Canad. Math. Bull. Vol. 15 (4), 1972

THE FIXED POINT SET OF REAL MULTI-VALUED CONTRACTION MAPPINGS

BY ARTHUR S. FINBOW(¹)

1. Introduction. Let (X, d_1) and (Y, d_2) be metric spaces. A mapping $f: X \rightarrow Y$ is said to be a Lipschitz mapping if there exists a real number λ such that

$$d_2(f(x), f(y)) \le \lambda d_1(x, y)$$

for each $x, y \in X$. We call λ a Lipschitz constant for f. If $\lambda \in [0, 1)$, f is called a contraction mapping. Throughout this note CB(Y) denotes the set of closed and bounded subsets of Y equipped with the Hausdorff metric induced by d_2 . Letting R^1 be the set of real numbers and

$$N(\alpha, A) = \{ y \in Y : d_2(y, a) < \alpha \text{ for some } a \in A \}$$

for each $\alpha \in \mathbb{R}^1$ and each $A \in CB(Y)$, we recall that this metric, say D, is defined as follows:

$$D(A, B) = \inf \{ \alpha \in R^1 : A \subseteq N(\alpha, B) \text{ and } B \subseteq N(\alpha, A) \}$$

for each A, $B \in CB(Y)$. A mapping $g: X \to CB(Y)$ is called a multi-valued mapping from X to Y, and if X = Y, $x \in X$ is called a fixed point of g provided $x \in g(x)$. If f and g are multi-valued mappings from X to Y, it is clear that $f \cup g: X \to CB(Y)$ defined by $f \cup g(x) = f(x) \cup g(x)$ for all $x \in X$ is also a multi-valued mapping from X to Y.

In this note, we show that if X is a connected subset of R^1 and Y is R^1 , then a multi-valued Lipschitz mapping f from X to Y, with the property that f(x) has n components for each $x \in X$, can be characterized as the union of n connected-valued Lipschitz mappings. Thence we deduce that if f is a multi-valued contraction mapping from R^1 to R^1 , with the property that f(x) has n components for each $x \in R^1$, then its set of fixed points has exactly n components. At the same time we answer in the affirmative the following question of Helga Schirmer [2, p. 170]:

"If the image of the contractive function $\varphi: \mathbb{R}^1 \to \mathbb{R}^1$ consists of exactly *n* points for all $x \in \mathbb{R}^1$, does the fixed point set of φ consist of *n* points?" (where "contractive function" means multi-valued contraction mapping in our terminology).

Received by the editors January 12, 1971.

⁽¹⁾ This paper is part of the author's M. A. Thesis written at Dalhousie University under the supervision of M. Edelstein. Research was supported by the National Research Council of Canada.

2. Results.

508

DEFINITION. Let (X, d_1) and (Y, d_2) be metric spaces. We say that a mapping $f: X \rightarrow Y$ is a local radial Lipschitz mapping with Lipschitz constant λ (≥ 0) if for each $x \in X$ there exists $\varepsilon(x) > 0$ such that

$$d_1(x, y) < \varepsilon(x) \Rightarrow d_2(f(x), f(y)) \le \lambda d_1(x, y)$$

LEMMA 1. Let X be a connected subset of R^1 and (Y, d) be a metric space. The function $f: X \rightarrow CB(Y)$ is a local radial Lipschitz mapping with Lipschitz constant λ if and only if f is a Lipschitz mapping with Lipschitz constant λ .

Proof. Suppose f is a local radial Lipschitz mapping with Lipschitz constant λ , and let D be the Hausdorff metric for CB(Y) induced by d.

