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Extensional flow of a compressible viscous fluid
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We derive reduced models for extrusion problems where it is necessary to account for
fluid compressibility. We consider the two-dimensional extensional flow of a compressible
viscous fluid and discuss two specific applications: weakly compressible fluids and bubbly
liquid–gas mixtures that behave as a single compressible fluid. The mathematical model
we present consists of equations for conservation of mass, conservation of momentum and
a closure relationship between the pressure and density. The most substantial differences
between compressible extrusion problems is in the closure relationship. By integrating the
conservation equations across the fluid cross-section and exploiting a slender aspect ratio,
we derive reduced equations for conservation of mass and conservation of momentum in
the direction of flow. The reduced system of equations relating cross-sectionally averaged
quantities is closed by a relationship between the averaged pressure and density, which
will differ substantially depending on the application. We demonstrate the utility of a
reduced model for both the weakly compressible fluid and bubbly mixture applications;
namely, in providing valuable quantitative insights without needing to solve a complicated
free-boundary problem.

Key words: multiphase flow

1. Introduction

Extrusion is an important manufacturing technique used to produce a wide variety of
products including cereal (Lach 2006), pet food (Quang 2008), polymer foams (Feng &
Bertelo 2004), artificial wine corks (O’Brien & Ehrenfreund 1976; Silva et al. 2011) and
optical fibres (Taroni et al. 2013; Tronnolone, Stokes & Ebendorff-Heidepriem 2017). The
global extruded-snack-food market alone was valued at $80.6 billion USD in 2018, and
is growing as the demand for ready-to-eat food products increases, according to a report
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by IMARC Group (2019). In this introduction we discuss a subset of extrusion problems
for which fluid compressibility is important, and for which the techniques used to study
incompressible extrusion problems cannot be directly applied. Furthermore, we discuss
the need for a systematic reduction in the complexity of the mathematical models used to
describe these systems, which motivates the asymptotic analysis presented in this paper.

An extruded fluid is pushed through an outlet, or die using a screw mechanism
(Gogos & Tadmor 2013). The fluid pressure and sometimes temperature are very high
just before the fluid is pushed through the die; for example, up to 150 bar (Lach 2006)
and 120 ◦C–170 ◦C (Soykeabkaew, Thanomsilp & Suwantong 2015), respectively, for
expanded starch products. The fluid’s surface is free outside the die, so the cross-sectional
area and shape can evolve. Away from the die the product may be cut into pieces or pulled
away from the extruder; the latter results in a tension in the fluid that can be used to
influence the evolution and final state of the extruded product.

Significant mathematical progress has been made on the study of extruded
incompressible fluids. Commercial software, such as Ansys PolyFlow, is capable
of simulating the extrusion of fluids with arbitrary cross-sections and complicated
non-Newtonian rheology, as long as these fluids are incompressible. Asymptotic methods
have been applied to the free-boundary evolution of an extruded incompressible fluid to
significantly simplify the governing equations (Dewynne, Ockendon & Wilmott 1992), and
these reduced models have contributed to the glass manufacturing industry (Griffiths &
Howell 2008). The numerical techniques developed to simulate extrusion, and the reduced
models developed using asymptotic methods typically incorporate the incompressibility
condition directly into the analysis. There are, however, cases where compressibility must
be accounted for, and for which new methods must be devised.

We present two classes of extrusion problem for which changing density significantly
impacts the dynamics: the extrusion of a weakly compressible fluid and the extrusion of
a mixture containing gas. Both of these cases have practical importance and neither can
be studied using models developed for incompressible fluids. We present both cases here
because the models used for each possess a significant overlap in structure, and the analysis
presented in this paper applies to both scenarios.

Georgiou & Crochet (1994) demonstrated that allowing for some small compressibility
in an extruded fluid gives rise to oscillations in the mass flow rate and pressure that are
detrimental to the quality of the product. These oscillations were found to be absent for
an incompressible fluid. A more extreme density change can occur in extruded products
containing both liquid and gas. These mixtures can arise in the manufacture of cereal (Lach
2006) and polymer foams (Feng & Bertelo 2004). The density of the mixture (defined
as the volume-fraction-weighted sum of constituent densities) changes because of the
production and expansion of gas, which is known as vapour-driven expansion. The final
density and cross-sectional area can be a design feature of the product (e.g. for a cereal
these properties determine texture and appearance, respectively), and something that is
ideally controlled for (Wang et al. 2005).

Prior to Beverly & Tanner (1993) no extrudate (i.e. material that has been extruded
through a die) swell computations included compressibility, despite the large stresses that
occur at the die-exit lip (Tanner 1988) and the fact that most fluids are compressible to
some degree. Under the temperature and pressure variations typical in polymer processing
(200 K and 500 bar, respectively), the density of a typical polymer will change by 10–20 %
(Gogos & Tadmor 2013). For an investigation into flow instabilities, Georgiou & Crochet
(1994) allowed for compressibility in the governing equations and used the same model
as Beverly & Tanner (1993). The resulting mathematical model comprised equations
for conservation of mass and momentum of a compressible fluid, with an additional
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relationship between the pressure, p, and density, ρ, to close the system of equations.
This state equation, given by

ρ = ρ0[1 + β( p − p0)], (1.1)

where β is the isothermal compressibility and ρ0 is the density at reference pressure
p0, reflects the fact that the fluid will decompress when it exits the extruder. As β is
typically small (Beverly & Tanner 1993), this linear relationship describes only weak
compressibility. Further work has subsequently extended this analysis to non-Newtonian
fluids, which are common in polymer extrusion, and to different geometries (Georgiou
1995, 2003; Mitsoulis 2007).

Studies of weakly compressible fluids typically concern only a single phase. Multiple
phases may be present during extrusion, particularly during vapour-driven expansion in
which an incompressible liquid and a gas phase are present. The gas in the mixture is a
result of a volatile component, initially dissolved in the liquid phase at high pressure inside
the extruder, vaporising in the comparatively low pressure of the atmosphere. Expansion
and a lower final density can be enhanced through the use of a blowing agent such
as carbon dioxide (Alavi, Rizvi & Harriott 2003). A linear state equation is unable to
describe the more complicated processes that determine multiphase flow dynamics. A
model including at least two phases must be used to describe such systems.

Mathematical models of liquid–gas mixtures have been used to study a wide range
of problems including the flow of oil and gas mixtures (Brennen 2005), and volcanic
eruptions (Turcotte et al. 1990). A typical multiphase flow model comprises transport
equations for mass and momentum transfer for each phase, under the assumption that a
suitable averaging procedure has been employed in developing the continuum description
(Fowler 2011). Under certain assumptions – namely that the liquid and gas velocities
are equal and that the respective interphase mass/momentum transfer terms cancel under
summation – the transport equations for each phase can be combined into conservation
equations for the mass and momentum of the mixture. The mathematical details of the
process outlined here are described comprehensively by Brennen (2005), Drew (1983)
and Fowler (2011). These conservation-of-mass and conservation-of-momentum equations
describing the mixture take the same form as the equations for a single-phase compressible
fluid.

The equations for conservation of mass and momentum of a mixture can be expressed
as those for a single-phase fluid representing the mixture, but a linear state equation such
as (1.1) is not a sensible way of closing the system. Instead, the appropriate closure
relationship depends on the nature of the mixture. For a bubbly mixture, the density
will depend on the size of the bubbles. So, a model for bubble growth based on the
Rayleigh–Plesset equation (see Rayleigh 1917; Plesset 1949) can close the system of
equations by relating the evolution of bubbles (and, hence, mixture density) to the pressure
of the surrounding liquid and the advective fluid velocity. The key difference between the
equations studied by Beverly & Tanner (1993) and those describing bubbly mixtures is the
replacement of the state equation (1.1) by a model for bubble growth.

