
10

Local supersymmetry

We know that the superpartners of SM particles must acquire SUSY breaking

masses, since otherwise they would have been produced in experiments via their

gauge interactions. This requires an understanding of the mechanism of super-

symmetry breaking. A variety of models for supersymmetry breaking have been

postulated in the literature. The general consensus seems to be that the SM su-

perpartners cannot acquire tree-level masses via spontaneous breaking of global
supersymmetry at the TeV scale: we have seen in Chapter 7 that this leads to phe-

nomenological problems with tree-level sum rules which imply that some sfermions

must be lighter than fermions. Within the framework of the MSSM our ignorance

of the SUSY breaking mechanism is parametrized by 178 soft SUSY breaking

parameters.

The MSSM is, therefore, regarded as a low energy effective theory to be derived

from a theory that incorporates supersymmetry breaking. In the next chapter, we

will discuss various models for the generation of soft SUSY breaking parameters

that have been suggested in the literature. These models circumvent the problems

with the sum rules in one of two different ways. Either the models are based on

local supersymmetry, or the soft SUSY breaking parameters are generated only

at the loop level. As preparation for a discussion of the first of these classes of

models, in this chapter we present a short discussion of locally supersymmetric

theories where the parameters of SUSY transformations depend on the spacetime

co-ordinates. Since supersymmetry is a spacetime symmetry, local supersymmetry

necessarily involves gravitation. Local supersymmetry is, therefore, also referred

to as supergravity. Supergravity is a large and complex subject in its own right,

and its elaboration is beyond the scope of this book. Our purpose here is only

to provide the reader with the basic ideas so as to facilitate the development of

particle physics models based on it. We begin by reviewing general relativity, the

classical theory of gravitation whose supersymmetric extension naturally leads to

supergravity.
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236 Local supersymmetry

10.1 Review of General Relativity

Before proceeding to discuss supergravity, it will be useful to review the classi-

cal theory of gravitation, as embodied in Einstein’s General Relativity (GR). In

GR, physics is formulated on a curved four-dimensional spacetime manifold, and

gravitation is a manifestation of this curvature.

The principle of special relativity states that the laws of physics are the same

for all inertial observers. This is bothersome obviously because we can evidently

discern the laws of physics, even though we live on Earth in an accelerating frame.

Einstein generalized the principle of special relativity to include all observers,

including those in accelerating frames.

Einstein was deeply impressed by demonstrations such as the Eötvös experiment

that gravitational and inertial mass were equal to very high precision. He reasoned

that in a freely falling elevator, one would not be able to discern any effects of grav-

itation via any experiment confined to a sufficiently small region of measurement.

This led to the formulation of the principle of equivalence, which is one of the

cornerstones of GR. It states that in an arbitrary gravitational field one can always

transform co-ordinates to a freely falling (locally Lorentz) frame, where effects of

gravitation are locally eliminated. In this freely falling frame, the laws of physics

take their special relativistic form. Einstein described the equivalence principle as

“the happiest thought of my life”.

The effects of gravitation can be incorporated by starting with (local) equations

that we know to hold in the absence of gravitation, and generalizing these to be

form invariant under general co-ordinate transformations. This is so because the

equivalence principle tells us that we can always transform to a co-ordinate system

(the freely falling frame) in which the effects of gravity are locally absent. To make

the equations form-invariant, we will see that we are led to introduce new “fields”

(the affine connection introduced below) that incorporate the effects of gravitation.

The situation is quite analogous to that in local gauge theories where, to maintain

the invariance of the field equations under local gauge transformations, one is forced

to introduce the vector fields and the related field strength tensors.

10.1.1 General co-ordinate transformations

General relativity requires the laws of physics to be the same for any observer, be

they in a co-ordinate system which is rotating, accelerating, or whatever. Whether

we use a co-ordinate system xμ or x ′μ = x ′μ(x), we should arrive at the same

physical equations, except that the quantities would appear in a different co-ordinate

system. This means that the equations describing the laws of physics take the tensor
form.
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10.1 Review of General Relativity 237

Denoting a general co-ordinate transformation (GCT) by

xμ → x ′μ = x ′μ(x) (GCT), (10.1)

the differential line element dxμ transforms under GCTs as

dxμ → dx ′μ = ∂x ′μ

∂xν
dxν. (10.2)

By the chain rule for differentiation, we note that ∂xμ/∂x ′ν is the inverse of the

transformation matrix ∂x ′ν/∂xρ that appears in the GCT of the line element in

(10.2). The differential volume element

d4x ′ = dx ′0dx ′1dx ′2dx ′3 = Jdx0dx1dx2dx3, (10.3)

where the Jacobian is the determinant of the transformation matrix J = |∂x ′μ/∂xν |.
An object is a contravariant vector under GCTs if its components transform as,

V μ → V ′μ = ∂x ′μ

∂xν
V ν. (10.4a)

The differential line element dxμ is thus a contravariant vector. Contravariant ten-

sors of rank n are objects with n indices whose components transform as,

Aμ1μ2...μn → A′μ1μ2...μn = ∂x ′μ1

∂xρ1

∂x ′μ2

∂xρ2
. . .

