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Abstract

It is shown that any odd perfect number has a component greater than 1020.

1980 Mathematics subject classification (Amer. Math. Soc): 11 A 25.

1

Let a(N) be the sum of the positive divisors of a natural number N. We say N is
perfect if a(N) = 2N. No odd perfect numbers have been found, nor has a proof
of their nonexistence. However a great many necessary conditions that an odd
perfect number, if there is one, must satisfy have been found.

Many of these conditions have a qualitative nature. For example, assuming
henceforth that N is odd and perfect, Euler showed that

i-O

where qo,...,qu are distinct odd primes, and where (say) q0 = b0 = 1 (mod 4)
and bt = 0 (mod 2) (1 < i < u). We shall take this as our standard form for N.
Also, Steuerwald [10] showed that we cannot have bt = 2 for 1 < / < w, and
McDaniel [6] generalised this by showing that we cannot have bt = 2 (mod 6) for
1 < i < u. The other conditions are numerical, and most have been steadily
improved over the last twenty years. They concern, for example, lower bounds for
N, u and the largest prime factor of N. (See Guy [3] for details.)
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281 Largest component of an odd perfect number [2 ]

Probably the most longstanding of these numerical conditions is the often-
quoted result of Muskat [8] that N must be divisible by a prime power greater
than 1012. This bound was improved to 1018 by Tuckerman [11] for the special
case in which 3 or 5 divides N. We shall call each qf> a component of N, and in
this paper will prove

THEOREM 1. Any odd perfect number has a component greater than 10 20

To prove this using Muskat's approach (which depended on Steuerwald's
result, above) would require the investigation of each odd prime less than 105.
Instead, we shall use another result of McDaniel [7] and consider first those N
with bt = 2 or 4 for 1 < i < u. Having shown that for such N there must be a
component greater than 1020, we may then assume that bt > 6 for at least one
/(I < / < M), so that, since 21616 > 1020, we need only investigate each odd prime
less than 2160.

The large amount of computational work necessary for the proof of Theorem 1
is given separately in [2], which consists of 38 typed pages in six appendices. The
computations were carried out on the Honeywell Level 66 computer at the New
South Wales Institute of Technology and, by using the multiprecision capabilities
of the algebraic manipulation package MuMATH, on an Apple II.

Most of the computing involved factorisation (we used trial division and
Fermat's method, with sieve) and primality testing (based on Fermat's theorem),
with numbers of up to 20 digits. It is the number of factorisations required, rather
than their individual difficulty if modern methods are used, which would be
daunting if our lower bound of 1020 were to be improved by the method
described in this paper.

We give here some notation and known results which will be used often in what
follows. Since <x(.AO = 2N, any odd divisor of o(N) is also a divisor of N. It is
well known that

a(iV) = I I «(<?/") and o{q!>) = Y\Fmt{qt) (0 < 1 < 11),
; = 0 m,

where w, > 1, ml\bi + 1 and F is the cyclotomic polynomial of order mt. In
particular (when m0 = 2), we have (q0 + l)/21N.

The letters p and q will always denote odd primes.
The prime factors of N are the odd prime factors of the Fm{qi). Divisor

properties of cyclotomic polynomials were given by Nagell [9] and summarised by
McDaniel [7] as follows: If m = pad, where p \ d, then p | Fm(q) if and only if
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p = 1 (mod d) and q belongs to d (modp); further, if a > 0 and p | Fm(q), then
p\\Fm(q). In the special case when p is a Fermat prime (that is, of the form
2C + 1) and p \ Fm{q) (where m > 1 is odd), we must have p\\Fm(q) and m = pa.

