

Now H is normal in B, so we may conjugate by gxs and obtain \j/, modulo an
inner automorphism, in the form

Ky3zy~3) = h2, ^r(x) = x*\ My) = ^E1xr/i3

for some elements h2, h3eH, and some integers r, et = + 1 and e2 = + 1.
We now consider B/<x>B. By checking the defining relations of B, we find that
this is the free group of rank_ two generated by the images of y and z under the
canonical map B -»B/<x>B. Moreover, xfr induces an automorphism of
BK*yB> so Theorem 2 may again be applied. Since y appears to total exponent
zero in any generator of H, we deduce that there is an element gt of £ and integers
s and e3 = + 1 such that

h = ffiO^-3)"^-1, y'lh = giif'tfzy-3)'^;1.

But gt = hAyl for some hAsH and some integer I, so we see that, modulo an
inner automorphism by h4, 1]/ takes the form

<Kx) = x'\ W) = f'(ykzy-kYxr, 3 3 / T
for some integers k,r,s,e1 = + 1, s2 = ± 1 and s3 = + 1. A similar proof
deals with the case where ^(x) lies in a conjugate of H, and this yields an auto-
morphism of type (ii).

To prove that B is Hopf, it is sufficient to show that for every ependomorphism
9 of B, some power of 0 is an automorphism. Now if 9 induces d on B and
8 on B, then 9l induces 0' on B and 9' on B. But Lemma 4.5 shows that modulo
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an inner automorphism of B, for every ependomorphism \jt of B, some power

of ij/ will take the form (i) as above with et ~ E2 = e3 = 1. Moreover, if

My) = X / ^ " * ) V , Kx) = x, My3zy~3) = ykzy~k,

then, modulo an inner automorphism,

<A2O0 = y(y2"-3zy-(2k-3))2sx2r, iP2(x) = x, xj,\y3zy-3) = yu-3zy-(2k-3\

This allows us to make certain restrictions on r, s and k. We now sketch a proof of

LEMMA 4.6. / / B is an ependomorphism of B, and B induces 9 on B, where
0 takes the form (i) above, with st = e2 = e3 = 1, then r = s = 0, fe ^ 3 and
k = 3 (mod. 20).

PROOF. We may write B in the form

B(Y) = Y(YkZY-kyxrZ, B(X) = Xn, d(Y3ZY~3) = YkZY~%

where £,, n and C all lie in D. Let n be the smallest integer such that ^(i) = n(i)
= CO) = 1 for all i ^ n. Now the relations of A show that if i ^ — 20, or if
i < — 20 and i is congruent to 0,1,2,3,4,5 or 6 modulo 20, then

lY\Y3ZY-3)Y-\ Xjt) = 1 for all t e JV.

Thus for each of these values of i

[F ' ' (F 3 ZF- 3 ) r - ' ,X] = 1

is a relation of B.

Suppose that r # 0. By considering, if necessary, B2 in place of B, we may
assume that j r | > 1. We apply B to the above relations, and evaluate the expression

at a suitably chosen t e JV. Using the relations of /£, we find that if j r | > 1, then

9([y'(y3ZF-3)F-SX])(0 ^ 1

for any t > n such that 20t + k> 3, and for any i ^ - (20? + fe - 2). This
contradiction shows that we must have r = 0.

Next we consider the value of k. We have proved that r = 0. This property
of r is preserved by taking powers of B, so we may again consider powers of B in
place of B. We have already shown that

whenever t > n and 20f + fe > 3. Thus
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Consequently - (k — 2) is not congruent to 0, 1, 2, 3, 4, 5 or 6 modulo 20. Thus
k = I (mod. 20) where 3 ^ / g 15. Let n be the map n: Z ->Z defined by

7t(j) = 2i - 3.

Then, by considering powers of d in place of 0, we see that for every j e N the
congruence class of nJ(k) modulo 20 must lie between 3 and 15. This shows that
k = 3, 8 or 13 (mod. 20), so replacing 8 by a suitable power of itself, we may
assume that k = 3 (mod. 20). We observe that this property of k is invariant
under the operation of taking powers of 9.