∂x ′μn

∂xρn
Aρ1ρ2...ρn , (10.4b)

while scalars transform as

φ → φ′ = φ. (10.4c)

A scalar may thus be thought of as a tensor of rank zero, and a vector as a tensor

of rank one.

The derivative of a scalar function φ(x), which under a GCT becomes φ′(x ′),
transforms as

∂φ

∂xμ
→ ∂φ′

∂x ′μ = ∂φ

∂x ′μ = ∂φ

∂xν

∂xν

∂x ′μ . (10.5a)

The transforming matrix is the inverse of the transformation matrix for contravariant

vectors. Objects which transform like ∂φ/∂xμ, i.e. as

Vμ → V ′
μ = ∂xν

∂x ′μ Vν (10.5b)

are known as covariant vectors. Covariant tensors of rank n are defined to be objects

with n indices whose components transform as,

Aμ1μ2...μn → A′
μ1μ2...μn

= ∂xρ1

∂x ′μ1

∂xρ2

∂x ′μ2
...

∂xρn

∂x ′μn
Aρ1ρ2...ρn . (10.5c)
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Notice that the indices corresponding to contravariant components are written as

superscripts, while those corresponding to covariant components are written as

subscripts. In this sense, it is convenient to write ∂φ/∂xμ as ∂μφ.

Mixed tensors with n contravariant and m covariant indices are analogously

defined.

Exercise If Aμ1μ2...μn and Bν1ν2...νm are contravariant components of tensors with
rank n and m, respectively, show that the entity S with n + m indices defined by
Sμ1μ2...μnν1ν2...νm = Aμ1μ2...μn Bν1ν2...νm transforms as a contravariant tensor of rank
n + m. An analogous result also holds for covariant as well as mixed tensors.

Exercise If Aμ1μ2...μn
ν1ν2...νm

is a mixed tensor with n contravariant and m covariant
indices, show that Aμ1μ2...μn

μ1ν2...νm
(where the index μ1 is summed over) is a mixed tensor

with n − 1 contravariant and m − 1 covariant indices.

Exercise Verify that if a tensor is zero in one frame, it is zero in all frames. Convince
yourself that this implies that tensor equations retain their form under GCTs. This
is why we required that the equations of GR should take the tensorial form.

Exercise Let Aμν...σ Bαβ...σ = T μν...
αβ... where A and T transform as tensors of the

appropriate rank. Show that B transforms as a tensor. We will use this result to
show that the “metric tensor” indeed transforms as a tensor.

10.1.2 Covariant differentiation, connection fields, and the Riemann
curvature tensor

We have just seen that the derivative of a scalar function gives us a vector function. It

is, therefore, reasonable to ask whether the derivative of a tensor function results in

a tensor with rank higher by one. To check this, we consider how the derivative of a

(first rank) tensor transforms under a GCT: ∂V μ/∂xν . Under a GCT, this transforms

as

∂V μ

∂xν
→ ∂V ′μ

∂x ′ν = ∂

∂x ′ν

(
∂x ′μ

∂xρ
V ρ

)

= ∂xσ

∂x ′ν
∂

∂xσ

(
∂x ′μ

∂xρ
V ρ

)

= ∂xσ

∂x ′ν
∂x ′μ

∂xρ

∂V ρ

∂xσ
+ ∂xσ

∂x ′ν
∂2x ′μ

∂xσ ∂xρ
V ρ. (10.6)
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10.1 Review of General Relativity 239

The presence of the second term in the last line shows that ∂V μ/∂xν does not
transform as a tensor.1 The situation is reminiscent of that encountered in local

gauge theory. If the field transformed according to some representation of the

gauge group, the ordinary derivative of the field did not transform properly. In the

same spirit, we introduce a covariant derivative,

DνV μ ≡ ∂νV μ + 	μ
ρνV ρ, (10.7)

where 	μ
ρν(x) is a connection field,2 analogous to the vector potential in the covariant

derivative of gauge theories. We require that DνV μ transforms as a tensor under

GCT:

DνV μ → D′
νV ′μ = ∂xσ

∂x ′ν
∂x ′μ

∂xρ
Dσ V ρ.

This then implies that the connection must transform as

	′μ
ρν = ∂xσ

∂x ′ν
∂x ′μ

∂xτ

∂xλ

∂x ′ρ 	τ
λσ − ∂xσ

∂x ′ν
∂xτ

∂x ′ρ
∂2x ′μ

∂xσ ∂xτ
. (10.8)

Evidently the connection field does not transform as a tensor; its transformation

property is that of an affine connection. If we construct the symmetric and antisym-

metric parts of the affine connection under interchange of the lower indices,

	μ
ρν = 1

2

(
	μ

ρν + 	μ
νρ

) + 1

2

(
	μ

ρν − 	μ
νρ

) ≡ Sμ
ρν + Aμ

ρν, (10.9)

it is easy to see that the antisymmetric piece Aμ
ρν transforms as a tensor. This tensor

is known as the torsion tensor. The torsion tensor, usually taken to be zero in GR,

does not vanish in supergravity theories when gravitinos (see below) are present.