Developing on earlier work by Plesset & Hsieh (1960) and Campbell & Pitcher (1958),
Wijngaarden (1972) studied the acoustic properties of bubbly mixtures using the equations
for mass and momentum conservation of a single fluid (or ‘(fictitious) homogeneous’
medium). Commander & Prosperetti (1989) compared this theoretical framework – the
conservation equations of a single-phase fluid with a model for bubble growth closing the
system – to experimental results for linear pressure waves. Good agreement was found
for the small range of gas volume fractions tested, as long as the pressure wave was not
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near the bubble resonance frequency. These earlier papers set a precedent for using the
equations for a compressible single-phase fluid to study the dynamics of bubbly mixtures.

In literature on the extrusion of bubbly mixtures, the conservation equations for mass
and momentum are collectively referred to as the macroscale model, while the model
for bubble growth is referred to as the microscale model (see, for example, Alavi et al.
2003). Microscale models used for extrusion incorporate the Rayleigh–Plesset equation
and additional thermodynamics to describe the pressure in the bubbles. These additional
thermodynamic processes can include modelling the partial pressure of the dissolved
gas at the bubble–liquid interface, transport of a dissolved gas within the liquid phase
and heat transfer within the liquid phase (Patel 1980). Accounting for the latter two of
these processes requires solving advection–diffusion equations in the liquid surrounding
the bubbles. The microscale models of Alavi et al. (2003), Lach (2006) and Wang et al.
(2005) all incorporate a form of the Rayleigh–Plesset equation modified for a bubble in a
liquid of finite extent (compared with a liquid of infinite extent described by the original
Rayleigh–Plesset equation). Regardless of the complexity of the microscale model used,
the overarching structure of these extrusion models is the same; a macroscale model for
compressible flow that is closed by solving a microscale model.

The combined macroscale–microscale models for the extrusion of bubbly mixtures
are mathematically complicated by several factors that make them challenging to work
with. The two main complicating factors are the presence of a free boundary and the
need to solve a complex microscale model along fluid streamlines (which are unknown
a priori). Lach (2006) describes the challenges encountered while solving a combined
macroscale–microscale model in two dimensions, in particular, stability issues and
consistent failure of their numerical method to converge to a solution. As a result,
rather than solve the full system of equations, simplifying assumptions and discrete
approximations are often used. Lach (2006), for example, neglected cross-sectional
pressure and density variation and used various empirical models for the axial pressure
variation. Alavi et al. (2003) considered axisymmetric extrusion and discretised the
mixture into concentric annuli. Mass, momentum and energy transfer equations were
constructed that describe the transfer of each quantity between annuli. Wang et al.
(2005) considered only evolution of the axial component of velocity (neglecting the radial
component), and neglected extensional stresses in the fluid. The simplifications employed
by each group of authors reflect the complexity of both the macroscale and microscale
models. Detailed models that are used in practice may include non-Newtonian rheology
and changes in liquid content and temperature that can impact the mixture properties. None
of the simplifying assumptions used are systematic, but are instead employed to arrive at
a more tractable system of equations.

The complexity of mechanistic microscale–macroscale models for extrusion of
bubbly mixtures reduces their utility. For this reason, Kristiawan et al. (2016)
considers phenomenological models for the expansion of extruded starchy melts
(with bubbles), specifically for expansion outside of the extruder. Their development
of a phenomenological model was motivated by the fact that ‘mechanistic models
are unavailable in a simple mathematical form, easily accessible to a food science
engineer’. These mechanistic models are deemed unavailable because ‘they are based on
sophisticated numerical approaches . . .that require large computational resources’ and ‘are
too complex to be coupled with a simple 1D mechanistic model of twin screw extrusion’,
where twin screw extrusion refers to flow within the extruder.

A systematic reduction of equations describing the macroscale model for the extrusion
of bubbly mixtures would increase the utility of these models in practice. Moreover, the
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governing equations take the same form as those of a single-phase fluid. The differences
are confined to the state equation, or the model used to close the system. Thus, any
systematic reduction of the equations for conservation of mass and momentum that is
derived independently of the state equation will apply to both weakly compressible fluids
and bubbly mixtures.

Models describing similar, incompressible extrusion problems have already been
systematically reduced. The so-called Trouton model (Trouton 1906), describes the
evolution of a slender, incompressible fluid along the axis of flow. This model has since
been developed and used extensively, with applications including polymer-fibre production
(Matovich & Pearson 1969) and, notably, glass drawdown (see, for example, Dewynne,
Ockendon & Wilmott 1989). Furthermore, the Trouton model has been extended to
describe more complex scenarios including slender hollow fibres (Griffiths & Howell
2007) and temperature-dependent viscosities (see, for example, Taroni et al. 2013). These
two examples finding use in the glass manufacture industry. A compressible analogue to
the Trouton model would significantly simplify the equations used to study compressible
extrusion problems. In this paper we use asymptotic analysis to systematically reduce the
compressible Navier–Stokes equations. For simplicity, we consider a rectangular die, so
that the system can be described by two-dimensional (2-D) equations. The goal of this
paper is to present a reduced system of equations that is compatible with many different
closure conditions. To illustrate the process of closing this system we present two simple,
representative closure conditions. The first is a linear pressure–density relationship used
for weakly compressible fluids. The second is a simple bubble growth model that includes
viscosity-inhibited growth driven by a changing bubble pressure. The motivation behind
considering these examples is to demonstrate how both weakly compressible fluids and
viscous bubbly mixtures can be studied using the systematically reduced equations.

In § 2 we present a full fluid-mechanical model for the extrusion of a viscous,
compressible fluid. In § 2.1 we present two separate models by which the equations of
conservation of mass and momentum can be closed. The first of these closure conditions
gives a linearly compressible fluid, as described by (1.1). The second closure condition
corresponds to a simple example of a microscale model for an extruded bubble mixture.
In § 3 we proceed to exploit the slenderness of the mixture using asymptotic analysis.
The result is a reduced, one-dimensional model. In § 4 we demonstrate the utility of this
reduced model used in conjunction with the two different closure models. Finally, in § 5
we conclude by remarking on the strengths and limitations of the reduced model.

2. Mathematical model for vapour-driven expansion

In this section we present a mathematical model describing the unconfined flow of a
compressible fluid. For extrusion, this corresponds to flow outside of the extruder.

The compressible Navier–Stokes equations with no body force relating the density ρ,
velocity u and pressure p are given by

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) = ∇ · σ , (2.1a,b)

where the stress tensor is given by σ = −pI + λ∇ · u + μ(∇u + (∇u)T) in terms of the
dynamic viscosity μ and the second coefficient of viscosity λ (which is discussed further in
the following paragraph). As illustrated in figure 1, we consider 2-D flow of a thin sheet of
fluid in the (x, y) plane, with ρ, u = (u, v) and p being functions of x, y and t. We consider
the simplest regime in which the flow is symmetric about the x axis and confined between
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y

x

y = h(x, t)

y = −h(x, t)

0
L

Figure 1. Schematic of the 2-D flow of a compressible fluid between the free surfaces at y = ±h(x, t).

two free boundaries at y = ±h(x, t). We exploit the symmetry by focusing on the flow in
the domain 0 ≤ y ≤ h(x, t), imposing on the centreline the symmetry conditions u · j =
σ · j = 0 on y = 0, where j is the unit vector in the y direction. On the free boundary
we suppose that the traction is due to a constant surface tension γ , so that the kinematic
and dynamic boundary conditions are given by u · n = vn and σ · n = (−patm + γ κ)n
on y = h, where n is the outward pointing unit normal, vn the corresponding outward
normal velocity, patm the atmospheric pressure and κ = ∇ · n the mean curvature of the
free boundary (which we take to be positive when it is concave down).

