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The interaction of barotropic tidal currents and baroclinic geostrophic eddies is
considered theoretically and numerically to determine whether energy can be
transferred to an internal wave field by this process. The eddy field evolves
independently of the tide, suggesting that it acts catalytically in facilitating energy
transfer from the barotropic tide to the internal wave field, without exchanging energy
with the other flow components. The interaction is identically zero and no waves are
generated when the barotropic tidal current is horizontally uniform. Optimal internal
wave generation occurs when the scales of tide and eddy fields satisfy resonant
conditions. The most efficient generation is found if the tidal current horizontal scale
is comparable to that of the eddies, with a weak maximum when the scales differ by
a factor of two. Thus, this process is not an effective mechanism for internal wave
excitation in the deep ocean, where tidal current scales are much larger than those
of eddies, but it may provide an additional source of internal waves in coastal areas
where horizontal modulation of the tide by topography can be significant.
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1. Introduction
The motivation for this study comes from surface-drifter observations in the

Western Boundary Current of the subpolar North Pacific, which showed intense
near-inertial/diurnal frequency motions trapped within anticyclonic warm-core rings
(Rogachev et al. 1992, 1996; Rogachev & Carmack 2002). The authors speculated
that the lower bound of the internal wave frequency band had been locally decreased
by the rings’ negative vorticity (Kunze 1985), trapping the near-inertial waves within
the rings. The proximity of the near-inertial and near-diurnal frequencies led them to
speculate that the waves might have been generated by a diurnal tide–eddy interaction.
However, given their limited data, they could not rule out the role of wind forcing
or sub-inertial instability. The evidence for the suspected role of the barotropic tide
was, by and large, circumstantial and not substantiated by any theoretical arguments.
Nor does this mechanism appear to have been considered rigorously in previous work.

† Email address for correspondence: pascale@nwra.com
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2 M.-P. Lelong and E. Kunze

The objective of this paper is to examine this overlooked mechanism for internal tide
generation theoretically and numerically under mid-latitude conditions.

The best-established mechanism for the generation of linear internal waves by the
surface tide in the ocean is through the interaction of surface tidal currents with
topography (Cox & Sandstrom 1962; Wunsch 1975; Simmons, Hallberg & Arbic
2004; Garrett & Kunze 2007). Bell (1975) developed a complete theory for the case
of small-amplitude (topographic height h� bottom depth H), gently sloped (bottom
slope α < ray slope s) two-dimensional (2D) topography h(x, y), including the case
of finite excursions relative to the topographic length scale. This approach has been
extended to one-dimensional (1D) cases where α/s→ 1 (Balmforth, Ierley & Young
2002; Llewellyn Smith & Young 2002; St Laurent & Garrett 2002). Thorpe (1992)
and MacCready & Pawlak (2001) examined the case of bottom roughness on a slope.
The case of finite amplitude and finite slope has proven more challenging, though
topographic features of these characteristics are clearly important in transferring energy
from barotropic to baroclinic tides (Morozov 1995; Ray & Mitchum 1997; Egbert &
Ray 2001). Insight has largely been gained by examining idealized 1D topographies
(Khatiwala 2003; Llewellyn Smith & Young 2003; St Laurent et al. 2003; Petrelis,
Llewellyn Smith & Young 2006), or from observations (e.g. Pingree, Mardell & New
1986; Pingree & New 1989; Althaus, Kunze & Sanford 2003; Rudnick et al. 2003;
Nash et al. 2006; Lee et al. 2006). Generation by general 2D topography has required
numerical simulation (Holloway & Merrifield 1999; Merrifield & Holloway 2002;
Simmons et al. 2004). A monograph (Vlasenko, Stashchuk & Hutter 2005) and recent
review (Garrett & Kunze 2007) discuss mostly theoretical aspects of tide–topography
interaction.

Here, we consider the interaction of an oscillating tidal current with a baroclinic
geostrophic eddy field. The geostrophic eddy field time scale is an advective time
scale, much longer than the tidal period. If the characteristic length scales of the
eddy field and tide combine to match those of an internal wave of tidal frequency, a
resonant interaction occurs, similar to the wave–wave triad resonant interactions that
transfer energy efficiently between internal waves (McComas & Bretherton 1977).

The general mathematical framework for delineating eddy motions, barotropic and
internal tides is introduced in the following section. In § 3, we examine a simple
prototype flow and establish conditions under which resonance between the eddy field
and barotropic tide can occur. Section 4 presents numerical simulations designed to
validate and extend the analytical solutions. Discussion of our results and concluding
remarks are given in § 5.

2. Problem definition
2.1. Wave-triad interactions

The envisioned interaction between a barotropic tide and an eddy field bears
similarities with internal wave-triad interactions (McComas & Bretherton 1977;
Müller et al. 1986) and with the resonant interaction between wind-forced, near-
inertial motions and a turbulent mesoscale eddy field (Danioux & Klein 2008). To
illustrate, we consider a barotropic semidiurnal tide of frequency ω0 and wavevector
κ0 = {0, l0, 0} and an eddy field with characteristic wavevector κ1 = {k1, l1,m1} and
time scale 1/k1U � 2π/ω0, where U is an eddy velocity scale. We assume that the
tide does not change appreciably in the zonal direction, but we allow for meridional
modulation due, for example, to topographic variations. The coordinate system is
Cartesian, with {ki, li,mi} denoting the two horizontal wavenumbers and mi the vertical
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Barotropic tide–eddy interactions 3

wavenumber. Typical eddy time scales are much longer than the tidal period and
the nonlinear quadratic interaction of the tide and eddy components therefore excites
motions with functional form proportional to

ei[k1x±(l0±l1)y±m1z±ω0t]. (2.1)

Under most conditions, the interaction is weak. However, if the scales of the
barotropic tide and eddy field are such that resonance conditions

κ0 ± κ1 = κ2, (2.2a)
ω0 = ω(κ2) (2.2b)

are satisfied for either the ‘+’ or ‘−’ relations, then a stronger interaction is possible,
exciting a baroclinic tide, i.e. an inertia–gravity wave (IGW) of frequency ω2 = ω(κ2)

and wavenumber κ2 = {k2, l2,m2} = {k1, l0 ± l1,m1}, where

ω(κ2)=
√

N2(k2
2 + l2

2)+ f 2m2
2

k2
2 + l2

2 + m2
2

(2.3)

is the dispersion relation for an IGW with wavevector {k2, l2,m2} propagating in
a stratified, rotating fluid; and N and f denote buoyancy and Coriolis frequencies,
respectively. The resonant triad comprises barotropic tide, eddy field and IGW
components with characteristic scales as described above. Because the time scale over
which the eddy field evolves is much longer than the tidal period in our case, ω2 ≈ ω0.
The relative locations of the barotropic tide, eddy and baroclinic tide components in
wavenumber–frequency space are illustrated schematically in figure 1.