In [7], McDaniel proved that if fe, = 2 or 4 for all i, 1 < / < M, then N has no
prime divisor smaller than 100. We shall later extend this, but first we use
McDanieFs result to prove

THEOREM 2. Suppose N = <7o°nj_i4,2n,u_,+1g,4 is an odd perfect number. Then

PROOF. Since 3 + N, we have qf = 2 (mod 3) for 1 < / < /. Further, for 1 < / <
t, we also have

u

o{qf) = qS' 1 1 q*'-', 0 < a, < b0, 0 < 6 < 4 (< + 1 < ; < « ) ,

since divisors of a(qf) = F3(qf) are congruent to 1 (mod 3). At most 4(w - /)
values of /' (1 < / < / ) are such that q} \o(qf) for some j (t + 1 < j < u). Then,
if t > 4(u — t), we have o(q?) = q£' for the remaining values of i (1 < / < r).
Brauer [1] showed that this equation is solvable (for primes qt,q0) only when
a, = 1, so there is at most one such i. Hence t ^ 4(u — t) + 1, which gives the
left-hand inequality in the theorem. (This is all that is required below, but the
right-hand inequality is also of interest.)

Since 5 + N, #, # 1 (mod 5) for / + 1 < / < u. Then, for t + 1 < i < u, we
have

°{q?) = qco 1 1 q?ij, o < c,. < b 0 , o < du < 2 (1 < y < t),

since divisors of o(qf) = F5(qt) are congruent to 1 (mod 5). At most It values of
i (* + 1 < / < «) are such that qj\o(q*) for some j (1 <j ; < t). If u - t > It,
then o(qf) = q% for the remaining values of i (t + 1 < iI < w). Since 3 + N, c, is
odd (Inkeri [5]), and 1 + 3 + 5 + • • • +(lk - 1) = k2 > b0 if k > /%, so there
are at most ^ such values of /. Thus u - / < It + fa, which completes the
proof of Theorem 2.

Suppose still that N has the form given in Theorem 2.

https://doi.org/10.1017/S1446788700028251 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028251


283 Largest component of an odd perfect number [41

If the smallest prime factor of N is 739 or greater, then N has at least 47326
prime factors, for there are exactly 47325 primes from 739 to 578309, inclusive,
and, if there are fewer prime factors of N, then

" i = 0 ai i p = 139 P l

Then, using Theorem 2, we obtain

47326 < u + 1 < 5(M - /) + 2,

so that u- t> 9465. Write P, for the /th prime. Then P131 = 739 and
9̂465+131-1 = 9̂595 = 100043, so that N has a prime factor at least as large as

100043 occurring to the fourth power. Hence N has a component greater than
10 20.

It remains here to show that N, as given in Theorem 2, can have no prime
factor less than 739. The details of this may be found in Appendix 1 of [2].
Therefore we have proved

LEMMA 1. Any odd perfect number with all even exponents equal to 2 or A has a
component greater than 10 20.

REMARK 1. As in [7], it now follows, by using the numbers above, that any odd
perfect number less than 104827U is divisible by the sixth power of a prime.

Suppose further now that all components of N are less than 1020. According to
Lemma 1, we may assume that bt > 6 for at least one / (1 < / ' < « ) . Further, for
such i, <7, < 2153, for otherwise N has a component equal to at least 21616 > 1020.
Let A be the set of odd primes less than 2160. To complete the proof of Theorem
1, we consider all prime powers qb, for q e A, b even, b > 6, as possible
components of N, in each case obtaining a contradiction to the definition of N.

In practice, it is convenient to eliminate entirely certain primes in A as divisors
of N. Our starting point for this is Tuckerman's table of computations [12] in
which, if 3 or 5 divides JV, he showed that N has a component exceeding 1018.
There are 49 "nodes" (Tuckerman's word) at which more work is required to
extend this bound to 10 20. The details are given in Appendix 2 of [2]. This proves

LEMMA 2. Any odd perfect number divisible by 3 or 5 has a component greater
than 1020.
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REMARK 2. From Lemma 2, it follows quickly that any odd perfect number is
greater than 1040. The best currently accepted lower bound is 1050 (Hagis [4]).

