
8
Electromagnetic interactions

In this section we discuss the interaction of nuclei, nucleons, or any finite
quantum mechanical system with the electromagnetic field. Much of what
we know about nuclei and nucleons comes from such interactions. We start
with the general multipole analysis of the interaction of a nucleus with
the quantized radiation field [Bl52, Sc54, de66, Wa95]. In the following
ep = |e| is the proton charge.

The starting point in this analysis is the total hamiltonian for the nuclear
system, the free photon field, and the electromagnetic interaction

Htotal = Hnuclear +
∑
k

∑
ρ=1,2

h̄ωka
†
kρakρ

−ep

c

∫
JN(x)·A(x) d3x +

e2
p

8π

∫ ∫
ρN(x)ρN(x′)

|x − x′| d3x d3x′ (8.1)

This is the hamiltonian of quantum electrodynamics (QED); it is written in
the Coulomb gauge. A is the vector potential for the quantized radiation
field, which in the Schrödinger picture takes the form

A(x) =
∑
k

∑
ρ=1,2

(
h̄c2

2ωkΩ

)1/2

[ekρakρe
ik·x + h.c.] (8.2)

Here ekρ with ρ = (1, 2) represent two unit vectors transverse to k (see
Fig. 8.1). The hermitian conjugate is denoted by h.c. We quantize with
periodic boundary conditions (p.b.c.) in a large box of volume Ω, and in
the end let Ω → ∞. With this choice

1

Ω

∫
Box

d3x ei(k1−k2)·x = δk1,k2
(8.3)

where the expression on the right is a Kronecker delta.
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32 Part 2 General analysis
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Fig. 8.1. Transverse unit vectors.

The only assumption made about the target is the existence of local
current and charge density operators JN(x) and ρN(x). These quantities
must exist for any true quantum mechanical system. Hnuclear could be
given in terms of potentials, or it could be for a coupled baryon and
meson system, or it could be for a system of quarks and gluons; it does
not matter at this point.1

It is convenient to henceforth incorporate the explicit factor of 1/c in
Eq. (8.1) into the definition of the current JN(x) itself.

First go from plane polarization to circular polarization with the trans-
formation (cf. Fig. 8.1).

e±1 ≡ ∓ 1√
2
(e1 ± ie2) e0 ≡ ez ≡ k

|k| (8.4)

These circular polarization vectors satisfy the relations

e
†
kλ = (−1)λek−λ e

†
λ·eλ′ = δλλ′ (8.5)

If, at the same time, one defines

ak±1 ≡ ∓ 1√
2
(ak1 ∓ iak2) (8.6)

then the transformation is canonical

[akλ, a
†
k′λ′] = δkk′δλλ′ (8.7)

Since e1a1 + e2a2 = e+1a+1 + e−1a−1 the vector potential takes the form

A(x) =
∑
k

∑
λ=±1

(
h̄c2

2ωkΩ

)1/2

[ekλakλe
ik·x + h.c.] (8.8)

The index λ = ±1 is the circular polarization, as we shall see, and only
λ = ±1 appears in the expansion so ∇ · A(x) = 0, characterizing the
Coulomb gauge.

Now proceed to calculate the transition probability for the nucleus or

1 Although Eq. (8.1) is correct in QCD, some models may have an additional term of

O(e2A2) in the hamiltonian; the arguments in this section are unaffected by such a term.
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8 Electromagnetic interactions 33

nucleon to make a transition between two states and emit (or absorb)
a photon. Work to lowest order in the electric charge e, use the Golden
Rule, and compute the nuclear matrix element 〈JfMf; kλ|H ′|JiMi〉 where
H ′ is here the term linear in the vector potential in Eq. (8.1); it is this
interaction term that can create (or destroy) a photon. All that will be
specified about the nuclear state at this point is that it is an eigenstate of
angular momentum. It will be assumed that the target is massive and its
position will be taken to define the origin; transition current densities occur
over the nuclear volume and hence all transition current densities will be
localized in space. Since the photon matrix element is 〈kλ|a†

k′λ′ |0〉 = δkk′δλλ′ ,
the required transition matrix element takes the form2

〈JfMf; kλ|Ĥ ′|JiMi〉 = −ep

(
h̄c2

2ωkΩ

)1/2
〈JfMf |

∫
e−ik·xe†

kλ·Ĵ(x) d3x|JiMi〉

(8.9)
This expression now contains all of the physics of the target. We proceed to
make a multipole analysis of it. With the aid of the Wigner–Eckart theorem
we will then be able to extract two invaluable types of information:

• The angular momentum selection rules

• The explicit dependence on the orientation of the target as expressed
in (Mi,Mf)

The goal of the multipole analysis is to reduce the transition operator to
a sum of irreducible tensor operators (ITO) to which the Wigner–Eckart
theorem applies [Ed74].

We recall the definition of an ITO. It is a set of 2J+1 operators T̂ (J,M)
with −J ≤ M ≤ J that satisfy the following commutation relations with
the three components Ĵi of the angular momentum operator

[Ĵi, T̂ (J,M)] =
∑

M′ 〈JM ′|Ĵi|JM〉 T̂ (J,M ′) (8.10)

The above is the infinitesimal form of the integral definition of an ITO
(they are fully equivalent)

R̂αβγT̂ (J,M)R̂−1
αβγ =

∑
M′DJ

M′ M(αβγ) T̂ (J,M ′) (8.11)

Here R̂αβγ is the rotation operator, and DJ
M′ M(αβγ) are the rotation

matrices, defined by [Ed74]

R̂αβγ ≡ eiαĴ3eiβĴ2eiγĴ3

DJ
M′ M(αβγ) = 〈JM ′|eiαĴ3eiβĴ2eiγĴ3 |JM〉 (8.12)

We proceed to the multipole analysis.

2 For clarity we now use a notation where a caret over a symbol denotes an operator in

the target Hilbert space.
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