2.2. Mathematical formulation
Model equations are the f -plane Boussinesq equations,

∂uh

∂t
+ (uh ·∇h)uh + w

∂uh

∂z
+ 1
ρ0
∇hp+ f ê3 × uh = ê1F(y, t), (2.4a)

∂w

∂t
+ (uh ·∇h)w+ w

∂w

∂z
+ 1
ρ0

∂p

∂z
− b= 0, (2.4b)

∂b

∂t
+ (uh ·∇h)b+ w

∂b

∂z
+ N2w= 0, (2.4c)

∇h ·uh + ∂w

∂z
= 0, (2.4d)

where uh = {u, v} is the horizontal velocity, w the vertical velocity, b = −gρ/ρ0 the
buoyancy and p the pressure. The buoyancy frequency N =

√
−(g/ρ0)(dρ(z)/dz) is

defined in terms of the mean density profile ρ(z) and is taken to be constant. Vectors
ê1 and ê3 are unit vectors in the x and z directions. Boundary conditions are periodic
in x and y and rigid-lid free-slip in z.

The effect of the barotropic tide is incorporated as a time-dependent forcing term

F(y, t)= U(y)
ω2

0 − f 2

ω0
cosω0t (2.5)

on the right-hand side of the u momentum equation. This forcing represents a
parametrization of the variation of sea surface slope with the tidal cycle and is chosen
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4 M.-P. Lelong and E. Kunze
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FIGURE 1. Barotropic tide (T), eddy field (e) and baroclinic tide (IGW) locations
in (a) vertical wavenumber–frequency space (m, ω), (b) horizontal wavenumber–vertical
wavenumber space (κh,m) and (c) horizontal wavenumber–frequency space (κh, ω). The
origin of each panel is at the centre and the dotted vertical and horizontal lines represent
axes; M2 denotes the semidiurnal tide.

to elicit a response of the form u = U(y) sinω0t, where ω0 denotes the tidal frequency.
The eddy field is introduced as an initial condition in geostrophic and hydrostatic
balance.

2.3. Scaling
The scaling is based on the requirements that:

(a) Coriolis and pressure-gradient terms be of the same order and present in the
lowest-order eddy field equations,

[P] = ρ0 fUL; (2.6)

(b) buoyancy and pressure fields be in hydrostatic balance, leading to

[B] = [P]
ρ0H
= fU

δ
, (2.7)

where aspect ratio δ = H/L=W/U.

Here, L and H are horizontal and vertical length scales of the eddy field, and U and W
horizontal and vertical velocity scales of the eddy field. The Rossby number ε, which
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Barotropic tide–eddy interactions 5

represents the ratio of inertial to advective time scales

ε ≡ U

fL
, (2.8)

is introduced as a small parameter.
We make the additional reasonable assumptions that H ∼ εL and W ∼ εU, which

sets δ = O(ε). This is justified, given typical oceanic values for f /N of O(10−2), of
the same order as ε based on a mid-latitude f = 10−4 s−1, a geostrophic eddy velocity
scale U of O(0.1 m s−1) and length scale L of O(102 km). This implies that the
Burger number Bu= (NH/fL)∼ O(1). With this scaling and a time scale T0 = 1/f , the
non-dimensional equations are

∂u∗

∂t∗
+ εu∗h ·∇∗hu∗ + εw∗

∂u∗

∂z∗
+ ∂p∗

∂x∗
− v∗ = U∗(y)

ω∗20 − 1
ω∗0

cosω∗0t∗, (2.9a)

∂v∗

∂t∗
+ εu∗h ·∇∗hv∗ + εw∗

∂v∗

∂z∗
+ ∂p∗

∂y∗
+ u∗ = 0, (2.9b)

ε2 ∂w∗

∂t∗
+ ε3u∗h ·∇∗hw∗ + ε3w∗

∂w∗

∂z∗
+ ∂p∗

∂z∗
− b∗ = 0, (2.9c)

∂b∗

∂t∗
+ w∗ + εu∗h ·∇∗hb∗ + εw∗

∂b∗

∂z∗
= 0, (2.9d)

∇∗h ·u∗h +
∂w∗

∂z∗
= 0. (2.9e)

Equations (2.9a–e), along with suitable initial and boundary conditions, provide the
starting point for delineation of the barotropic tide, eddy field and IGW fields.
From now on, all variables will be non-dimensional but asterisks will be omitted
for simplicity.

2.4. Multiple-scale formalism
The problem is formulated in terms of two time scales, a fast time scale T0 = 1/f
characterizing the barotropic tide and IGWs, and a slow advective time scale T1 = L/U
describing the evolution of the eddy field. The Rossby number ε is given by the ratio
of these two time scales. The choice of fast time scales is not unique: one could also
use the tidal period. However, our definition of T0 results in simpler equations since
inertial motions are natural modes of the rotating Boussinesq equations.

In terms of these two variables, the partial time derivative becomes

∂

∂t
= ∂

∂t0
+ ε ∂

∂t1
, (2.10)

where t0 = t/T0 and t1 = t/T1.

3. Weakly nonlinear theory
At this point, each flow variable G = {u, v,w, ρ, p} is expanded in powers of the

Rossby number ε, i.e.

G(x; t0, t1)= G(0)(x; t0, t1)+ εG(1)(x; t0, t1)+ O(ε2). (3.1)

This power series is unique provided that each G(i) remains O(1) for all time
(Kevorkian & Cole 1981). Strictly speaking, this representation is only exact for
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6 M.-P. Lelong and E. Kunze

times less than 1/ε. For longer times, additional slow-time variables (∼ ε2t, ε3t, . . .)
need to be introduced.

The next step consists of delineating eddy, tidal and internal wave components, and
deriving the equations that govern their respective time evolution.

3.1. Eddy, tide and wave definitions
The eddy field is defined as the temporal average of the flow over the fast time scale
(Reznik, Zeitlin & Ben Jelloul 2001; Zeitlin, Reznik & Ben Jelloul 2003). It represents
the slow component at each order in ε. For velocity,

u(i)e (x, t1)≡ 〈u(i)(x; t0, t1)〉 = lim
T→∞

1
T

∫ t+T

t
u(i)(x; τ0, t1) dτ0, (3.2)

where T0 ∼ T � T1. Generally, the inclusion of a limit as T→∞ is needed in (3.2)
to eliminate term contributions from the upper limit of integration. Other eddy flow
variables are similarly defined.