To show that f is a Lipschitz mapping with Lipschitz constant λ , let $x' \leq x''$ be arbitrary elements of X and I = [x', x'']. Since X is connected, $I \subseteq X$. For each $x \in I$, let $\varepsilon(x)$ be such that

$$|x-y| < \varepsilon(x) \Rightarrow d(f(x), f(y)) \le \lambda |x-y|$$

and then set $O_x = \{y : |x-y| < \varepsilon(x)\}$. Since $\{O_x : x \in I\}$ is an open cover of the compact set *I*, there is a finite subset of *I*, say $\{x_1, x_2, \ldots, x_n\}$, such that $\{O_x : i \in \{1, 2, \ldots, n\}\}$ is a cover of *I*. We may assume:

 $\begin{aligned} x_1 < x_2 < \cdots < x_n, \\ x' \in O_{x_1}, \qquad x'' \in O_{x_n}, \end{aligned}$

and

$$O_{x_1} \cap O_{x_{i+1}} \neq \phi \text{ for } i \in \{1, 2, \dots, n-1\}$$

Now we define $y_0 = x'$, $y_{2n} = x''$ and $y_{2i-1} = x_i$ for $i \in \{1, 2, ..., n\}$. Finally, for each $i \in \{1, 2, ..., n-1\}$, we choose $y_{2i} \in O_{x_i} \cap O_{x_{i+1}}$ satisfying $x_i \le y_{2i} \le x_{i+1}$. Then it is clear that we have

$$y_0 \leq y_1 \leq \cdots \leq y_{2n}$$

and

$$D(f(y_i), f(y_{i+1})) \le \lambda |y_i - y_{i+1}| \text{ for each } i \in \{0, 1, \dots, 2n-1\}$$

Hence

$$D(f(x'), f(x'')) \leq \sum_{i=0}^{2n-1} D(f(y_i), f(y_{i+1}))$$

$$\leq \sum_{i=0}^{2n-1} \lambda |y_i - y_{i+1}| = \lambda \sum_{i=0}^{2n-1} (y_{i+1} - y_i)$$

$$= \lambda (y_{2n} - y_0) = \lambda |x' - x''|.$$

The proof is thus completed since the converse follows directly from the definitions.

The following lemma, stated previously by S. B. Nadler, Jr. [1, Theorem 3], is an immediate consequence of the definitions:

LEMMA 2. Let X and Y be metric spaces. If $f: X \rightarrow CB(Y)$ is a Lipschitz mapping with Lipschitz constant α and $g: X \rightarrow CB(Y)$ is a Lipschitz mapping with Lipschitz constant β , then $f \cup g$ is a multi-valued Lipschitz mapping with Lipschitz constant max $\{\alpha, \beta\}$.

THEOREM. Let A be a connected subset of \mathbb{R}^1 . Then a necessary and sufficient condition for a multi-valued function $f: A \rightarrow CB(\mathbb{R}^1)$ to be a Lipschitz mapping with Lipschitz constant $\lambda \ge 0$ and to be such that f(x) has n components for each $x \in A$ is that there exist n connected-valued Lipschitz mappings

$$f_i: A \to CB(R^1), \quad i \in \{1, 2, \ldots, n\},$$

with nonintersecting graphs such that λ is a Lipschitz constant for each f_i and $f = \bigcup_{i=1}^n f_i$.

Proof. Necessity follows directly from Lemma 2 and the hypothesis that the graphs of the f_i are nonintersecting. To prove sufficiency, let $x \in A$. By hypothesis,

$$f(x) = [a_1(x), b_1(x)] \cup [a_2(x), b_2(x)] \cup \cdots \cup [a_n(x), b_n(x)]$$

where

$$a_1(x) \le b_1(x) < a_2(x) \le b_2(x) < \cdots < a_n(x) \le b_n(x).$$

We set $f_i(x) = [a_i(x), b_i(x)]$ for each $x \in A$ and each $i \in \{1, 2, ..., n\}$. The proof is finished by showing that $\{f_i: i \in \{1, 2, ..., n\}\}$ forms the desired decomposition of f.

