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THE GENERAL ECONOMIC PREMIUM PRINCIPLE*
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ABSTRACT

We give an extension of the Economic Premium Principle treated in Astin
Bulletin, Volume 11 where only exponential utility functions were admitted.
The case of arbitrary risk averse utility functions leads to similar quantitative
results. The role of risk aversion in the treatment is essential. It also permits an
easy proof for the existence of equilibrium.
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1. THE PROBLEM

In BUHLMANN (1980) it was argued that in many real situations premiums are
not only depending on the risk to be covered but also on the surrounding market
conditions. The standard actuarial techniques are not geared to produce such a
dependency and one has to construct a model for the whole market, if one wants
to study the interrelationships between market conditions and premiums.

Such models exist in mathematical economics. For the purpose of this paper
we borrow the model of mathematical economics for a pure exchange economy
and we use the usual Walrasian equilibrium concept.

The more practically oriented reader might consider the model as an ideal-
ization of e.g., a reinsurance market where premiums of the contracts are
determined by the market. Of course, the Walrasian model is not the only way
to describe a reinsurance market. In oligopolistic situations one would rather
have to rely on the theoretical framework provided by game theory. On the
other hand the model used in this paper extends far beyond reinsurance.

The more theoretically minded reader will note that the model of an exchange
economy used in the following has infinitely many commodities. The classical
result of existence of equilibrium [see e.g., DEBREU (1959, 1974)] therefore
does not hold. The existence proof given here is the theoretically most important
aspect of the present paper.

2. THE MODEL FOR THE MARKET

We have agents i, i = 1, 2 , . . . , n (typically reinsurers, insurers, buyers of direct
insurance etc.).
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14 BUHLMANN

The commodities to be traded are quantities of money, conditional on the
random outcome <o, where w stands for an element of a probability space

(n,«, n).
Let Yi(a)) stand for the function as traded by agent i assigning to each state

(o the payment received by i from the participants in the market. In insurance
terminology F, describes an insurance policy or a reinsurance contract (Think
of the sum of all insurance policies and reinsurance contracts bought and sold
by / as if it were exactly one contract).

On the other hand we have conditional payments caused to agent ifrom outside
the market. These payments—conditional on a>—are described by A",(o>). In
insurance terms Xt represents the risk of the agent i before (re-)insurance.

Using the terminology of BUHLMANN (1980) we call Xt the original risk of
agent /, Yt the exchange function (or exchange variable) of agent /. In addition
we characterize each agent by his utility function «,(*) [as usual M,'(JC)>0,

u"(x) as 0] and his initial wealth Wt.
Whereas the original risk Xt belongs to agent / from the start we imagine that

Yi can be freely bought by him at a price which is given by

(1) Price[Yi]=\ Yi(w)<(>(co)dn(a)).

The function <£:fl-»IR appearing in (1) is called the price density The random
vector (Y\, Y2,.. •, Yn) representing the exchange variables bought by all agents
will be denoted by Y in the sequel.

3. EQUILIBRIUM

DEFINITION. (<p, Y) is called an equilibrium if
(a) for all /: E[u,(W, -Xt + Yt - J Y,((o')<t>(a>') dU(co'))] = max for all possible

choices of the exchange variable Yt.
(b) !,"=! YtM = 0 for all

TERMINOLOGY. If conditions (a) and (b) are satisfied we call <£ equilibrium
price density, Y equilibrium risk exchange.

Hint. It might be worthwhile to look up in BUHLMANN (1980) the definition
in the special case of a finite probability space. The special case coincides with
the standard equilibrium definitions in mathematical economics.

In BUHLMANN (1980) it was shown that for exponential utility functions
Ui(x) = l-e~a'x the equilibrium price density has the following form

(2) <t>M = -^r^ w h e r e — S -
h[e J a i=ia,

where Z has the precise meaning

(3) Z(<o)= t X,(a>).
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In this paper we show that equation (3) defines the "market conditions" also in
the case of arbitrary utility functions. We shall see that locally (but not globally)
even (2) carries over to the case of arbitrary utility functions.

REMARK. In the case of an arbitrary probability space existence of an equili-
brium as defined is usually not discussed in the economic literature. Exceptions
are BEWLEY (1972) and TOUSSAINT (1981) who treat the problem of existence
for economies with infinitely many commodities by imposing some topological
structure on the space of random variables Yt. In this paper we shall prove that
equilibrium exists making only risk theoretical assumptions. This is, however,
postponed to section 8. Up to this section we therefore assume existence of an
equilibrium.

4. PRICE EQUILIBRIUM AND PARETO OPTIMUM

It is shown in BUHLMANN (1980) that condition (a) is equivalent to condition

(c) for all i: u'lWi-Xi{a>)+ f,(a)- J Y,(a')$(o') dU(w')]

W)]dll(<o)

Q

for almost all <o.