The fast component, denoted by the subscript ‘f ’, is

u(i)f (x; t0, t1)= u(i)(x; t0, t1)− u(i)e (x, t1). (3.3)

This representation is unique since, by definition, fast variables have zero mean over
the fast time scale,

1
T

∫ T

0
u(i)f (x; t0, t1) dt0 = 0. (3.4)

The fast component is further split into a depth-mean (barotropic) part for the tide,

u(i)T (x, y; t0, t1)≡ u(i)f (x; t0, t1)= 1
H

∫ 0

−H
u(i)f (x, y, z; t0, t1) dz, (3.5)

and a baroclinic perturbation about this average, representing the internal wave field,

u(i)w = u(i)f − u(i)T , (3.6)

where

1
H

∫ 0

−H
u(i)w dz= 0 (3.7)

ensures the uniqueness of the second decomposition.
Equations governing the eddy flow are derived by applying the temporal average

(defined by (3.2)) to (2.9) at each order in ε. Fast-flow equations are obtained by
subtracting temporally averaged equations from the full equations (2.9). The barotropic
tide satisfies the depth-averaged fast-flow equations and the internal wave field, the
difference of fast-flow equations and depth-averaged equations.

Initial conditions, defining the eddy field at t = 0, are functions of x, y and z,
satisfy thermal-wind balance and do not depend on ε. The tide is zero initially and
is introduced through a forcing term in the momentum equations. To simplify the
analysis, spatial dependence of the tidal forcing is chosen to be sinusoidal.

3.2. Lowest order
3.2.1. Eddy field

At lowest order, eddy field equations are

∇p(0)e + ı̂3 × u(0)e + b(0)e ı̂3 = 0, (3.8a)
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Barotropic tide–eddy interactions 7

w(0)
e = 0, (3.8b)

∇ ·u(0)e = 0. (3.8c)

Lowest-order eddy solutions replicate the spatial structure of the initial conditions, left
unspecified for now. Their slow-time behaviour remains undetermined at this order.

3.2.2. Barotropic tide
At lowest order, the barotropic tide obeys

∂u(0)T

∂t0
− v(0)T = UT

(ω2
0 − 1)
ω0

cos l0y cosω0t0, (3.9a)

∂v
(0)
T

∂t0
+ u(0)T =−

∂p(0)T

∂y
, (3.9b)

p(0)T (0)− p(0)T (−H)= b(0)T , (3.9c)

∂b(0)T

∂t0
+ w(0)

T = 0, (3.9d)

∇h ·u(0)T = 0, (3.9e)

with u(0)T (x, t = 0) = v(0)T (x, t = 0) = w(0)
T (x, t = 0) = b(0)T (x, t = 0). Since w(z = 0) =

w(z=−H)= 0, we have w(0)
T ≡ 0, b(0)T ≡ 0 and p(0)T (x, y, 0; t0, t1)= p(0)T (x, y,−H; t0, t1).

For the horizontal tidal velocity, two cases must be distinguished, depending on
whether the tidal forcing is a function of y or not.

(i) If there is no y dependence (l0 = 0), then (3.9) can be combined into a single
equation,

∂2u(0)T

∂t2
0

+ u(0)T =−UT(ω
2
0 − 1) sinω0t0, (3.10)

with initial conditions

u(0)T (0)= 0 (3.11)

and

∂u(0)T

∂t0

∣∣∣∣∣
t=0

= UT
(ω2

0 − 1)
ω0

, (3.12)

leading to linear combinations of tidal frequency and inertial wave responses,

u(0)T = UT

(
sin[ω0t0 + φ(t1)] − 1

ω0
sin t0

)
, (3.13a)

v
(0)
T =−UT

1
ω0
(cos[ω0t0 + φ(t1)] − cos t0). (3.13b)

Even though the tidal forcing amplitude UT is constant, the tidal solution may still
undergo time modulation through a slowly varying phase φ(t1), where φ(0) = 0.
Equivalently, the slow-time variation can be taken into account by defining a complex
amplitude u(0)BT = UTeiφ(t1). The sin t0 and cos t0 terms are homogeneous solutions of the
linear equations of motion and represent free oscillations of the fluid at the natural
(Coriolis) frequency of the system. When Coriolis and tidal frequencies coincide, the
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8 M.-P. Lelong and E. Kunze

forcing term in (3.9a) vanishes, resulting in a trivial solution. The strongest forcing
occurs when ω0 is much greater than the Coriolis frequency (ω0� 1). In this case, the
tidal response becomes purely zonal, with v(0)T → 0.

(ii) If l0 6= 0, then v(0)T ≡ 0 in order to satisfy continuity, and (3.9) yields

u(0)T = UT
(ω2

0 − 1)
ω2

0

cos l0y sinω0t0, (3.14a)

p(0)T =−
∫

u(0)T dy. (3.14b)

In this case, the tidal solution does not include inertial oscillations.

3.2.3. Internal inertia–gravity wave field
Inertia–gravity waves satisfy

∂u(0)hw

∂t0
+ ı̂3 × u(0)w =−∇hp(0)w , (3.15a)

∂p(0)w

∂z
= b(0)w , (3.15b)

∂b(0)w

∂t0
+ w(0)

w = 0, (3.15c)

∂u(0)w

∂x
+ ∂v

(0)
w

∂y
+ ∂w(0)

w

∂z
= 0, (3.15d)

where u(0)hw = {u(0)w , v
(0)
w }. Equations (3.15a–d) can be reduced to a wave equation,

∂2

∂t2
0

(
∂2w(0)

w

∂z2

)
+∇2w(0)

w = 0, (3.16)

with homogeneous initial conditions. In the absence of external forcing,
w(0)

w (x; t0, t1)= u(0)w (x; t0, t1)= v(0)w (x; t0, t1)= b(0)w (x; t0, t1)≡ 0. Therefore, no waves are
excited at lowest order.