In models for bubbly flow (see, for example, Wijngaarden 1972), (2.1a,b) describe a
single fluid that represents a mixture. The properties of this representative fluid depend
on the constituent fluids. For most fluids, the second coefficient of viscosity does not
appear in the governing equations because it is either negligible (for a gas) or the fluid
is incompressible, which is typically the case for a liquid. For a mixture, however, the
effective second coefficient of viscosity may be non-negligible. Taylor & Rosenhead
(1954) demonstrate that the effective second coefficient of viscosity, λ, for a mixture
depends on both the dynamic viscosity of the liquid phase and the volume fraction of
gas. In deriving a reduced model we suppose that both μ and λ may not be constant, and
could depend on the nature of the mixture.

2.1. Examples of closure relationships
The first closure relationship we consider is that of a weakly compressible fluid, using the
model of Georgiou & Crochet (1994). The state equation relating ρ and p is given by

ρ = ρ0[1 + β( p − p0)], (2.2)

where β is the isothermal compressibility and ρ0 is the density at reference pressure p0.
The second closure relationship we consider is a simple microscale model describing the

evolution of ideal gas bubbles in a viscous liquid. This simple model can be extended for
specific applications, such as extrusion of starchy mixtures, by incorporating more relevant
physics. To facilitate our analysis we will use the simplest physically sensible constitutive
laws to construct the microscale model.

To construct the appropriate pressure–density relationship, we can consider the
behaviour of a representative volume of the mixture containing both a viscous liquid
and gas bubbles. We assume that the bubbles contained in this representative volume are
uniform in size. We also assume that bubbles are sufficiently disperse so that they do
not interact. For simplicity, we neglect microscale inertial terms and the effect of surface
tension. When surface tension is neglected on the microscale it will usually be negligible
on the macroscale, as we find when using this microscale model to close the macroscale
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governing equations in § 4.2. Justification for these simplifying assumptions and a full
description of the microscale model can be found in Appendix A; below we present just
the key components.

The macroscopic density at the point represented by this volume element depends on
the volume fraction of gas in the mixture. We follow the approach of Brennen (2005) to
relate the density to the volume fraction of gas, and therefore, to relate the density to the
size of bubbles by

ρ = ρl

1 + 4πηR3/3
, (2.3)

where ρl is the liquid density, R is the radius of bubbles and η is the number
density of bubbles per unit volume of liquid. The bubble radii change according to
the Rayleigh–Plesset equation (cf. Rayleigh 1917; Plesset 1949), which, in the Eulerian
reference frame of the extruder, results in the bubble growth equation given by

u
∂R
∂x

+ v
∂R
∂y

= R
4μl

(pB − p), (2.4)

where pB is the gas pressure in the bubbles and μl is the viscosity of the liquid phase.
Using the relationship between the bubble size and mixture density, (2.3), the

bubble-evolution equation (2.4) can be expressed in terms of the evolution of the density
to give

u
∂ρ

∂x
+ v

∂ρ

∂y
= −3(ρl − ρ)ρ

4μlρl
( pB − p). (2.5)

The thermodynamics on the microscale govern pB, and subsequently the complexity of
the thermodynamic model for pB characterises the complexity of the microscale model.
Here we consider a simple model for pB. We assume that the temperature, T , and number
of moles of gas, N, in the bubble is fixed, and that the gas obeys Boyle’s law, so that the
pressure in the gas, pB, is inversely proportional to the bubble volume. By incorporating
the bubble volume–density relationship (2.3), the bubble pressure can be directly related
to the density of the fluid by

pB = NRGTη

(
ρ

ρl − ρ

)
, (2.6)

where RG is the ideal gas constant.
Here we have assumed that N and T are constant as this best illustrates the coupling

between a microscale bubble model and the reduced macroscale equations we present in
§ 3. However, there are many physically relevant cases where these quantities may vary.
To account for changes in N and T , additional evolution equations are required for each
quantity; however, (2.5) and (2.6) retain the same form. A more sophisticated model that
includes exsolution of a blowing agent into the bubbles, accounting for a change in N,
can be found in Appendix C. Other more sophisticated microscale models are detailed by
Amon & Denson (1984), Patel (1980) and McPhail et al. (2019).

A typical modification to this microscale model is to consider only a finite liquid
envelope surrounding the bubble, as detailed by Amon & Denson (1984), and which was
employed by Alavi et al. (2003) and Lach (2006). More detailed models for pB account for
temperature change and exsolution of volatile components of the liquid mixture (Plesset
& Zwick 1954; Patel 1980). The analysis presented in § 3 is almost entirely independent
of the specific form of the closure relationship, apart from a number of constraints (which
are discussed more in § 3). As a result, if necessary, a more complicated variant of the
microscale model can readily be substituted for (2.4).

977 A43-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

95
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.953


M.A. McPhail, J.M. Oliver, R. Parker and I.M. Griffiths

2.2. Dimensionless macroscale model
We non-dimensionalise by scaling

x = Lx′, y = εLy′, t = L
U

t′,
ρ = ρlρ

′ u = Uu′, v = εUv′,

σii = −μlUp′
atm

L
+ μlU

L
σ ′

ii, σ12 = μlU
εL

σ ′
12, p = μlUp′

atm

L
+ μlU

εL
p′,

κ = ε

L
κ

′, μ = μlμ
′, λ = μlλ

′,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.7)

and henceforth drop primes on the dimensionless variables. Here, L is the characteristic
axial length scale, ε = d/L where d is half of the die width (the width of the slit through
which the fluid is extruded), and U is the characteristic velocity scale. The characteristic
axial length scale, L, and velocity scale, U, depend on the configuration of the extruder.
From § 3 onwards we consider the importance of L and U; in particular, when L is much
larger than d so that ε � 1. We take the viscous pressure scaling, μlU/L, and p′

atm is the
scaled, dimensionless atmospheric pressure.

The dimensionless compressible Navier–Stokes equations may be written in the form

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0, (2.8)

ε2Re
{

∂

∂t
(ρu) + ∂

∂x
(ρu2) + ∂

∂y
(ρuv)

}
= ε2 ∂

∂x
(σ11) + ∂

∂y
(σ12), (2.9)

ε2Re
{

∂

∂t
(ρv) + ∂

∂x
(ρuv) + ∂

∂y
(ρv2)

}
= ∂

∂x
(σ12) + ∂

∂y
(σ22), (2.10)

for 0 < y < h(x, t), where the dimensionless stress components are given by

σ11 = −p + λ
(

∂u
∂x

+ ∂v

∂y

)
+ 2μ

∂u
∂x

, (2.11)

σ12 = μ

(
∂u
∂y

+ ε2 ∂v

∂x

)
, (2.12)

σ22 = −p + λ
(

∂u
∂x

+ ∂v

∂y

)
+ 2μ

∂v

∂y
, (2.13)

and the Reynolds number Re = ρlUL/μl. The symmetry conditions on the centreline are
given by

v = 0, σ12 = 0, (2.14a,b)

on y = 0. The dimensionless kinematic and dynamic boundary conditions on the free
surface may be written in the form

v = ∂h
∂t

+ u
∂h
∂x

, −ε2σ11
∂h
∂x

+ σ12 = ε2Γ κ

∂h
∂x

, −σ12
∂h
∂x

+ σ22 = −Γ κ, (2.15a–c)

on y = h(x, t), where the inverse capillary number Γ = εγl/μlU and the dimensionless
curvature of the free surface is given by

κ = −
(

1 + ε2
(

∂h
∂x

)2
)−3/2

∂2h
∂x2 . (2.16)
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2.3. Dimensionless closure relationships
Non-dimensionalising (2.2), taking the reference density and pressure to be ρ0 = ρl and
p0 = patm, respectively, gives

ρ = 1 + β̂p, (2.17)

where β̂ = βμlU/εL is the dimensionless compressibility.
The dimensionless Rayleigh–Plesset equation (2.5), with bubble pressure (2.6), is given

by

u
∂ρ

∂x
+ v

∂ρ

∂y
= −3(1 − ρ)ρ

4

(
Cρ

1 − ρ
− p − patm

)
, (2.18)

where C = NRGTηL/μlU is a constant.