Clearly $f = \bigcup_{i=1}^{n} f_i$ and the f_i are connected-valued and have nonintersecting graphs. Now if $\lambda = 0$, then f is a constant function and thence, so is each f_i , $i \in \{1, 2, ..., n\}$, showing that each f_i is a Lipschitz mapping with Lipschitz constant $\lambda = 0$. Otherwise, let $\varepsilon(x) = \frac{1}{2} \min\{|a_{i+1}(x) - b_i(x)| : i \in \{1, 2, ..., n-1\}\}$ for each $x \in A$. By Lemma 1, we are done if we show that for each $i \in \{1, 2, ..., n\}$, f_i is a local radial Lipschitz mapping with Lipschitz constant λ . Therefore, we complete the proof by showing

$$|x-x_0| < \frac{\varepsilon(x_0)}{\lambda} \Rightarrow D(f_i(x), f_i(x_0)) \le \lambda |x-x_0|$$

for each $x_0 \in A$ and each $i \in \{1, 2, \ldots, n\}$.

To this end, let $x_0 \in A$ and let $x \in A$ be such that $|x-x_0| < \varepsilon(x_0)/\lambda$. Since $D(f(x_0), f(x)) \le \lambda |x-x_0|$, it follows that $f(x) \subseteq N(\lambda |x-x_0|, f(x_0))$ by the definition of the Hausdorff metric. Also, since $\lambda |x-x_0| < \varepsilon(x_0)$, $N(\lambda |x-x_0|, f(x_0))$ has the *n* components $N(\lambda |x-x_0|, f_i(x_0))$, $i \in \{1, 2, ..., n\}$. Hence, for each $i \in \{1, 2, ..., n\}$ there exists a unique $k_i \in \{1, 2, ..., n\}$ such that

$$f_i(x) \subseteq N(\lambda | x - x_0|, f_{k_i}(x_0)).$$

Setting $I = \{1, 2, ..., n\}$, we may thus define a mapping $k: I \rightarrow I$ by letting $k(i) = k_i$ for each $i \in I$.

Now if we can show that k is the identity mapping on I, then the following argument will complete the proof: for each $i \in I$,

$$f_i(x) \subset N(\lambda | x - x_0|, f_{k_i}(x_0)) = N(\lambda | x - x_0|, f_i(x_0)).$$

On the other hand, since $\lambda |x-x_0| < \varepsilon(x_0)$ and $f_i(x) \subseteq C(\lambda |x-x_0|, f_i(x_0))$, it follows that

$$N(\lambda | x - x_0|, f_i(x)) \subseteq N(\lambda | x - x_0|, N(\lambda | x - x_0|, f_i(x_0)))$$

$$\subseteq N(2\varepsilon(x_0), f_i(x_0))$$

and hence

$$N(\lambda | x - x_0|, f_i(x)) \cap f_j(x_0) = \phi \quad \text{for } i \neq j.$$

However, since $D(f(x), f(x_0)) \leq \lambda |x-x_0|$ implies $f(x_0) \subset N(\lambda |x-x_0|, f(x))$, it now follows that $f_i(x_0) \subseteq N(\lambda | x - x_0|, f_i(x))$ for each $i \in I$. Thus, by the definition of the Hausdorff metric, we have $D(f_i(x), f_i(x_0)) \leq \lambda |x - x_0|$ for each $i \in I$.

Now in order to show that k is the identity mapping on I, we first show that kis a bijection. For this it is sufficient to show that k is a surjection because I is finite. If k is not surjective, then there exists $i \in I$ such that

$$f_i(x) \notin N(\lambda | x - x_0|, f_{\overline{i}}(x_0))$$

for each $i \in I$. Thus, setting $I' = I \sim \{i\}$, we have

$$f(x) \subset \bigcup_{i \in I'} N(\lambda | x - x_0|, f_i(x_0)),$$

and hence

$$N(\lambda | x - x_0|, f(x)) \subseteq N\left(\lambda | x - x_0|, \bigcup_{i \in I'} N(\lambda | x - x_0|, f_i(x_0))\right)$$
$$\subseteq \bigcup_{i \in I'} N(2\varepsilon(x_0), f_i(x_0))$$