3.3. The O(ε) system
3.3.1. Eddy field

At O(ε), the eddy equations are

∇p(1)e + ı̂3 × u(1)e + b(1)e ı̂3 =−∂u
(0)
e

∂t1
− 〈u(0) ·∇u(0)〉, (3.17a)

w(1)
e =−

∂b(0)e

∂t1
− 〈u(0)e ·∇b(0)e 〉, (3.17b)

∇ ·u(1)e = 0, (3.17c)

where 〈 〉 denotes temporal averaging. The initial conditions are homogeneous.
Taking the vertical component of the curl of (3.17a), the z derivative of (3.17b)
and combining the resulting equations yields an equation describing the slow-time
behaviour of the O(1) eddy solution. The last term in (3.17a) contains only
contributions from eddy–eddy interactions since the fast–fast interactions, which, at
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Barotropic tide–eddy interactions 9

this order, only involve the tide, are identically zero. In terms of a stream function
ψ (0), u(0)e =−ψ (0)

y , v(0)e = ψ (0)
x and b(0)e =−ψ (0)

z , the slow evolution is governed by

∂Π (0)

∂t1
+ ∂(ψ

(0),Π (0))

∂(x, y)
= 0, (3.18)

the conservation equation for the lowest-order potential vorticity Π (0) = ∇2ψ (0), where
∇2 is the three-dimensional Laplacian. An important result is that the eddy solution
evolves on the slow time independently of the tide. This type of behaviour could have
been anticipated since it is characteristic of interactions between flow components with
disparate time scales (e.g. Lelong & Riley 1991).

3.3.2. Barotropic tide
The barotropic tide equations are

∂u(1)T

∂t0
+ ı̂3 × u(1)T +∇hp(1)T =−

∂u(0)T

∂t1
− u(0)e ·∇hu

(0)
T − u(0)T ·∇hu(0)e , (3.19a)

1
H
(p(1)T (z= 0)− p(1)T (z=−H))= b(1)T , (3.19b)

∂b(1)T

∂t0
+ w(1)

T =−
∂b(0)T

∂t1
− u(0)T ·∇hb(0)e , (3.19c)

∂u(1)T

∂x
+ ∂v

(1)
T

∂y
= 0, (3.19d)

where, as in the O(1) solutions, w(1)
T ≡ 0, owing to the vertical boundary conditions.

The overbar denotes vertical averaging. Tide–tide interactions are identically zero. The
slow-time evolution of u(0)T is governed by a kinetic energy equation,

1
2
∂

∂t1
‖u(0)T ‖2 = u(0)T v

(1)
T − u(0)T

∂u(1)T

∂t0
+ u(0)T M(u(0)e , u(0)T ), (3.20)

and M is given by the last two terms of (3.19a). Equation (3.20) includes eddy–tide
interaction terms, in contrast to (3.18), which is decoupled from tidal flow. Equation
(3.20) is a mixed-order equation and cannot be solved without explicitly solving for
u(1)T , a consequence of the absence of wave excitation at lowest order. However, the
behaviour of the potential vorticity is strongly reminiscent of situations where the eddy
field plays a catalytic role in transferring energy out of the fast component but does
not exchange energy with it (e.g. Lelong & Riley 1991; Waite & Bartello 2004).

3.3.3. Internal inertia–gravity waves
The baroclinic equations are

∂u(1)w

∂t0
+ ı̂3 × u(1)w +∇hp(1)w

=−∂u
(0)
w

∂t1
− u(0)e ·∇hu

(0)
T + u(0)e ·∇hu

(0)
T − u(0)T ·∇hu(0)e + u(0)T ·∇hu(0)e

−u(0)T ·∇hu
(0)
T + u(0)T ·∇hu

(0)
T + 〈u(0)T ·∇hu

(0)
T 〉 − 〈u(0)T ·∇hu

(0)
T 〉, (3.21a)

∂w(1)
w

∂t0
+ ∂p(1)w

∂z
= b(1)w , (3.21b)
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10 M.-P. Lelong and E. Kunze

∂b(1)w

∂t0
+ w(1)

w =−u(0)T ·∇hb(0)e + u(0)T ·∇hb(0)e , (3.21c)

∂u(1)w

∂x
+ ∂v

(1)
w

∂y
+ ∂w(1)

w

∂z
= 0, (3.21d)

which can be combined and expressed as a forced wave equation,

∂2

∂t2
0

(
∂2w(1)

w

∂z2

)
+∇2w(1)

w =
3∑

i=1

F(0)
i , (3.22)

with

F(0)
1 =

∂2

∂t0∂z
∇h · [(u(0)h ·∇h)u

(0)
h ], (3.23a)

F(0)
2 =−∇2

h [u(0)h ·∇hb(0)], (3.23b)

F(0)
3 =

∂

∂z
[e3 · [∇ × (u0) ·∇)u(0)h )]], (3.23c)

where the F(0)
i notation indicates dependence on the lowest-order solutions. Terms with

factors of w(0) do not contribute at this order, since w(0) ≡ 0. Generally, the solution
can be expressed in terms of a Green’s function integral.

3.4. Example
To illustrate the theory, we consider simple, unimodal initial conditions consisting of
three-dimensional Taylor–Green vortices. In non-dimensional form,

ue(t = 0)= cos k1x sin l1y cos m1z, (3.24a)

ve(t = 0)=−k1

l1
sin k1x cos l1y cos m1z, (3.24b)

we(t = 0)= 0, (3.24c)

be(t = 0)= m1

l1
cos k1x cos l1y sin m1z, (3.24d)

pe(t = 0)= 1
l2

cos k1x cos l1y cos m1z. (3.24e)

Taylor–Green vortices constitute an exact stationary solution of the unforced, inviscid,
nonlinear equations of motion. More general, surface-intensified representations of the
eddy field will be examined in the numerical simulations.

The eddy field solution is

u(0)e = Ue(t1) cos k1x sin l1y cos m1z, (3.25a)

v(0)e =−
Ue(t1)k1

l1
sin k1x cos l1y cos m1z, (3.25b)

b(0)e =
Ue(t1)m1

l
cos k1x cos l1y sin m1z, (3.25c)

p(0)e =
Ue(t1)

l1
cos k1x cos l1y cos m1z, (3.25d)
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Barotropic tide–eddy interactions 11

where Ue(0)= 1. Lowest-order eddy solutions do not deviate from their initial state on
the fast time scale. Slow-time behaviour remains undetermined at this order.

The barotropic tide solution was derived in the previous section and will not be
repeated. Moreover, as in the general case, no waves are excited at O(1).

Since nonlinear eddy–eddy terms are zero, the slow-time behaviour of the eddy field
reduces to

∂Π (0)

∂t1
= 0. (3.26)

We now focus on the O(ε) wave equation,

∂2

∂t2
0

(
∂2w(1)

∂z2

)
+∇2

h w(1) + ∂
2w(1)

∂z2
= F(0)

1 + F(0)
2 + F(0)

3 . (3.27)

Each forcing term F(0)
i contains sinusoidal contributions from eddy–eddy, tide–eddy

and tide–tide interactions. For the purpose of our study, it is sufficient to restrict
attention to eddy–tide contributions, since these are the only ones that can combine
spatial and temporal scales required for projection onto the internal wave band. Ford,
McIntyre & Norton (2000) demonstrated this requirement in the context of shallow-
water wave–vortex interactions. Eddy–tide nonlinear terms are of the form sinψ and
cosψ , where the phase ψ is

ψ = [k1x± (l0 ± l1)y± m1z± ω0t0]. (3.28)

The cosψ and sinψ terms do not generally represent freely propagating waves unless
eddy and tidal spatial scales satisfy the dispersion relation, here given in dimensional
form as

ω2
0 = f 2 + N2 k2

1 + (l0 ± l1)
2

m2
1

. (3.29)

In this case (3.27) is forced resonantly with similar response to that of a harmonic
oscillator forced at its natural frequency. Under forced resonant conditions, solutions to
(3.27) behave as t0 sinψ and t0 cosψ .