COROLLARY. From (c) we see that \ <f>(a)) dH(oj) = 1.

As Y{ is only determined up to an additive constant there is no loss of generality
in assuming

(d) [ ?,(«')<£(»') rfII(<»') = 0 for all i.

For convenience we write Xt — Yi=Zi (and quite naturally Xt - Yt = Z,) and use
either the Y-variables or the Z-variables to describe the exchange. In the
Z-language conditions (c) and (d) yield

(4) foralH: io'[Wi-Zj(a>)] = Cl<£(a») (C>0)

which—according to Borch's theorem [see BORCH (I960)]—shows that an equili-
brium risk exchange (conditions (b), (c), (d)) is automatically a Pareto optimum
(condition (b)) plus (4)).

Conversely if we start with a Pareto optimum (condition (b) plus (4) because
of Borch's theorem) all we need to render (<p, Y) an equilibrium is a change of
the initial wealth Wt by the "free amounts" Ai = E[<f>Yi] where Yi=Xi-Zi.
(Observe that £"=1 A, = 0).
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16 BUHLMANN

Before we continue our analysis it is important to note that the random
variables Z, (/ = 1, 2 , . . . , n) and <j> can be and very often must be chosen to
depend on w only through Z(a>) = £"=i XI(CJ). This result by BORCH (1962) can
also be obtained from the following argument: Assume a Pare to optimal risk
exchange Z with

(I) E[u,{W,-2,)]

and

(II) t Zi((o)= t Xi(a)=Z(<o) for all w.
i = i i=i

Define Zt = E[Zi\Z] for each i.
Z is again a balancing risk exchange (i.e., satisfies (II)). From Jensen's in-

equality for the conditional expectation given Z we conclude that Z is at least
as good as Z for all i. Namely

l ^ ^ W i ^ ] for all i

and hence

( I ) ' EiutlWi-Zift^EiuiiWt-Zt)] for all i.

The inequality is strict unless either Z, = Z, and/or ut(x) is linear on the probabilis-
tic support of Z,. Excluding linearity of M, for all but one agent, Z, must depend
on a) through Z for all /. In the case of linearity of M, for several agents there
is indifference of splitting the risk among them. Also in this case we may therefore
assume that Z, depends on w through Z for all i.

Finally if Z, is a function of Z for all / so must be_<£ as seen from (4).
Because of this we use also the notation Z,(£), $((), where C is the generic

element of the probability space obtained by the mapping Z : ft -* U.

5. RISK AVERSION

We rewrite (4) as

(5) for all i: ui(Wt-Z\(£)) = Q$(0 with £ Z,({) = {.
i = l

Taking the logarithmic derivative on both sides we obtain

We introduce the individual risk aversion pt(x) = u"(x)/u'i(x) and obtain
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and because £"=1 Z\ (£) = 1 also

(7) 1

The sum on the right-hand side adds up the individual risk tolerance units and
hence can be understood as the total risk tolerance unit. We express this by the
abbreviated notation

This notation suggests to call p (£) the total risk aversion. Observe, however, that
this concept does not only depend on £ but also on the functions Z, (£) representing
a particular fixed Pareto optimal splitting of the total risk.

With this understanding we also obtain from (6) and (7)

(9) Z'(n- p(£\ --1 / [ p 'W'-^ ' t t"))] Quotient of risk
PiW-Ztt)) l/p(O tolerance units

This formula—as far as the author believes—not appearing elsewhere in the
literature, is quite remarkable in two respects.

(a) Borch's condition (our (5) above) characterizes the Pareto optima by a
system of differential equations with n—1 free parameters. In (9) these parameters
have disappeared and we have a unique system of differential equations.

This means that one can now characterize the set of all Pareto optimal
exchanges by the initial values Z;(0).

(b) The notion of risk aversion has been derived for the study of one single
agent and the relationship between his certainty-equivalent and the risk variance
[PRATT (1964)]. The appearance in the characterization of Pareto optimal risk
exchanges is a surprise and gives the risk aversion a new additional meaning.

6. A NEW INTERPRETATION OF PARETO OPTIMAL
RISK EXCHANGES

As just indicated, formula (9) allows us to characterize the set of all Pareto
optima from their initial values. This shall now be done explicitly. Before we
start we might, however, ask how these initial values Z;(0) should be interpreted.

Using the definitions as introduced in section 4

Z,(0) = (AT,-F,)(0)

we see that Z,(0) stands for the total balance of payments to be made by i in
the case when the total claims to the market Z = £"=1 Xt are zero. This justifies
the following

TERMINOLOGY. Tt = -Z, (0) is called initial receipt by agent i (before any positive
or negative claims come in).
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Any Pare to optimal risk exchange Z = {Z\, Z 2 , . . . , Zn) can then be described
as follows:

(A) Define arbitrary initial receipts 7HI,"=i Tt = 0). (This is equivalent to
choosing the constants C, in equation (4)).