Next we consider s. If s ^ 0, then, as before, we may assume that | s | > 1
and that s = 0 or 1 (mod. 3). Since k = 3 (mod. 20) we may put k = 20m + 3,
where meZ. We consider the expressions

and

where again t > n and 20f + k > 3. Since - 14 = 6 (mod. 20) and - 1 5 s 5
(mod. 20) these expressions both represent the trivial element of A. But con-
sideration of the relations of A shows that for | s\ > 1 and s = 0 or 1 (mod. 3)
these two relations of A are incompatible. (See [3] for details.) Thus s = 0, as
required.

Finally we prove that k ^ 3. Suppose not. Then since k = 3 (mod. 20) we
may write k in the form k = — 20m + 3 where m > 0. Let

cr = [ x - 1 , ( y - ( 2

Then the relations of A show that

1 if t ± r
j r i i f r - r .

However (y}A = A and so we must have <cr>
B = Ar. We now evaluate B(cr)(t)

for each t e N, and discover that for t > n,

1 if t ^ r + m
y'1 if t = r + m.

We choose r such that r + m > n and consider B{Ar) = <S(cr)>
B. If B(cr)(j) # 1

for some t ^ n, then, since B ^. D and since 4̂ is centreless, we must have

B(Ar)n A,

for that value of t. Thus Ar+m is a proper homomorphic image of Ar. But this
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contradicts the fact that A is Hopf, and so we must have B(Ar) = Ar+m for each
reN such that r + m> n. But B{D) = D, and so it follows that m < n and

B(At x A2 x ••• x An.m) = A1x A2x ••• x An.

Let i be any integer such that l g i ^ n - m and consider B(A?) = <5(c)>B.

Just as before, we see that if

O / = A

for any j such that 1 ^ j ^ n, then B(c,)(k) = 1 for all it ^ j . Since m > 0, it
follows that there is some k (1 ^ fc ^ n) such that ^ # 0(̂ ~7) for any j such
that I ^ j ^ n — m. Thus ^ is generated by t (t ^ 2) proper normal subgroups
Ni,iV2, ••• JVr, where these subgroups commute element-wise. It is clear that at
least one of NUN2, ••• Nt, say Nu contains a cyclically reduced element c which
does not lie in the amalgamated subgroup Hk of Ak. Suppose c lies in a factor
of Ak. Let d£Hkbe an element of the other factor. Then, since JV, is normal in Ak,
we have dcd~1c~i eNl3 so that Nt contains a cyclically reduced element of
length greater than one. Thus in all cases JVX contains a cyclically reduced element
of length greater than one, and so it also contains elements which are not cyclically
reduced, but which have cyclically reduced length greater than one. But the ele-
ments of Nj (2 ^ i g 0 all commute with the elements of Nt. Thus, by a length
argument, we see that all the subgroups Nt (2 g i ^ t) lie within Hk, so that Nt

and Hk together generate Ak. It follows that Nl contains an element, c say, which
lies in a factor. But the elements of Nt (2 ^ i: ^ t) all commute with c and lie
in Hk. Since the factors are free, we deduce that Ak/Nt is cyclic. But it is easy to
prove, from the defining relations of A, that A is perfect. Thus Nt = Ak, contra-
dicting the fact that Nt is a proper normal subgroup of Ak. Consequently we must
have m ^ O , and so k ^ 3 as required.

Next we investigate which of these ependomorphisms B of B can be induced
from an ependomorphism 0 of B. We have

B(Y) = Y£, B(X) = Xri, B(Y3ZY~3) = Y
20m+3 ZY~a0m+3)C

for some m > 0, and some elements ^, r\, £ of D. Recalling the identification of B
with T ^ C given in Lemma 4.1, we prove

LEMMA 4.7. Let 9 be an ependomorphism of B, inducing an ependo-
morphism B of B, where B takes the above form. Let n be the smallest integer
such that £, n and £ all satisfy

i(i) = r,(i) = « 0 = 1

for all i > n. Then m = 0, and 9 induces on n i S i s n i j an automorphism Bn

with the following structure:
There is a permutation n of the set {1,2, •••, n) such that for each i, (1 g / ^ «),
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Bn(A,) = AK(i)

and if Ah /fK(i) are identified with A in the obvious way, then Bn induces an
inner automorphism of A.