Substituting l0, k1, l1 and m1 into (3.29), introducing θ as the angle between the
eddy wavevector κ1 and the horizontal plane, and assuming circular eddies,

k1 = l1 =
√

2
2
κ1 cos θ, (3.30)

yields an expression for (normalized) resonant l0 as a function of θ ,

l0

‖κ1‖ = ±
√

2
2

cos θ ±
√(

ω2
0

N2
− f 2

N2

)
sin2θ − 1

2
cos2θ. (3.31)

The locus of resonant l0 values is shown in figure 2. In the ocean, geostrophic eddies
are characterized by m1/k1� 1, corresponding to values of θ ≈ π/2 and small values
of l0. As we shall see in the next paragraph, tide–eddy interaction coefficients vanish
identically when l0 = 0, but physically relevant resonances can occur when l0/‖κ1‖ is
small, albeit non-zero.
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FIGURE 2. Locus of resonant tidal wavenumbers l0 (normalized by ‖κ1‖) as a function of θ
where tan θ = m1/

√
(k2

1 + l2
1), f = 10−4 s−1 and N = 5 × 10−3 s−1. The four branches refer to

the ± branches of (3.31). The ++ and −− branches overlap, as do the +− and −+ branches.
Therefore, only two curves can be distinguished.

The coefficients of sinψ and cosψ on the right-hand side of (3.27) may be
combined and written succinctly as

S±(t1)= u(0)e (t1)u
(0)
T (t1)

k1l0m1

8

(
± 1± l0

l1

)
, (3.32)

C±(t1)=±u(0)e (t1)u
(0)
T (t1)

k1l0m1

8ω0
, (3.33)

where S± and C± denote sine and cosine, coefficients respectively. Resonant solutions
to (3.27) are written as

w(1) = S±(t1)

2m2
1ω0

t0 sinψ + C±(t1)

2m2
1ω0

t0 cosψ. (3.34)

Again assuming k1 = l1, C± and S± achieve extrema when l0 = 0 and l0 =
±l1/2. The former corresponds to a minimum (zero forcing) and the latter to
maximum or minimum pairs associated with wavenumbers {k1,±(l0 + l1),±m1} or
{k1,±(l0 − l1),±m1}. While different wavenumber signs represent different directions
of phase propagation, they do not affect the frequency of the associated waves.
Therefore, if resonant conditions are met for, say, {k1, l0 + l1,m1}, they will also
hold for {k1,−(l0 + l1),m1}, {k1, l0 + l1,−m1} and {k1,−(l0 + l1),−m1}.

When barotropic tidal wavenumber l0 = 0, then

∇h ·u(0)e = 0 H⇒ F(0)
1 = 0, (3.35)

and from thermal-wind balance,

F(0)
2 =−F(0)

3 H⇒ F(0)
2 + F(0)

3 = 0. (3.36)

Therefore, if the barotropic tide velocity is uniform, no waves can be excited since
tide–eddy forcing terms are zero, independently of whether resonance conditions are
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Barotropic tide–eddy interactions 13

satisfied or not. Physically, this situation corresponds to a periodic advection of the
entire water column by the tidal current. Without any horizontal modulation, this type
of motion cannot transfer horizontal energy to vertical motions.

For the purpose of our study, it is not necessary to pursue the analysis further.
The technique above has provided a formal framework for delineating eddy from
barotropic tide and baroclinic waves. Beyond yielding low-order solutions to the
eddy–tide interaction problem, the weakly nonlinear multiple-scale analysis has been
useful in identifying eddy and barotropic tidal scales for which resonance is possible.
When resonant conditions are met, excited wave velocities will grow as O(εt). These
solutions remain valid up to t ∼ 1/ε, at which time the wave velocity may become
O(1) compared to the barotropic tide velocities. In principle, the analysis should be
carried out to the next order of approximation to ensure the boundedness of solutions
and the self-consistency of the asymptotic expansions. This would entail taking into
account terms of O(γ ) and would require considerable additional effort. Moreover,
carrying out solutions to higher order would not be particularly useful since the theory
presented here is ultimately limited by the absence of dissipation. Without dissipation,
tidal forcing will eventually lead to the unphysical situation of unbounded energy
growth.

In the following section, a set of numerical simulations designed to validate and
complement the weakly nonlinear theory is presented.

4. Numerical simulations
The pseudo-spectral numerical model solves the three-dimensional Boussinesq

equations on the f plane (Winters & de la Fuente 2012) in a domain of dimensions
Lx × Ly × Lz = 160 km × 40 km × 2400 m. Boundary conditions are periodic in both
horizontal directions and free-slip in the vertical. Numerical stability is maintained
with a sixth-order hyperviscous operator D, designed to damp the smallest resolved
scales at the same rate in each direction. In spectral space,

D(k, l,m)=−ν6{(k/kmax)6+ (l/lmax)6+ (m/mmax)
6}, (4.1)

where ν6 is the hyperviscous coefficient, and kmax , lmax and mmax denote maximum
wavenumbers in the x, y and z directions, respectively. The same operator is used in
the density equation, with a hyperdiffusion coefficient κ6 replacing ν6. In all cases,
ν6 = κ6 = 7.8× 10−5 s−1, which is the minimum value required to prevent the onset of
numerical instability.

To assess the role of the barotropic tide, we compare the evolution of four
simulations, runs A, B, C and D. In runs A–C, the initial condition consists of an
eddy field in geostrophic and hydrostatic balance. In order to facilitate visualization of
internal wave generation, the eddy field is confined to the upper and middle regions
of the domain (figure 3). The eddy field differs slightly from the one used in the
theoretical analysis. In the horizontal, the array of Taylor–Green vortices is modulated
by

R(x)= e−β (Lx/2−x)2, (4.2)

and in the vertical by

S(z)= e−α(Lz−z) cos m1z, (4.3)

where α = 6/Lz and β = (12/Lx)
2. Restricting the spatial extent of the eddy field

facilitates visualization of radiating internal waves.
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FIGURE 3. (a) Vertical and (b) horizontal cross-sections of vorticity field at t = 0. Arrows
indicate the direction of the barotropic tidal forcing in runs B and C.