3. A Trouton-like model for a compressible fluid in two dimensions

3.1. Conservation of mass and momentum
Integrating the continuity equation (2.8) with respect to y from y = 0 to y = h and
imposing the symmetry and kinematic conditions (2.14a) and (2.15a), we obtain the
cross-sheet averaged expression representing conservation of mass, i.e.

∂

∂t
(hρ̄) + ∂

∂x
(hρu) = 0, (3.1)

where we define

ζ̄ = 1
h

∫ h

0
ζ dz (3.2)

for some function ζ . Similarly, integrating the axial momentum equation (2.9) and
imposing the symmetry and dynamic conditions (2.14b) and (2.15b), we obtain the
cross-sheet averaged expression representing conservation of axial momentum, namely

Re
[

∂

∂t
(hρu) + ∂

∂x
(hρu2)

]
= ∂

∂x
(hσ 11) + Γ κ

∂h
∂x

. (3.3)

We are now in a position to analyse the distinguished limit in which both the Reynolds
and capillary numbers are of order unity as ε → 0. It follows immediately from the
leading-order versions of the axial momentum equation (2.9), subject to the symmetry and
zero-shear stress conditions (2.14b) and (2.15b), that the axial velocity u is independent
of y at leading order. Since we shall exploit (3.3) to derive the solvability condition for
u(x, t) instead of proceeding to higher order in the asymptotic analysis, we do not introduce
notation denoting leading-order variables. At leading order, (3.1) becomes

∂

∂t
(hρ̄) + ∂

∂x
(hρ̄u) = 0, (3.4)

which is the first of four expressions that we shall derive relating cross-sheet averaged
quantities.

Since u is independent of y at leading order, it follows from the transverse momentum
equation (2.10) and (2.12) and (2.13) that so too is σ22. Since in addition the mean curvature
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κ = −∂2h/∂x2 at leading order according to (2.16), the normal stress condition (2.15c)
implies that σ22 is given at leading order by

σ22 = −p + λ
(

∂u
∂x

+ ∂v

∂y

)
+ 2μ

∂v

∂y
= Γ

∂2h
∂x2 (3.5)

for 0 ≤ y ≤ h(x, t). It then follows from (2.11) that the leading-order cross-sheet averaged
axial stress is given by

σ̄11 = 2μ
∂u
∂x

− 2μ
∂v

∂y
+ Γ

∂2h
∂x2 . (3.6)

We deduce from (3.3) and (3.6) that it is not possible to derive a reduced Trouton-type
system relating cross-layer averaged quantities without making an additional assumption
that allows use to write the cross-sheet averaged axial stress in terms of cross-sheet
averaged quantities. We make the simplest such assumption, which is that the dynamic
viscosity is independent of y at leading order. In closely related work on incompressible
non-isothermal extensional flow by Taroni et al. (2013) and Stokes, Wylie & Chen (2019), a
uniform cross-sheet viscosity is indeed found to be the leading-order result of a systematic
asymptotic analysis for a temperature-dependent viscosity.

By assuming that the cross-sheet viscosity is uniform, we deduce from the symmetry
and kinematic conditions (2.14a) and (2.15a) that, at leading order,

σ 11 = 2μ
∂u
∂x

− 2μ

(
∂h
∂t

+ u
∂h
∂x

)
+ Γ

∂2h
∂x2 = 4μ

∂u
∂x

+ 2μh
ρ̄

Dρ̄

Dt
+ Γ

∂2h
∂x2 , (3.7)

where in the second equality we made use of (3.4) and the material derivative is given
here and hereafter by D/Dt = ∂/∂t + u∂/∂x. Substituting (3.7) into (3.3), we deduce that
at leading order the cross-sheet averaged axial momentum equation for the leading-order
axial velocity u(x, t) may be written in the form

Re
[

∂

∂t
(hρ̄u) + ∂

∂x
(hρ̄u2)

]
= ∂

∂x

(
4μh

∂u
∂x

+ 2μh
ρ̄

Dρ̄

Dt

)
+ Γ h

∂3h
∂x3 , (3.8)

which is the second of four equations relating cross-sheet averaged quantities.
Finally, averaging (3.5) across the half-sheet, gives the third equation relating

cross-sheet averaged quantities

p̄ = −2μ
∂u
∂x

− (2μ + λ)
ρ̄

Dρ̄

Dt
− Γ

∂2h
∂x2 . (3.9)

The fourth and final equation relating cross-sheet averaged quantities must be derived from
the pressure–density closure relationship.

3.2. Cross-sectionally averaged closure conditions
Equations (3.4), (3.8) and (3.9) provide three equations for four unknowns: the sheet
thickness, h; velocity, u; average density, ρ̄; and average pressure, p̄. A cross-sectionally
averaged state equation is required to close this system of equations. If we were to assume
that the density is constant (i.e. that the fluid is incompressible), (3.4) and (3.8) would
reduce to the equations for the extensional flow of an incompressible sheet (see Howell
(1996) for an example).
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Extensional flow of a compressible viscous fluid

It is not always possible to systematically derive the appropriate cross-sectionally
averaged closure relationship, in which case an empirical relationship between the
cross-sectionally averaged variables is necessary. In the case of a fluid with compressibility
given by (2.17), the state equation is linear. So, the appropriate cross-sectionally averaged
closure equation is given by

ρ̄ = 1 + β̂p̄. (3.10)

The state equation for a bubbly mixture, given by (2.18), is nonlinear and not readily
averaged across the cross-section. In general, we cannot systematically transform (2.18) to
an expression relating cross-sectionally averaged quantities. So, an appropriate empirical
relationship must be used when a systematic reduction of the state equation is not possible.
There may, however, be special cases for which systematic averaging is still possible. For
the microscale closure relationship (2.18), we consider the special case where the density is
uniform in the cross-section leaving the extruder. In this case, given that the leading-order
axial velocity u is uniform in the cross-section, the density will remain uniform across
the cross-section. This is because there is no mechanism within the governing equations –
namely, the pointwise pressure–density relationships (2.18) and (3.5) – that can introduce
density variation if the density profile is initially uniform. Thus, the cross-section average
of (2.18) is given by

u
∂ρ̄

∂x
= −3(1 − ρ̄)ρ̄

4

(
Cρ̄

1 − ρ̄
− p̄ − patm

)
. (3.11)

That an initially uniform cross-section density should persist is a convenient property of a
2-D system. In three dimensions this is no longer true in general because surface tension
can induce pressure variation throughout the cross-section and induce density variation.