In Table 1, we list all the primes eliminated in similar fashion as possible
divisors of N. Previously eliminated primes are used in subsequent eliminations:
the primes in each row of Table 1, after the first, are eliminated by reference to
some primes in preceding rows. Table 1 includes all odd primes less than 315. The
details of the eliminations are given in Appendix 3 of [2].

TABLE 1

3
5
7,991
11, 211, 631, 701, 967,1009,1051,1471
13, 31, 71,163, 229, 241, 307, 379, 421,1303,1373
43, 61,101,113,127,137,167,173,179, 233, 337, 521
29, 59, 97,109,191, 251, 269, 293, 743, 911
19, 53,103,107,149,181,199, 223, 257, 281, 431, 449
17, 23, 37, 79,193,197, 239, 547,1499, 2003
47, 67, 73, 83,151,157, 263, 271, 283, 311, 491, 617,1723
41, 227, 313, 541
131,139, 953,1289, 2087
89, 277

Since 3178 > 1020, all that remains for the proof of Theorem 1 is to show that
if q6\\N for 317 < q < 2153 (with q not in Table 1), then N has a component
greater than 10 20.

For some of these primes q, we have p | a(q6) for some p in Table 1; such q are
thereby eliminated. The list of primes eliminated in this way is given in Table 2
where, by />( . . . , q,...), we mean p \ a(q6).

Of the remaining primes q, we list in Table 3 those for which p\a(q6), where
p = 3 (mod4) and p > 1010, so that p2\N if q6\\N. An asterisk means a(q6) is
prime; if a(q6) is composite, its factorisation is given in Appendix 4 of [2]. In
Table 4 we1 give primes q for which a(q6) has a factor p with p > 1010 and
p = 5 (mod 12) or p = 9 (mod20), so that 3 or 5 divides F2(p). The factorisa-
tions of a(q6) for these q are given in Appendix 5 of [2]. All these primes q are
thus eliminated.
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T A B L E 2

7(463, 659, 673, 757, 827, 883, 1093,1163, 1429,1583, 1597,1667,1709,
1877, 1933, 2017, 2129, 2143); 29(373, 397, 401, 487, 509, 571, 587, 661,
683, 691, 719, 761, 857, 877, 919, 977, 1031, 1039, 1069, 1097, 1109,
1151, 1213, 1283, 1301, 1321, 1399, 1531, 1553, 1619, 1669, 1747, 1789,
1823, 1847, 1879, 1901, 1979, 1997, 2053, 2083, 2111, 2113, 2137, 2141,
2153); 43(317, 557, 563, 613, 643, 709, 809, 821, 881, 907, 1091, 1129,
1153, 1423, 1483, 1559, 1607, 1693, 1741, 1913, 1951, 1999, 2099);
71(811, 829, 971, 1181, 1237, 1381, 1511, 1523, 1663, 1949, 2089);
113(367, 593, 727, 787, 1013, 1033, 1123, 1259, 1801, 2027); 127(383,
389,1907); 197(769,1021,1493,1543); 211(359,1621,1811); 239(1697);
281(641, 1867); 337(1019,1063, 1427); 379(1223, 1231); 421(1759,1931,
2069); 449(467, 773); 491(823); 547(1103); 617(1993); 631(601);
743(433); 911(1871); 953(1481); 967(1193); 1009(859); 1051(1447,
1453); 1289(1657); 1303(1187); 1373(1049); 1471(1217); 2003(733);
2087(2011)

TAB L E 3

349*, 353*, 419, 547, 461*, 751, 839, 941*, 1117*, 1201, 1229*, 1249,
1277*, 1297*, 1307, 1319, 1327, 1409*, 1433, 1459, 1487, 1489*, 1549,
1609*, 1613, 1753*, 1777, 1973, 1987

TABLE 4

479, 503, 577, 797, 929, 937, 983, 1367, 1601, 1699, 1721, 1787, 1861,
1873, 2063, 2081

Only 40 primes in A are not included in Tables 1 to 4. Their elimination as
divisors of N follows from the computations given in Appendix 6 of [2].

This completes the proof of Theorem 1.
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