The balanced initial conditions are

ue = UR(x)S(z)

l1
cos k1x sin l1y, (4.4a)

ve = US(z) cos l1y [R′(x) cos k1x− k1R(x) sin k1x], (4.4b)
we = 0, (4.4c)

ρe =−Ufρ0

gl1
S′(z)R(x) cos k1x cos l1y (4.4d)

and U = 0.1 m s−1.
The eddy field in run D includes a broad range of eddy scales, is confined to the

upper ocean as in runs B and C, but extends over the entire horizontal domain. As
in the theory, barotropic tidal forcing is introduced as a body force. To ensure smooth
solutions, the tide is ramped up to full strength over five tidal cycles with a hyperbolic
tangent. Coriolis and buoyancy frequencies are 10−4 s−1 and 5× 10−3 s−1, respectively.
Thus, N/f = 50, which is typical of the mid-latitude pycnocline.

Run A, with tidal forcing turned off, provides a base case for wave radiation
resulting from eddy field imbalances only. Runs B and C differ in the choice of
horizontal tidal scale (λ0 = 2π/l0). In run B, λ0 is much larger than the scale of the
dominant eddies, as is characteristic of the deep ocean. Run C has λ0 comparable to
the eddy scale, as might occur on the continental shelf, and resonant conditions are
satisfied. The same tidal forcing as in run C is applied to run D, but the eddy field
in this simulation contains a broad range of scales. In this case, λ1 = 2π/l1 represents
the dominant eddy scale. Run D will enable us to assess whether this type of resonant
response is likely to occur in a general eddy field that has not a priori been tuned for
resonance.
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Barotropic tide–eddy interactions 15

For all cases discussed below, the Rossby number is defined as ε = 2πU/fL (note
the factor of 2π, which was omitted in the definition in § 2.2). Based on initial eddy
velocity U = 0.1 m s−1 and radius L = 20 km, we have ε = 0.3. This corresponds to a
slow time scale of the order of three inertial periods, or five tidal periods.

Equations (3.2) and (3.5) are used to extract tide and eddy components. For the eddy
field, temporal averaging is performed with a running mean. As defined in (3.2), T
is two inertial periods, approximately equidistant from fast and slow times. Horizontal
residual velocities ur and vr are obtained by subtracting tide and eddy contributions
from the total horizontal velocity. When resonant excitation occurs, we expect that
residual velocities will be dominated by a linear internal wave, and ur, vr and w should
satisfy linear polarization relations,

ur = A cosφ, (4.5a)

vr = (f
2 + ω2

0)k2l2 + ifω1(k2
2 − l2

2)

f 2l2
2 + ω2

0k2
2

ur, (4.5b)

w=−(k2ur + l2vr)

m2
, (4.5c)

where φ = k2x+ l2y+m2z−ω0t, k2 = k1, l2 = (l0± l1) and m2 = m1. Equations (4.5a–c)
will be used in analysing runs A–D to diagnose whether inertia–gravity waves are
being excited.

4.1. Run A: base run, no tidal forcing
All four runs, including the unforced run A, exhibit some low-level internal wave
oscillations. In run A, weak radiation occurs at the onset of the simulation because
the degree of balance of the initial eddy field is inherently limited by finite
numerical resolution. This slight imbalance triggers the geostrophic adjustment of
the Taylor–Green vortices, which results in radiation of a weak internal wave field.
The dependence on resolution was confirmed by noting a decrease in initial wave
radiation with increasing numerical resolution (not shown). Another source of waves
arises because the array of localized vortices is not an exact solution of the nonlinear
equations (in contrast to the periodic array of Taylor–Green vortices used in § 3).
Consequently, over many eddy time scales, nonlinear effects act to distort the initial
state, resulting in wave radiation. This was verified numerically by performing a
linear simulation in which nonlinear terms were set to zero. In this scenario, the
vortices retained their initial balanced state and the resulting residual signal dropped
significantly compared to the nonlinear case.

However, neither mechanism discussed above provides a significant wave source.
This is confirmed by the temporal evolution of vertically averaged and residual
velocities at a fixed point away from the eddy field (figure 4). Large spikes in the
vertical velocity occur sporadically, but do not grow discernibly. Horizontal residual
velocities display some degree of polarization and increase slightly between 15 and 20
tidal periods in response to eddy field nonlinear distortions.

4.2. Run B: uniform tidal forcing
Tidal forcing is spatially constant in run B, corresponding to the theoretical case l0 = 0.
The tidal flow spins up quickly; uT and vT have comparable amplitudes (figure 5a),
and are π/2 out of phase, as predicted by the theory (3.13a,b). Residual horizontal
velocities display organized and coherent behaviour, oscillate at the tidal frequency
and are larger than in run A (figure 5b). However, the vertical velocity is incoherent,
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FIGURE 4. Run A (unforced): time evolution of (a) vertically averaged tidal velocities,
(b) vertical velocity and (c) residual horizontal velocities ur and vr. All velocities are recorded
at a fixed point at mid-depth and away from the eddy field region.

with residual horizontal velocities, and oscillates more rapidly. This suggests that the
residual tidal ellipses are not propagating vertically according to polarization relations
(4.5a). Maximum residual amplitudes do not exceed 10−4 m s−1.

4.3. Run C: resonant tidal forcing

Prior to settling on the particular set of parameters chosen for run C, several
simulations were performed with resonant parameters at or close to the maximum
forcing l0 = 2l1 predicted by the theory. No discernible differences in the intensity of
the wave field could be detected. Therefore, we chose the set of resonant wavenumbers
that produced the cleanest resonant response. In this simulation, eddy and tidal scales
satisfy the resonance conditions given in § 2.1, with l0/‖κ1‖ = 0.02 (figure 2) and with
tidal and eddy scales Ly = 3λ0 = 2λ1. To allow for horizontal and vertical propagation
of generated waves, Lx = 4Ly and Lz = 6 × (2π/m1). Oceanic eddies are typically
deeper than the ones modelled in our study, but, given the constraints of limited
computational resolution, parameters were chosen to facilitate visualization of radiating
internal waves away from the region occupied by eddies. Moreover, a comparison with
theory cannot involve eddies with a strong barotropic signature, which would project
onto the tidal mode and invalidate the flow decomposition.
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FIGURE 5. Run B (uniform tidal forcing): time evolution of (a) vertically averaged tidal
velocities, (b) vertical velocity and (c) residual horizontal velocities ur and vr. All velocities
are recorded at a fixed point at mid-depth and away from the central eddy region.