PROOF. We write 9 in the form

8(yB) = yB^, e(xB) = xBm,, 9(zB) = yi^z.y;20"1^

where £,u rjt, £x e D2 and £,, n, £ are elements of B such that

£(2* + i) = n{2k + i) = £(2k + i) = l

whenever 2k + i e P2 and i > n. Let reP2 be chosen in such a way that

Ui) = IJI(0 = Ci(0 = i

whenever i > r. Suppose m # 0. Then by Lemma 4.6, m > 0 and so we may
choose fc> r in such a way that k =^ 2^ + i for any s > 0 and any i such that
0 g i 5£ n, and such that k + m = 2' for some t > 0. Now the relations of S
show that

for all i e P2. It follows that

[>iT10*Bj>i0,*J = 1

is a relation of B. However it is easy to check from the relations of S, that when k
is chosen as above we have

0([yBlozByB
o,xB-])(k) * i.

This contradiction shows that we must have m = 0.
To prove the remaining part of Lemma 4.7, we return to the group B and its

ependomorphism 8. The proof is then completed in a manner entirely analogous
to the proof that k _ 3 in Lemma 4.6, so details are omitted here. The fact that
every ependomorphism of A is an inner automorphism (Lemma 3.2) completes
the proof.

We may now complete the proof of Proposition 4. It is sufficient to prove
that for every ependomorphism 9 of B, some power of 9 is an automorphism.
Consequently, working modulo an inner automorphism, and using Lemmas 4.5,
4.6 and 4.7, we may assume that 8 takes the form

u 9(zB) = zBC

where £u rjl, f t e D2, and r e P 2 is chosen in such a way that

WO = fi(0 = Ci(0 = l

whenever i > r, and where <!;, JJ, £ are elements of B such that
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«2» + 0 = t,(2k + i) = C(2* + 0 = 1

whenever 2k + i e P2 and i > n, where n is defined as in Lemma 4.7. We consider

the element

"I — LyB

of B. The relations of S show that

1 if k > t

Now let fe be chosen in such a way that keP2, k > max(f, r) and k j= 2'+ i for
any s > 0 and any i such that 1 5S i 5S w. It is easy to check from the relations
of S that we then have 9(wt)(k) = 1. Moreover, if t > r and t # 2s + j for any
s > 0 and any £ such that 1 :g j ^ «, we have 0(wt)(f) # 1. Now S is simple,
and so we have

S = <w,(t))S

for each teP2- But the groups S} are exactly the minimal normal subgroups
of B, so for each i e P 2 we have either 0(Sf) = Sj for some jeP2 or 0(Sf) = 1.
It follows that if t > r, and t # 2s + i for any s > 0 and for any i such that
1 5a i ^ n, then we must have 0(St) = S,.

We now consider those t e P2 which take the form 2' + i with s > 0 and
1 5£ j 55 /j . Let xB>;, yB,j and zBU be elements of B defined in the following way:

xUk) = yaM = zB,,{k) = 1

if /c e P 2 and k # 2s + j for any s > 0, and for each s > 0

yB,,<? + 0

The form of 0n shows that there are elements gt of B and ^(i), ^(i) and £(() of D2

such that for each i (1 5| i 5| n),

We choose r' eP2 such that for each j (1 _ i _ n)

{(«(0 = , « ( o = C(i)(0 = 1
for all teP2 such that f > r'. By considering the element
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of B (where teP,), and using the same argument as before, we prove that if
k> r' and k = 2s + i for some s > 0 and some i such that 1 ^ i ^ n, then we
must have

Let r" = max (r, r'). It follows from the above reasoning that

ker(0) g,S3xS5x ••• x S^
and that

0(S3 x S5 x ••• x Sr») = S3 x S5 x ••• x Sr».

But the groups St are all simple. Consequently ker(0) = 1, and so 8 is an auto-
morphism of B. Thus B is Hopf, as required.

This completes the proof of Theoerem A.

3. The proof of Theorem B

We now use a similar method to construct a finitely generated group Go

isomorphic to its own direct square. For this construction we shall need the
structure known as a Higman-Neumann-Neumann (HNN) or Britton extension,
and the associated normal form theorem, Britton's lemma. Details of the theorems
required here may be found in [3], Chapter 1.