4. Studying compressible extrusion using reduced models

In § 3 we presented reduced equations for conservation of mass, (3.4), and conservation of
momentum, (3.8) and (3.9). In this section we consider the dynamics of different extrusion
problems when the closure relationships (3.10) and (3.11) are appropriate; namely, weakly
compressible fluids and bubbly mixtures. In both cases we consider time-steady problems,
and use parameter values typical of each case in practice.

4.1. A linear pressure–density relationship
In this section we neglect the time derivatives in the system of (3.4), (3.8) and (3.9) and
close this system using the linear state equation given by (3.10). We can considerably
simplify this system of equations by integrating the equations for conservation of mass
and momentum, (3.4) and (3.8), respectively, which gives

ρ̄uh = Q, ReQu + 4μh
ρ̄u

∂

∂x
(ρ̄u2) = T , (4.1a,b)

where Q is the mass flux and T is the tension.
With the substitution of (4.1a) and the state equation (3.10) into (3.9) and (4.1b), we

can obtain a dynamical system comprising two ordinary differential equations (ODEs)
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given by

du
dx

= ρ̄u

4μ

(
1 + μ

2μ + λ
) (−Reu + T

Q − 2μ(1 − ρ̄)

β̂(2μ + λ)ρ̄u

)
, (4.2)

dρ̄

dx
= −ρ̄

u(2μ + λ)
(

2μ
du
dx

− 1 − ρ̄

β̂

)
, (4.3)

where p̄ = (ρ̄ − 1)/β̂ and h = Q/ρ̄u. We can immediately note two steady-state solutions
of this system: ρ̄ = 1, p̄ = 0 and then either u = T /(ReQ) and h = Re/T or u → 0 and
h → ∞.

By performing a linear stability analysis around the critical point ρ̄ = 1, p̄ = 0, u =
T /(ReQ) and h = Re/T , for μ = 1 and λ = −2μ/3, we find that the eigenvalues of (4.2)
and (4.3) are given by

σ± =
−2T 2β̂ − 15Q2Re ±

√
4T 4β̂2 − 24T 2β̂Q2Re + 225Q4Re2

28T β̂Q
, (4.4)

which are both real for all parameter values and strictly negative for T > 0. Thus, under
tension, this steady state is linearly stable. When T < 0, however, this steady-state solution
no longer exists because this would require u < 0. A bifurcation occurs for T = 0 where
this fixed point coincides with the previously identified fixed point with u → 0 and h →
∞ as x → ∞.

For the fixed point with ρ̄ = 1, p̄ = 0, in the limit u → 0 and h → ∞, we cannot use
linear stability analysis to classify the stability because (4.3) is not defined along x = 0.
Instead, we can analyse the stability of this fixed point by studying nearby trajectories to
demonstrate that the fixed point is a saddle node (see Appendix B for more details).

The steady states and the trajectories of points surrounding the steady states in a u–ρ̄

phase plane for a range of β̂ values are illustrated in figure 2. The fixed point at ρ̄ = 1,
p̄ = 0, u = T /(ReQ) and h = Re/T is a stable node and the fixed point at ρ̄ = 1, p̄ = 0,
in the limit u → 0 and h → ∞ is an unstable node.

The phase planes in figure 2 can give us mechanistic insight into the role of β̂ on
the trajectories in the phase plane. Smaller β̂ values result in a rapid decompression
(or compression for ρ̄ < 1 initially) to ρ̄ = 1 without much velocity change, which is
accommodated for by a increase (or decrease) in the thickness of the sheet, h. The length
scale over which this rapid change occurs is O(β̂−1), which is the scaling of x that gives a
dominant balance between the terms in (4.3). For larger β̂ values, the trajectories are more
dynamic, and both u and ρ̄ can both increase and decrease on a single trajectory towards
the steady state. For larger β̂ values, compressibility has a more sustained influence
over the evolution of the product. In the small β̂ regime, compressibility influences the
initial evolution of the product where the density adjusts to ρ̄ ≈ 1. In the latter stage of
evolution, for a small β̂ value, the density remains constant and the product behaves as an
incompressible fluid. The analogous incompressible scenario would be a fluid with ρ̄ = 1,
extruded with the same velocity, but from a die with width equal to h = Q/u. The far-field
behaviour of the fluid does not depend on β̂.

Taliadorou, Georgiou & Mitsoulis (2008) observed through numerical simulation
that a compressible fluid will initially expand and then contract with decaying surface
oscillations. Expansion and then subsequent contraction was observed in the solutions to
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Extensional flow of a compressible viscous fluid
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Figure 2. The phase plane for the dynamical system given by (4.2) and (4.3) for μ = 1 = −3λ/2, Re = 1,
T = 1 and Q = 1. From left to right the values of β used are β̂ = 0.1, β̂ = 1 and β̂ = 10. Arrows indicate
the trajectories of the solutions and the red disks indicate the steady states at (ρ̄, u) = (1,T /(ReQ)) and
(ρ̄, u) = (1, 0). The dashed lines illustrate the nullclines. The blue nullcline corresponds to ∂u/∂x = 0 and
the red nullcline illustrates where ∂ρ̄/∂x = 0. After crossing the nullclines, the streamlines deflect (sharply for
small β̂) towards the stable steady state at (ρ̄, u) = (1,T /(ReQ)).

(4.2) and (4.3) for fluids with ρ̄ > 1 initially. The fact that the eigenvalues in (4.4) are real
and negative suggest that the surface does not oscillate, but instead converges exponentially
to the fixed point. We have only considered unconfined flow, but the numerical simulations
of Taliadorou et al. (2008) included a die wall, which may be the source of the surface
oscillations that they observed.

There are two special values of the second coefficient of viscosity: λ : λ = −2μ/3,
which is often chosen so that the deviatoric stress makes no contribution to the mean
normal stress (Batchelor 2000); and λ = −3μ, which we deduce from (4.2) corresponds
to the nullclines of (4.2) and (4.3) coinciding. If λ = −3μ, (4.2) is undefined away from
any fixed point. However, there is currently no known real-world scenarios where we would
expect λ = −3μ, which would correspond to a negative bulk viscosity. Thus, λ = −3μ is
a mathematically important case, but of no obvious practical importance.

4.2. Vapour-driven expansion
For a practically relevant example of vapour-driven expansion, we consider the
manufacture of cereal and expanded snack foods. As such, in this section we close the
system of equations (3.4), (3.8) and (3.9) using (3.11) and use the parameter values
appropriate for cereal extrusion given by Lach (2006), which can be found in table 1. The
corresponding Reynolds number is Re = 1.1 × 10−3 and the inverse capillary number is
Γ = 5.5 × 10−5, which are both small; thus, we consider the consequences of neglecting
terms containing these dimensionless parameters. While the reduced governing equations
allow for axially varying viscosity, to simplify our discussion, we assume that the viscosity
is constant for the remainder of this paper. In practice, the viscosity will depend on the
nature of the mixture being extruded.