Cross-sections of the vertical velocity are shown in figure 6. At early times, w
exhibits little variation in y or z as evidenced by the signal at the edges of the domain
in figure 6(a,b). At later times, the signal develops mode 1 and mode 6 structures in y
and z, respectively (figure 6c,f ).

Hovmöller diagrams overlaid with theoretical phase speeds (figure 7) confirm that
the emitted waves are travelling with vertical phase speed ω0/m1. In the horizontal,
the negative phase speed matches the theoretical value of −ω0/k1. The waves with
positive phase speed, on the other hand, exhibit a phase speed of 0.5ω0/k1. The
asymmetry in the emitted waves is also evident in figure 6(b,c), where the wave signal
in the negative x direction is noticeably stronger than in the positive x direction. The
differences between leftward and rightward emitted waves can be reconciled with the
corresponding asymmetry in the relative vertical vorticity (figure 8). Kunze (1985)
showed that strong geostrophic vorticity ζ modulates the internal wave dispersion
relation k2 + l2 = (ω2 − (f + ζ/2)2)m2. Here, k is probably being modulated in
opposite directions by the ambient vorticity field. Tide, vertical and residual velocity
components are shown in figure 9. Relations (4.5) are used to confirm that the
developing signal in figure 6(b,c) has frequency ω0 and wavevector {k1, (l0 − l1),m1},
as predicted by theory. The wave amplitude grows on the slow time scale, reaching
its peak value as a coherent signal in 10–12 tidal periods. It may seem puzzling that,
even when resonant conditions are met, the vertical velocity remains O(ε) compared to
eddy and barotropic tide velocities. This can be attributed to the fact that the scaling
employed in the non-dimensionalization (§ 2.3) imposes the constraint that the ratio of
vertical to horizontal scales is O(ε). Therefore, an additional implicit factor of ε is
present and the effective forcing amplitude is O(ε2).

The linear wave signal persists until t = 10 (tidal periods), then becomes
decorrelated at later times, presumably as a result of interactions with re-entrant
waves at the boundaries of the periodic domain. Another noteworthy observation is the
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shown); panels (d,e,f ) are horizontal cross-sections. The dashed lines indicate corresponding
positions of horizontal and vertical planes. Displayed data span ±2× 10−4 m s−1.
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Vertical and horizontal plane positions are indicated by the dashed lines on figure 6.

absence of a tidal ellipse: in contrast to run B, where tidal uT and vT components
are in linear balance and elliptically polarized, vT in run C is negligible and the
amplitude of uT is smaller than in run B by roughly a factor of two. This behaviour
is consistent with the theory: (i) when l0 6= 0, vT must be zero in order for the flow
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the dashed line on figure 6(d,e,f ). The non-zero signal in the far field is an artefact of the
initialization.
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(a) vertically averaged tidal velocities, (b) vertical velocity and (c) residual horizontal
velocities ur and vr. All velocities are recorded at a fixed point at mid-depth and away
from the central eddy region.

to satisfy continuity; and (ii) a comparison of (3.10) and (3.14) confirms that the
amplitude of u(0)T is reduced by a factor of 1/ω2

0 when l0 6= 0. In non-dimensional form,
ω0 = 1.45 ⇒ 1/ω2

0 = 0.47≈ 0.5.
Tidal, eddy and residual energies are shown in figure 10. The following discussion

focuses on the time interval between 5 and 15 tidal periods. The ramp-up period
during which the flow is adjusting to tidal forcing is excluded because it exhibits
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FIGURE 10. Volume-averaged energies (kinetic plus available potential) for (a) barotropic
tide, (b) eddy field and (c) wave field for run C. The large fluctuations in barotropic tidal
energy in panel (a) are due to modulation by the forcing.

unphysical behaviour, e.g. negative residual energy (figure 10b). Once the tidal signal
has been established, tidal energy accounts on average for 75 % of the total energy,
with the eddy field energy roughly 20 % and the residual wave energy about 5 % of
the total energy. Tidal energy oscillates with a period of π/ω0, whereas the eddy
energy modulates over a longer period. As seen in figure 10(b), eddy energy is not
entirely devoid of fast oscillations. This apparent discrepancy between theoretical and
numerical results is explained by the fact that the theory assumes that ε is infinitely
small and that fast and slow time scales do not overlap. In our simulations, however,
ε is small but finite. Residual and eddy energies remain in phase throughout the
simulation and out of phase with the tidal energy, confirming that the tide supplies
the energy for the excited waves. Additional confirmation that the residual energy
represents waves is provided by examining the ratio of residual kinetic (KEr) to
potential (PEr) energies. For inertia–gravity waves (Gill 1982), one has

r = 〈KEr〉
〈PEr〉 =

ω2 + f 2

ω2 − f 2
. (4.6)

For our parameters, the computed value of r = 2.5 compares well with the theoretical
value of 2.7. This resonant interaction results in a stable periodic exchange of energy
between tide and the eddy/wave components.

We also find good agreement between theoretical w, given by (3.34), and
numerically computed w for the time frame over which the fast-time solution is
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FIGURE 11. Comparison of theoretical (dashed) and numerical (solid) w. The theoretical
solution has been multiplied by the same ramping function used in the numerical model.
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FIGURE 12. Volume-averaged cross-term ue ·uT in run C.

valid, i.e. for times less than 1/ε (figure 11). Capturing the slow-time behaviour of the
O(ε) solution would presumably yield agreement over longer times, but this is beyond
the scope of our study. Moreover, the theory presented here does not take into account
dissipative effects and will, therefore, become invalid for long times.

Finally, we verify that the tide–eddy decomposition is valid. In order for this flow
decomposition to be useful, we must have

1
2 ‖uT + ue‖2 ≈ 1

2(‖uT‖2+‖ue‖2), (4.7)

implying that

uT ·ue� 1
2(‖uT‖2+‖ue‖2). (4.8)

The left-hand side of (4.8) is plotted in figure 12. The cross-term oscillates about zero
and remains three orders of magnitude less than the tidal energy and one order of
magnitude below the eddy energy over the duration of the simulation, confirming that
uT and ue have negligible projections onto one another. This validates the utility of the
flow decomposition in analysing the simulations.