since $\lambda |x-x_0| < \varepsilon(x_0)$. However, by the definition of $\varepsilon(x_0)$,

$$f_{\overline{i}}(x_0) \cap \left(\bigcup_{i \in I'} N(2\varepsilon(x_0), f_i(x_0))\right) = \phi$$

and thence $f_{i}(x_0) \notin N(\lambda | x - x_0|, f(x))$. Thus $f(x_0) \notin N(\lambda | x - x_0|, f(x))$ and then by the definition of the Hausdorff metric, $D(f(x), f(x_0)) > \lambda |x - x_0|$. This contradicts the hypotheses and hence we deduce that k is a bijection.

Now, suppose k is not the identity, and let i be the first integer in I such that $k(i) \neq i$. Let k(i) = i'. Since k is a bijection, i' > i and there exists $j \in I$, j > i, such that k(i) = i. Then we have

$$f_i(x) \subseteq N(\lambda | x - x_0|, f_{i'}(x_0)) \subseteq N(\varepsilon(x_0), f_{i'}(x_0))$$

and similarly

$$f_i(x) \subseteq N(\varepsilon(x_0), f_i(x_0)).$$

[December

Thus, $a_i(x) \in N(\varepsilon(x_0), f_{i'}(x_0))$ and $a_j(x) \in N(\varepsilon(x_0), f_i(x_0))$. However, since i' > i and since

 $N(\varepsilon(x_0), f_i(x_0)) \cap N(\varepsilon(x_0), f_{i'}(x_0)) = \phi,$

it follows from the definition of the f_p , $p \in I$, that for each $x \in N(\varepsilon(x_0), f_i(x_0))$ and each $y \in N(\varepsilon(x_0), f_{i'}(x_0))$, x < y. Hence we have $a_j < a_i$ which implies j < i by the definition of the a_p , $p \in I$. This contradiction shows that k is the identity mapping on I and thus completes the proof of the theorem.

Helga Schirmer has shown [2, Theorem 2] that a connected-valued contraction mapping from R^1 to R^1 has a compact connected set of fixed points. From this we deduce the following corollary:

COROLLARY 1. Let $f: \mathbb{R}^1 \to CB(\mathbb{R}^1)$ be a contraction mapping such that f(x) has n components for each $x \in \mathbb{R}^1$. Then the set of fixed points of f is a compact set with n components.

Proof. By the theorem, we have $f = \bigcup_{i=1}^{n} f_i$ where f_i is a connected-valued contraction mapping for each $i \in \{1, 2, ..., n\}$, and the graphs of the f_i are non-intersecting. We note that the set of fixed points of f is the union of those of the f_i . Hence, since the graphs of the f_i are nonintersecting, we are done by the preceding remark.

Finally, we answer in the affirmative the question of Helga Schirmer stated in the introduction.

COROLLARY 2. Let $f: \mathbb{R}^1 \rightarrow CB(\mathbb{R}^1)$ be a contraction mapping such that f(x) consists of exactly n points for each $x \in \mathbb{R}^1$. Then the set of fixed points of f consists of exactly n points.

Proof. By the theorem, $f = \bigcup_{i=1}^{n} f_i$ where f_i is a connected-valued contraction mapping for each $i \in \{1, 2, ..., n\}$, and the graphs of the f_i are nonintersecting. Clearly each f_i must be single-valued, and thus, by Banach's contraction principle, f_i has a unique fixed point, $i \in \{1, 2, ..., n\}$. The corollary thus follows since the graphs of the f_i are nonintersecting.

REFERENCES

 S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
Helga Schirmer, Properties of the fixed point set of contractive multi-functions, Canad. Math. Bull. 13 (1970), 169-173.

Dalhousie University, Halifax, Nova Scotia 511