For steady flow in the absence of surface tension (Γ = 0) and inertia (Re = 0), (3.4)
and (3.8) may be integrated to yield

ρ̄uh = Q,
4μQ
ρ̄2u2

∂

∂x

(
ρ̄u2

2

)
= T , (4.5a,b)
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Symbol Parameter Value Units

d Extruder outlet diameter 3 × 10−3 m
L Axial length scale 10−2 m
μl Liquid phase viscosity 3 × 103 Pa · s
R0 Initial bubble radius 10−5 m
ρl Liquid phase density 1400 kg m−3

γl Surface tension of liquid 0.04 N m−1

U Typical flow speed 0.23 m s−1

η Bubbles per unit volume of liquid 5 × 1011 bubbles/m3
liquid

Table 1. Parameter values typical of cereal extrusion taken from Lach (2006). The units of bubbles/m3
liquid

refer to the number of bubbles per unit volume of wet cereal mixture (the liquid phase of the mixture).

where the mass flux, Q, and the tension in the sheet, T , are constants. With no tension
on the sheet, such as for a product being cut after extrusion, we can make further progress
by integrating (4.5b). The tension in the sheet depends on the stress boundary condition
at the end of the sheet. As noted earlier, we are interested in the case in which no normal
stress is applied to the end of the sheet, which corresponds to T = 0.

When T = 0, we have two conserved quantities: Q, given by (4.5a,b), and E , defined
by

ρ̄u2

2
= E . (4.6)

In the absence of surface tension and inertia, we can obtain an expression for the pressure
by combining (3.9), (4.5a,b) and (4.6). As a result, we can present a system of equations
governing the time-steady, spatial evolution of a 2-D compressible sheet in the absence of
inertia and surface tension given by

ρ̄uh = Q,
ρ̄u2

2
= E, p̄ = −(λ+ μ)u

ρ̄

∂ρ̄

∂x
, (4.7a–c)

and (3.11), which has practical relevance to cereal extrusion. The special case λ = −μ sets
the effective bulk viscosity of the fluid to zero in two dimensions, a result of which would
be p̄ = 0; that is, without bulk viscosity, the fluid pressure is equal to atmospheric pressure
as soon as it exits the extruder.

4.3. Coupled model analysis
Using (4.7a–c), we can reduce (3.11) to an ODE for the density given by

dρ̄

dx
= − 3(1 − ρ̄)ρ̄3/2

25/2E1/2(1 + 3(1 − ρ̄)(λ+ μ)/4)

(
Cρ̄

1 − ρ̄
− patm

)
, (4.8)

where ρ̄0 = 1/(1 + α), with the initial volume fraction ratio of gas to liquid α = 4πηR3
0/3,

is the density at x = 0 according to (2.3). Thus, we have found that with a simple
microscale law and uniform inlet density the equations for a viscous compressible sheet
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Extensional flow of a compressible viscous fluid

are reduced to a single ODE. This autonomous ODE admits the implicit analytic solution∫ ρ̄

ρ̄0

−(2E)1/2(4 + 3(1 − ρ̄′)(λ+ μ))

3(ρ̄′)3/2(Cρ̄′ − patm(1 − ρ̄′))
dρ̄′ = x. (4.9)

From (4.7) and (4.8) we can see that the sheet tends to the steady profile given by

ρ̄ →
(

1 + C
patm

)−1

, u →
√

2E
ρ̄

, h → Q√
2E ρ̄

, p̄ → 0 as x → ∞, (4.10)

for C /= 0, which holds in all physical scenarios of relevance.

4.4. Solutions to the coupled microscale–macroscale model
We present numerical results to the system of (4.7) and (4.8) for a product cut at x = 1,
which corresponds to the time-steady extrusion of a viscous, bubbly mixture with uniform
density, ρ̄0, at the inlet under no tension. We consider the impact of different inlet
densities on the evolution of the mixture. We also consider varying the parameter C,
which encapsulates the thermodynamics of our simple microscale model. Here we are
interested in expansion, so we take the default value of C = 10, as this is sufficiently
large to overcome the liquid pressure surrounding the bubbles. We avoid the case C <

patm(1 − ρ̄0)/ρ̄0, where the bubble pressure at the inlet is lower than atmospheric pressure
and the bubbles will collapse. The dynamics of bubble collapse are too complicated to be
described by the closure relation (3.11), and a more suitable model should at least include
surface tension. For illustrative purposes, we take μ = 1 and λ = 0; however, in practice
these parameters may depend on the state of the system.

We find it useful to compare the results for the compressible fluid to those for an
incompressible fluid under equivalent conditions (i.e. under no tension). In this case, with
T = 0, for an incompressible fluid, the variables are unchanged from their inlet values,
which can be seen by setting ∂ρ̄/∂x = 0 in (4.7) and (4.8).

In figure 3 we illustrate h, ρ̄, u and R̄, the bubble radius associated with ρ̄, for a
range of ρ̄0 values. We see that as ρ̄0 is increased towards 1 (i.e. approaching the
incompressible limit with no bubbles), h, ρ̄ and u tend to the equivalent constant values
of an incompressible fluid. Away from this limit, for moderate values of ρ̄0, the change
in the compressible sheet is more substantial: as the bubbles grow, we see thickening
and acceleration of the sheet, and a decrease in density. An incompressible sheet
cannot simultaneously thicken and accelerate; conservation of mass (4.7) forbids this. A
compressible fluid, however, can both expand and accelerate as the density decreases. The
most substantial bubble growth occurs for values of ρ̄0 closer to the incompressible limit of
1 (figure 3d), however, in this limit the bubble number density, and therefore α, approaches
zero. Hence, although more substantial bubble growth occurs, the macroscopic impact of
this is negligible (figures 3a and 3c). Bubble growth is larger in this limit as the flow speed
is lowest in the absence of expansion-induced acceleration, which allows more time for
the bubbles to grow.

By introducing a microscale model to close the flow equations, we introduced a
parameter C that encapsulates the microscale thermodynamics. Larger values of C
correspond to higher initial bubble pressures and lead to more rapid and substantial
changes in the sheet (figure 4). In the limit as C approaches patm(1 − ρ̄0)/ρ̄0, the
right-hand side of the evolution equation for ρ̄ (4.8) vanishes. This solution resembles the
incompressible case by remaining unchanged. However, the sheet is not incompressible;
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Figure 3. Half-width, h, density, ρ̄, velocity, u, and bubble radius, R̄, for ρ̄0 = {0.995, 0.975, 0.95, 0.89, 0.81}
corresponding to initial gas-to-liquid volume fractions of α = {0.01, 0.05, 0.1, 0.25, 0.5}, keeping u0 = 1, C =
10 and h0 = 1 fixed (i.e. varying initial density). The dashed lines indicate the solution for an incompressible
fluid under equivalent conditions.

instead, the bubble pressure is in perfect balance with the liquid pressure. For C <

patm(1 − ρ̄0)/ρ̄0, the bubbles will shrink.

5. Concluding remarks

In this paper we presented a reduced model for the extensional flow of a viscous
compressible sheet. This model describes a general unconfined extensional flow with
changing density, and was motivated by the specific need to gain a better understanding
of manufacturing techniques that extrude compressible fluids. Full models for such flows
have numerous challenging aspects: free boundaries, complicated governing equations and
pressure–density relationships that may require integrating along fluid streamlines. The
model described in this paper offers a simpler theoretical framework that can be used to
understand these flows, while still providing useful information about the state of the fluid
such as the sheet thickness, averaged cross-sectional density and pressure, and the flow
speed.

While the equations for conservation of mass and momentum of compressible fluids
typically take the same form, the additional pressure–density relationship required to
close the governing equations depends strongly on the specific fluid being described. In
§§ 4.1 and 4.2 of this paper we considered two extrusion problems using different closure
relationships. In § 4.1 we assumed a linear relationship between the pressure and density.
In this case, while only neglecting surface tension, the resulting governing equations
comprised a dynamical system of two ODEs: (4.2) and (4.3). The simplicity of this reduced
model meant that analytic methods (that are not applicable to the full model) could elicit
useful information. For example, by analysing the phase plane we identified the steady
state of the system and demonstrated that this state is linearly stable when the system is
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Figure 4. Half-width, h, density, ρ̄, velocity, u, and bubble radius, R̄, for C = {0.5, 1, 5, 10}, keeping
ρ̄0 = 0.9, u0 = 1 and h0 = 1 fixed (i.e. varying inlet velocity).

under tension. We can also gain mechanistic insight that is not obvious from the full model,
such as the role of the dimensionless compressibility, β̂, on the evolution of the system and
the transition from compressible to incompressible fluids for small β̂.