(B) Solve the system of differential equations (9) (/ = 1, 2 , . . . , n) with initial
conditions Z,(0) = -T,• (i = 1, 2 , . . . , n).

This mathematical characterization allows the following interpretation: After
having distributed the initial receipts, the increases (decreases) d£ of total risk
C are split in the proportion of the risk tolerance units

do,

It is clear how (10) would immediately allow for a numerical integration of the
system of differential equations (9). In order to avoid any technical difficulties
with the system of differential equations we make the hypothesis (from here on)

(H) The risk aversions p,(x) are positive continuous functions on U, satisfying
a Lipschitz condition \pi(x)-pt(x')\^K\x -x'\

Under (H) we have existence and uniqueness of the solution to (9) for arbitrary
initial receipts T = (TUT2,..., Tn).

REMARKS
(1) The new interpretation of Pareto Optimum can also be used in the case

of risk exchanges Y restricted by some bounds. In this case, however, not all
the agents would always participate in the splitting of all increases (decreases) d£.

(2) From our interpretation (10) it is clear that hypothesis (H) could be
weakened to allow at most one function pt(x) to be zero for any specific argument
x. We renounce this refinement.

7. THE GENERAL ECONOMIC PREMIUM PRINCIPLE DEPENDING ON THE
INITIAL TRANSFER PAYMENTS

We start with an equilibrium (Z, <f>) (remember Z, =X(- Yi). As Z is Pareto
optimal it can be constructed according to the description in section 6. The
choice of the initial receipts Tt must be left open at the moment.
m However, the equilibrium price density 4> like the "after exchange" functions

Z, (/ = 1,2,. . . , n) can be determined from the basic equations in section 5 for
any particular choice of T = (Tx, T2,..., Tn).

Combining (6) and (9) we obtain

(11)
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with

Observe that from here on Z,J(C) (for all i) stand for those unique Pareto
optimal risk exchange functions with zT(0) = —Tt.

From (11) and the norming condition \ <f>((o) dU(w) = 1 we obtain

We easily recognize (13) as the global generalization of (2). The local behaviour,
described by (11), is even the same as for exponential utilities. The basic difference
is, of course, that in general the total risk aversion is not constant but depends
on the total risk £ and the way this total risk is split up among the agents.

For the practically minded reader we might add that the price density 4>T can
be understood as a distortion of the actuarially correct probabilities. Formula
(13) explains how this distortion comes about.

8. EXISTENCE OF EQUILIBRIUM

We have now—in a very natural way—come back to the question of existence
of equilibrium. With the tools at our disposal we can now pose it as follows:

Are there initial receipts f = (fx, f2, • •., fn) such that

(14) £[<^ty,T] = £[</>f(A:j-Z,T)] = 0 foralli = l,

Observe that for arbitrary initial receipts the resulting (<pT, YT) satisfies (4) and
(b). In order to be an equilibrium it must also satisfy (d) (which is the same as
(14)). We could also say, in the spirit of section 3, that in equilibrium no change
of initial wealth distribution by free amounts is needed.

THEOREM. Under (H) and for bounded X;, i = 1,2,..., « f exists.

PROOF.
(i) Consider the mapping R"^R" which sends T = (Tl,T2,.. .,Tn) into

S = (S1,S2, . . . ,Sn)bytherule
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20 BUHLMANN

(ii) Observe that (Zf + rr)(0) = 0 by definition. In view of (10) and hypothesis
H we must have for all i

which can be written as

\zr+n- IX, ; nM (\Xt | =s M for all /, by assumption)

hence

\Si| = E[jT • (ZT + T, -AT,)]«(n 4- \)M for arbitrary T.

(iii) Consider now the compact rectangle |7^| «s (n + 1)A/ for all i. Call it R.
Consider the hyperplane X"-i T,•,= 0. Call it E.
The intersection R n E is non empty, compact and convex.
(iv) The mapping T>-^S defined in (i) maps R nE into R nE.

Check

I S,=EUT( ZzT+iTi-l x)] =0
i= i L \ i = i /=i i = i /J

0

From (H) and boundedness of all AT, it follows by a standard theorem on
differential equations that the solutions Z,T (i' = 1, 2 , . . . , n) depend continuously
on the initial conditions T. Therefore the mapping Fi-»5 is also continuous.

Applying BROUWER'S Fixed-Point Theorem we have existence of f with

E[<f>T • (Z / + T, -Xt)] = Tt for all i

and consequently

E[(pT(zf-Xi)] = 0 for all/ q.e.d.

REMARK. Boundedness of X{ is a rather strong technical assumption which
one might want to weaken. The general idea would be to approximate arbitrary
random variables Xt by truncation and to perform a limit argument. For the
correctness of this limit argument, however, one needs again some technical
assumptions.
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