We begin by constructing the 'base group' So. We take S' to be the group
SP>(T t where p, a and T are defined on the negative integers as follows:

Let A, = {neZ: - 20* ^ n S - 20 /+ 19}. Then p,a and x fix each A,
set-wise, and induce on A, permutations pt,at and T, defined (as products of
disjoint cycles) by

pt= ( - 20/ + 18, - 20* + 19)

ut = ( - 20i + 9, - 20t + 10)( - 20/ + 12, - 20/ + 15, - 20/ + 13)
( - 20/ + 14, - 20/ + 19)

T, = ( - 20/ + 12, - 20/ + 13) ( - 20/ + 14, - 20/ + 19, - 20/ + 18).

The subgroup <a, p> of S' is free, and so we may make an HNN extension S"
of S' by adding to S' the generator c and the relations

c~lac = a

c~*pc = p2.

An application of Britton's lemma shows that the subgroup (b~la, c> of S" is
free. Let H be a group with presentation

H = <.d,e,f: ede-1 = d\dfd~l = / 2 > .
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H is the result of two HNN extensions, first of the free group </> by the generator
d, according to the relation dfd~l = / 2 , and then of the resulting group by the
generator e according to the relation ede~l = d1. It follows from Britton's lemma
that the subgroups <e> and </> of H generate their free product, which is a free
group of rank two. We may, therefore, form the free product of S" and H amal-
gamating the subgroups <ft~ia, c> of S" and <e,/> of H according to the relations

b~la = e

The resulting group is

So = (a,p,b,q,c,d: a'pm = bui)q"m for each iel, c'^ac = a,

c-'pc = p2, {b-la)d(b-la)-1 = d\ dcd-1 = c2>.

Let C be the cartesian power C = S%, and let Go be the subgroup of C
generated by

x = (b-1a,b-ia,b-1a,-)

y = (P,P,P,---)

z = (p10ap-9,p20ap-i9,P3°ap-29,-)

t = (c,c,c,-)

u = (d,d,d,-).

We define Px to be the subset of N consisting of all odd numbers, P2 to be the
corresponding set of even numbers, and Cu C2 to be the cartesian powers
So', So2respectively, considered in the natural way as subgroups of C. For each
feG0, we define functions / i , / 2 e C as follows:

For eachy = 1,2

f.(i) = ! •*
• / A ; ( 1 otherwise.

We define

for each j =1,2. We prove that G2 = Go, from which it follows that Go = Gt x G2.

Using the definitions of p, a and T given above, we see that for each t e N the
following relations hold in So:

(1) (ft-1aXp20'fl|»"20'+1Xfl"1*) = P2°'ap-2O'+1

(2) (i-1a)(p2O'~loflp~2O< + 11Xfl~1&) = P
20'-9a2p-20t+11
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(3) (6

(4) (b

Consider the element [ x ' S z " 1 ] of Go. By (1) and (2) we have

Thus Go contains zt and all its conjugates by powers of y. It now follows, in a
similar way, from (3) and (4) that Go contains x ^ and yt. Consequently Go

also contains x2, y2 and z2. Further,

u-1x2u = {l,d-\b-la)d,l,d-\b-la)d,l,-)

= (\,d{b-xa),\,d(b-xa),\,-)

which shows that Go also contains H2. Also

t~lu2t=

= t2U2

which shows that Go contains t2. Thus G2 = <x2,y2,z2,t2 ,«2> g Co , and so
Go = Gt x G2.

Let a: C -» C be the monomorphism defined by

c*Hf-« si:;.
Then a | Gl is an isomorphism of Gl onto G2, so in order to complete the proof
that Go = Go x Go, we need only show that G2 s Go. To this end, we let
fi: C -^ C be the monomorphism defined by

(//9(2Q = / ( 0

(//0(2i - 1) = l.

We investigate the image of Go under )S. Since

we see that /? maps Go onto G2. Thus P | Gn is an isomorphism between Go and G2,
so that Gy ^ G2 ^ Go, as required. This completes the proof of Theorem B.
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