In §§ 4.2–4.4 we demonstrated how a microscale model for bubble growth could be
incorporated. This particular microscale model is a simple variant of the models used by
Alavi et al. (2003) and Lach (2006) to model vapour-driven expansion during extrusion.
In this case we demonstrated that the dynamics of the system were governed by a single
ODE, from which it was simple to read off the far-field behaviour of the sheet.

To better understand the behaviour of a compressible sheet, a useful reference is the
behaviour of incompressible sheets under equivalent conditions. The results presented in
§ 4.4 demonstrate that compressible and incompressible sheets will exhibit very different
qualitative behaviour. One such difference is the simultaneous acceleration and expansion
that can be exhibited by a compressible sheet, which is compensated for by a reduction
in density. There are many interesting phenomena observed in incompressible extensional
flow, such as sintering (cf. Cummings & Howell 1999), that are yet to be explored for a
compressible flow.

The reduced model we present in this paper has both advantages and disadvantages
when compared with the full model presented in § 2. While the reduced model is much
simpler than the full model, this simplicity is a consequence of making a number of
assumptions that may not hold for all extrusion problems. If the aspect ratio, ε, is not
small, the neglected components of the full model will influence the dynamics, namely,
the neglected stress components. Another source of model breakdown is the neglected
physical processes, in particular, thermodynamics and temperature-dependent viscosities.
For a multi-scale model of vapour-driven expansion, the thermodynamics is likely to
have a strong influence on bubble dynamics. The methodology for including conservation
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of thermal energy would be very similar to that described in Taroni et al. (2013) for
incompressible fluids, and is a sensible next step in extending this model.

The main advantage of the reduced model is the simplicity of the governing equations;
the equations being ODEs rather than partial differential equations (PDEs) on a domain
with a free boundary. By systematically reducing the governing equations, we have
addressed the need for simpler, mechanistic models for extrusion raised by Kristiawan
et al. (2016). A reduced model cannot be systematically derived for all compressible fluids
because, even though the conservation equations can be averaged over the cross-section,
it is not possible in general to systematically average the state equation. This is because
the pointwise relationship between these quantities can be nonlinear, so the cross-section
integrals are not possible to evaluate analytically. For the special case of a linear
state equation, (1.1), a closed model for the averaged quantities can be systematically
derived. For more complicated closure relationships, a constitutive model relating the
cross-sectionally averaged quantities must be used.

With a reduced model for the flow of a compressible sheet, it is much easier
to investigate the impact of different microscale dynamics on the macroscale flow.
Incorporating a more complex microscale model, including microscale diffusive transport
of mass and energy, into the reduced flow model is considerably simpler when compared
with the full model. A reduced macroscale model comprising only ODEs, rather than
PDEs on a freely evolving domain, drastically simplifies any analysis on the interplay
between microscale dynamics and macroscale mass and momentum transport. For
application to vapour-driven expansion problems, we have also assumed that the equations
for single-phase compressible flow are appropriate. This will not be true of multiphase
flows in general, and the single-phase flow equations are typically only employed when
the bubbles are small and well dispersed.

This model is limited to cases in which the compressible sheet is free to expand. This
means that, for extrusion, another model would be required to understand the behaviour
of the mixture inside the extruder; the output of this model would provide inlet conditions
for the reduced model presented in this paper.

The reduced model for compressible flow presented in this paper provides a simple
framework with which to study real-world systems involving viscous compressible fluids.
The resulting model is analogous to the Trouton model for incompressible flow and, in a
similar manner, provides the base upon which more complicated dynamics can be studied.
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Appendix A. A closure relationship for microscale bubble growth

Following the approach of Brennen (2005), we can construct a relationship between
pressure and the rate of change of mixture density. The volume fraction of gas, αg, is
related to the number of bubbles per unit volume of liquid, η, and the bubble volume, V ,
by

αg = αlηV, (A1)

where αl is the volume fraction of liquid. We assume that η is uniform in space and
constant in time; that is, the bubbles in the mixture are uniformly distributed at the inlet,
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Extensional flow of a compressible viscous fluid

and we do not consider further nucleation or bubble coalescence. Since αl + αg = 1, (A1)
can be used to express αl in terms of η and V as

αl = 1
1 + ηV

. (A2)

The density of the mixture is given by

ρ = ρlαl + ρgαl, (A3)

where ρl is the density of the liquid component and ρg is the density of the gas component.
Here we shall assume that the density of the gas contained in the bubbles is negligible so
ρg � ρl. The density of the mixture is then given by

ρ = ρl

1 + ηV
. (A4)

The bubble volume is related to the radius of the bubbles, R, according to V = 4πR3/3.
The bubble radius can be determined by the Rayleigh–Plesset equation (Rayleigh 1917;
Plesset 1949),

ρl

(
DR
Dt

)2

+ ρlR
D2R
Dt2

= pB − p − 2γl

R
− 4μl

R
DR
Dt

, (A5)

where pB is the pressure of the vapour in the bubble.
We non-dimensionalise (A5) by introducing the scalings

R = R0R′, pB = μlU
L

p′
B, (A6)

and by using the scalings introduced in § 2.2 for t, u, x and p. We have chosen to use the
viscous pressure scaling for pB and the initial bubble radius, R0, for R. From hereon, we
only consider dimensionless variables and drop all primes. The result of this rescaling is
the dimensionless Rayleigh–Plesset equation given by

ReB

(
DR
Dt

)2

+ ReBR
D2R
Dt2

= pB − p − patm − ΓB

R
− 4

R
DR
Dt

, (A7)

where ReB is the reduced microscale Reynolds number,

ReB = ρlWR2
0

μlL
, (A8)

and ΓB is the inverse capillary number for the microscale model, given by

ΓB = 2γlL
μlR0U

. (A9)

Using the parameter values in table 1 gives a typical reduced microscale Reynolds number
of ReB = 3.6 × 10−9 and a typical microscale inverse capillary number of ΓB = 3.2 ×
10−2.

We note that the microscale Reynolds number, ReB, is smaller than its macroscale
counterpart, Re, while the microscale inverse capillary number, ΓB, is larger than its
macroscale counterpart, Γ , but still negligible. We therefore neglect the inertial and
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surface-tension terms in (A7), giving the dimensionless Rayleigh–Plesset equation for a
bubble surrounded by a viscous liquid,

DR
Dt

= R
4

( pB − p − patm). (A10)

If we were interested in bubble collapse, the surface tension should be retained as its
influence will increase as the bubbles get smaller.

The bubble growth (A10) must be solved along streamlines. As a consequence of this,
and of the leading-order axial velocity being uniform in the cross-section, we can deduce
a special case from the governing equations. If the density (and, therefore, bubble size) is
uniform in a cross-section, then (3.5) implies that the pressure will also be uniform. If the
pressure, axial velocity and bubble radii are uniform in a cross-section, then by (A10) the
bubbles in the cross-section will evolve at the same rate and remain equal in size. That is,
if the bubble size in the cross-section is uniform initially, then it will remain so at leading
order throughout the evolution of the product. In this special case, where R is uniform in
the cross-section, it is much simpler to integrate (A10) over the cross-section.