4.4. Run D: tidal forcing of a more general eddy field
Run D considers the impact of tidal forcing on an eddy field containing a range
of spatial scales. The initial condition is constructed by seeding a field of regularly
distributed Taylor–Green vortices throughout the entire domain with a randomly
phased higher-mode perturbation, and allowing it to evolve until a statistically quasi-
stationary state is achieved. For ease of interpretation, the unperturbed Taylor–Green
vortices prior to spin-up have the same spatial scales and are confined vertically as
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FIGURE 13. Run D: (a,c,e) plan views of potential vorticity and (b,d,f ) vertical cross-
sections of horizontal divergence magnitude. Panels represent the flow (a,b) at the onset
of tidal forcing (t = 0), (c,d) at t = 5T and (e,f ) at t = 10T . Only the top half of the domain
is shown in vertical cross-sections (b), (d) and (f ). Units on the colour bars are m−1 s−1 (PV)
and s−1 (divergence).

in run C. The initial potential vorticity field thus constructed is shown in figure 13(a).
Once the flow has spun up, after about 20T , the same barotropic forcing as in run C is
ramped up over five tidal periods (figure 14a).

In this simulation, the eddy flow has evolved significantly from a regular
Taylor–Green array, and considerable merging and straining of vortices has occurred
prior to the onset of tidal forcing (figure 13a). Here, potential vorticity (PV),

PV = (∇ × u+ f ı̂3) ·∇(ρ + ρ)
ρ0

, (4.9)

which has no signature on the (non-breaking) internal wave field, is used to
characterize the eddy field. Horizontal divergence provides a good description of the
wave field (figure 13). Evidence of tidal forcing is seen in the striated pattern exhibited
by the eddy field at t = 25T (figure 13c). Prior to the onset of tidal forcing, the wave
field is weak (figure 13b). By t = 25T , wave generation begins (figure 13d). Over time,
wave generation intensifies in the surface layers and wave packets also become visible
at depth (figure 13f ). Anticyclones deepen and the internal waves tend to concentrate
in the confluent strain-dominated regions between eddies (not shown).

As in run C, residual horizontal velocities and vertical velocity exhibit the
characteristic behaviour of linear internal waves of frequency ω0 (figure 14). PV
exhibits a peak at the tidal forcing scale and two weaker peaks, one corresponding
to the original Taylor–Green scale and the other at kx = 1.5 × 10−4 m−1, suggesting
that a transfer of PV to larger scales has taken place prior to forcing (figure 15a). At
later times, PV is concentrated over a broader range of scales (figure 15a). Horizontal
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FIGURE 14. Run D (tidal forcing of a general eddy field): time evolution of (a) vertically
averaged tidal velocities, (b) vertical velocity and (c) residual horizontal velocities ur and vr.
Velocities are recorded at a single point, at mid-depth.

divergence (internal wave) levels are small initially. A peak corresponding to k1 is
visible by t = 6T after the onset of tidal forcing. A cascade to higher harmonics
has taken place by t = 10T . Potential enstrophy and horizontal divergence variance y
spectra are shown in figure 16. The divergence exhibits a peak at ky = 7.8× 10−4 m−1,
which corresponds to mode 5. In this case, the strongest resonant wave generation is
associated with l0 + l1, in contrast to run C, where l0 − l1 dominated. This increase
in horizontal wavenumber is accompanied by an increase in vertical wavenumber, as
evidenced by the shorter vertical wavelength of the propagating waves (figure 13f ).

This final simulation confirms that resonantly excited waves will be preferentially
excited in the presence of a broad range of eddy scales, though eddy–tide resonances
are not likely to provide a significant source of internal waves, given the requirement
that eddy and tidal flows vary on comparable horizontal scales, and this condition is
not typically encountered in the ocean.

5. Conclusions
We have examined the interaction between barotropic tidal currents and a field

of baroclinic geostrophic eddies both theoretically and numerically as a potential
mechanism for generating internal gravity waves. We find that the eddy field evolution
is governed by the conservation of potential vorticity and is independent of the tide.
This behaviour is reminiscent of situations where the eddy field acts as a catalyst
in triggering interactions between fast flow components without participating in the
energy exchange.
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FIGURE 15. (Colour online) Run D: variance spectra of (a) PV and (b) horizontal divergence
versus horizontal wavenumber kx. Tidal forcing scale is 2π/Lx = 3.9 × 10−5 m−1 and initial
Taylor–Green eddy scale at k2 = 3.1 × 10−4 m−1. As in figure 13, t = 0 corresponds to the
time at which tidal forcing is initiated.

If the oscillating flow has infinite horizontal wavelength, that is, no convergences,
the eddy field is advected back and forth and no energy is transferred to the internal
wave band. The largest transfer rates occur if the horizontal wavelengths of the eddies
and tidal forcing are of similar scale, with a weak maximum when the tidal scale
is twice that of the eddies. This suggests that this mechanism will not be effective
at transferring energy from the surface tides to internal waves in the deep ocean
because the Rossby radius ∼ O(NH/f ) ∼ 100 km is an order of magnitude shorter
than the wavelengths of barotropic tides. Thus, the speculation that eddy–diurnal tide
interaction could explain the intense near-inertial waves observed in western North
Pacific anticyclonic vortices (Rogachev et al. 1992) is disproved, and it is more likely
that the observed oscillations were wind-generated.

The ocean circulation does offer larger eddy scales through upscale energy cascades,
but the resulting length scales are too large to match those of internal waves with
tidal frequency. Atmospheric forcing generates shallow-water waves over a range
of frequencies. Higher frequencies and wavelengths could potentially interact with
geostrophic eddies, but these have far less energy associated with them than the
tides. Finally, eddy and surface tide length scales become more comparable in shallow
water, but, even on continental shelves, they remain widely separated. Thus, while
this interaction probably plays a role in the ocean, it will be not be very significant
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FIGURE 16. (Colour online) Variance spectra of (a) PV and (b) horizontal divergence versus
horizontal wavenumber ky. Tidal forcing is at l1 = 4.7 × 10−4 m−1 and initial Taylor–Green
eddy scale at l2 = 3.1×10−4 m−1. As in figure 13, t = 0 corresponds to the time at which tidal
forcing is initiated.

because of a mismatch in the length scales of geostrophic eddies and barotropic tides.
Excluded from the present study are cases in which the eddies are themselves forced
by wind or other external dynamics. Such forcing could strongly perturb the eddies
away from their balanced state and induce a strongly nonlinear response. This scenario
corresponds to a fast eddy response and subsequent breakdown in the time scale
separation, corresponding to the Rossby number approaching unity. Another possibility
for strong wave generation might occur when the horizontal component of rotation
cannot be neglected. However, these effects are confined near the turning latitude
ω ∼ f , where the barotropic tide’s horizontal length scales are maximal, and therefore
least likely to match eddy field scales. For the same reason, β-plane considerations
are unlikely to allow stronger resonance. These possibilities could ultimately be tested
with a different numerical model, but they lie well beyond the scope of the present
study.
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