Appendix B. Local analysis of the fixed point ρ̄ = 1 and u = 0

To understand the stability of the fixed point with ρ̄ = 1 and u = 0, we study the behaviour
of trajectories near the fixed point. Consider the local coordinates (ρ̄′, u′), where

ρ̄ = 1 + δρ̄′, u = δu′, (B1a,b)
and δ is small. Here ρ̄′ and u′ evolve according to (4.2) and (4.3),

du′

dx
= (1 + δρ̄′)u′

4μ

(
1 + μ

2μ + λ
) (−Reu′ + T

Q + 2μρ̄

β̂(2μ + λ)(1 + δρ̄′)u′

)
:= g(ρ̄′, u′), (B2)

δ
dρ̄′

dx
= −(1 + δρ̄′)

u′(2μ + λ)
(

2μg(ρ̄′, u′) + ρ̄′

β̂

)
, (B3)

where g(ρ̄′, u′) has been defined to make the following discussion more compact.
There are two length scales associated with this system: a length scale of O(δ) for which

u′ is constant, and an order one length scale. Formally, a matched asymptotic expansion can
be used to analyse this system; however, we are only interested in the stability properties
of the fixed point at ρ̄ = 1 and u = 0, so we opt for a more concise description.

Over the O(δ) length scale, we can introduce X = x/δ, where X is order 1 as δ → 0.
From (B3), at leading order in δ, we find that u′ is a constant and ρ̄′ tends to a steady state
given by

2μg(ρ̄′, u′) = − ρ̄′

β̂
=⇒ ρ̄′ = ρ̄∗ = −T β̂(λ+ 2μ)u′

Q(λ+ 3μ)
. (B4)

Over the longer length scale, we have ρ̄′ = ρ̄∗, and at leading order in δ we have
du′

dx
= T (λ+ 2μ)u′

4Qμ(λ+ 3μ)
. (B5)

For T > 0, λ+ 2μ > 0 and u′ > 0, we have du′/dx > 0. Thus, after a rapid convergence
of ρ̄′ towards ρ̄∗, the velocity increases and the trajectories diverge from the fixed point
at u = 0 and ρ̄ = 1. So, the fixed point is an unstable saddle node, because trajectories
rapidly approach along the ρ̄ axis, and then deflect towards the stable node at ρ̄ = 1 and
u = T /(ReQ).
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Liquid phase

Transport of mass,

momentum and dissolved gas

Bubble boundary

Henry’s lawGas bubble

Ideal gas

r

Far field, r → ∞
Liquid is

undisturbed

Figure 5. Schematic of an ideal gas bubble surrounded by a liquid of infinite extent. In the liquid phase we must
account for the transport of mass and momentum; as well as dissolved-gas transport. At the interface between
phases we impose boundary conditions associated with conservation of mass, conservation of momentum and
thermodynamic equilibrium.

Appendix C. Extention of microscale model to account for mass exchange

We present a system of equations that can be used to extend the microscale model
presented in § 2.1 to account for changes in the amount of gas in the bubbles. We consider
the presence of a blowing agent in the liquid surrounding the bubbles that can vaporise
at the liquid–bubble interface. To account for the evolution of N, we extend the existing
microscale model given by (2.5) and (2.6).

On the microscale we have a gas bubble of radius R, whose evolution is given by
(2.4), and a liquid in r > R, where r is the radial coordinate in the microscale coordinate
system, as illustrated in figure 5. In the liquid phase we assume there is a dissolved gas of
concentration c(r, t), where r > R and t ≥ 0 is the time since nucleation. To integrate this
model with the macroscale model, we need to transform from the Lagrangian frame of the
bubble to the Eulerian frame of the extruded fluid.

The rate at which the dissolved species vaporises into the bubble is given by
dN
dt

= 4πR2D
∂c(0, t)

∂r
, (C1)

where D is the diffusion coefficient for the blowing agent in the liquid and at t = 0 we
have N(0) = N0.

The concentration of the dissolved species is given by

∂c
∂t

+ ur
∂c
∂r

= D
r2

∂

∂r

(
∂c
∂r

)
, (C2)

where ur is the radial velocity of the liquid phase in the reference frame of the bubble. We
assume that the initial concentration of the dissolved species is

c(r, 0) = c0, (C3)

and that
c → c0 as r → ∞. (C4)

For the final boundary condition, at r = R, we assume that the gas pressure and
dissolved-gas concentration are related through Henry’s law

pB(t) = Hc(R, t), (C5)
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where H is the coefficient of Henry’s law.
To non-dimensionalise the microscale model we employ the same scalings used for the

macroscale model in § 2.2 and introduce the following scalings for microscale quantities:

r = R(0)r′, t = L
U

t′, ur = R0U
L

u′
r,

N = 4πR0DLc0

U
N′, pB = μlU

εL
p′

B, c = c0 + c0c′.

⎫⎪⎬
⎪⎭ (C6)

Here a prime indicates a dimensionless variable. We drop primes from hereon and only
deal with dimensionless variables.

The updated dimensionless model, which was before given by (2.18) in the paper, is now
given by the dimensionless Rayleigh–Plesset equation

u
∂ρ

∂x
+ v

∂ρ

∂y
= −3(1 − ρ)ρ

4
( pB − p − patm), (C7)

where the dimensionless bubble pressure is given by

pb = αNρ

1 − ρ
, (C8)

and α = 4πRGεL2TR0ηDc0/μU2 is a dimensionless constant. The dimensionless rate of
change in the amount of gas in the bubbles is given by

dN
dt

= R2 ∂c(0, t)
∂r

, (C9)

where N(0) = N0U/4πR0DLc0. The dimensionless concentration of the dissolved species
is given by

∂c
∂t

+ ur
∂c
∂r

= 1
Pe r2

∂

∂r

(
∂c
∂r

)
, (C10)

where Pe = R2
0U/DL is the Péclet number. The initial concentration of the dissolved

species is
c(r, 0) = 0, (C11)

and the boundary conditions are given by

c → 0 as r → ∞, (C12)

and
pB(t) = β(1 + c(R, t)), (C13)

where β = εLHc0/μlU is a dimensionless constant.
To integrate this microscale model with the macroscale model, we must perform a

coordinate transform from the Lagrangian frame of the bubble to the Eulerian frame of
the macroscale fluid. This amounts to transforming total derivatives in microscale time
t to advective derivatives in the macroscale frame and integrating the microscale model
along the fluid streamlines (this has already been done for the Rayleigh–Plesset equation).
The evolution in the number of moles of gas (C9) is given by

u
∂N
∂x

+ v
∂N
∂y

= R2 ∂c(0, x, y)
∂r

, (C14)

in the frame of the extruded fluid. It remains to express the microscale diffusion equation
(C10) in the frame of the extruder. The appropriate way to do this depends on whether
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the particular assumptions are valid and on the amount of analysis the user is willing to
perform on this system of equations prior to transformation. For example, see the boundary
layer analysis for a large Péclet number detailed by Patel (1980), the result of which is an
ODE in time for a dimensionless concentration that can be readily transformed into the
Eulerian extruder frame. This form is limited due to the additional assumptions required;
in particular, the authors assume that the concentration is quadratic in the boundary
layer. An approach that requires fewer assumptions is to discretise the spatial dimension
of the advection–diffusion equation (C10), resulting in a system of ODEs that can be
easily transformed into the frame of the extruded fluid. A complete description of this
methodology is detailed by McPhail et al. (2019).
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