Since the gradient of a scalar field transforms as a vector, the covariant derivative

of a scalar is the same as its ordinary derivative: ∂μφ = Dμφ. If we require that the

covariant derivative satisfy the usual product rule, then

Dν

(
V μWμ

) = (DνV μ) Wμ + V μ
(
DνWμ

) = ∂ν

(
V μWμ

)
,

for any contravariant vector V μ and any covariant vector Wμ. This is only possible

if DνWμ = ∂νWμ − 	ρ
μνWρ , i.e. the connection field enters with a minus sign for

derivatives of covariant vectors. Covariant derivatives of higher rank tensors can be

made by simply introducing a connection field term for each index: e.g. Dμ Aρ
ν =

∂μ Aρ
ν + 	ρ

σμ Aσ
ν − 	σ

νμ Aρ
σ .

Unlike ordinary derivatives, covariant derivatives (except when they act on scalar

functions) do not commute. We had already noted this when we considered gauge

theories, where we had seen that the commutator of covariant derivatives yields the

1 Note that if the transformation x → x ′ is linear (as is the case for special relativity), this offending second term
would be absent.

2 Manifolds on which a continuous connection field can be defined are known as affine manifolds.
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240 Local supersymmetry

field strength tensor Fμν A (see Eq. (6.46)). We can perform a similar exercise in

GR:

[
Dμ, Dν

]
V ρ = Rρ

τμνV τ + 2Aτ
μν Dτ V ρ, (10.10)

where

Rρ
τμν = ∂μ	ρ

τν − ∂ν	
ρ
τμ + 	ρ

σμ	σ
τν − 	ρ

σν	
σ
τμ (10.11)

defines the Riemann curvature tensor, and Aτ
μν is the torsion tensor.

Exercise This exercise illustrates the use of the equivalence principle described at
the beginning of this section.

In the absence of gravitation (and any other forces) the equation of motion for
a spinless particle is

d2xμ

dτ 2
= 0. (10.12a)

Even in the presence of gravitation, this equation still holds true in the freely falling
frame, according to the principle of equivalence. A GCT into any other (non-freely
falling) frame with co-ordinates x ′μ(x) implies that

d2xμ

dτ 2
→ ∂x ′μ

∂xν

d2xν

dτ 2
+ ∂2x ′μ

∂xλ∂xν

∂xν

∂τ

∂xλ

∂τ
.

Notice that the second term (whose presence tells us that d2xμ/dτ 2 is not a vector
under GCTs) is the same as the corresponding term in the transformation (10.8).
Hence deduce that the equation

d2x ′μ

dτ 2
+ 	′μ

ρν

dx ′ρ

dτ

dx ′ν

dτ
= 0 (10.12b)

is covariant under GCTs. Since 	′ vanishes in the frame in which there is no gravity,
this equation then reduces to (10.12a). Hence, the equivalence principle tells us
that (10.12b) describes the motion of a particle in an external gravitational field.

Note that torsion makes no contribution to the motion of the particle.

10.1.3 The metric tensor

In the previous section, we have made no mention of the metric tensor in our

discussion of the covariant derivative, the connection or even the curvature tensor.

Even the equation of motion for a particle in a gravitational field can be stated in

terms of just the connection fields. Indeed, there are non-metric theories of gravity,

e.g. theories with torsion, but these violate the equivalence principle as we will show.
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From now on, we will focus our attention on standard GR where it is assumed that

spacetime is a Riemannian manifold.

Riemannian manifolds, which are manifolds on which a metric (introduced be-

low) can be defined, form a natural setting for formulating GR. On any sufficiently

small patch of such a manifold, it is possible to find a Cartesian co-ordinate system

for which the separation between two points is given by a Pythagorean-type law.

On such a manifold, the differential line element is given by

ds2 = gμν(x)dxμdxν, (10.13a)

and accordingly the length squared of any four vector is given by

V 2 = gμν(x)V μV ν. (10.13b)

Since the left-hand side is a scalar and the line elements on the right-hand side are

vectors, by one of the previous exercises the quantity gμν transforms as a covariant

second rank tensor known as the metric tensor. The metric tensors gμν(x) and gμν(x)

can be used to raise and lower indices in GR.

We will assume a four-dimensional spacetime with one time-like direction. The

principle of equivalence then tells us that we can always transform to a freely falling

co-ordinate frame where the metric tensor is locally flat (Minkowski), i.e.

gμν(x) → ημν =

⎛

⎜
⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟
⎟
⎠

. (10.14)

In this frame, the derivative of the metric vanishes. This can be covariantly written

as:

Dμgνλ = ∂μgνλ − 	ρ
μνgλρ − 	

ρ
μλgνρ = 0. (10.15)

Using the transformation property of the metric tensor together with (10.8), it is

straightforward to check that

	τ
μλ − 1

2
gντ

(
∂μgνλ + ∂λgμν − ∂νgλμ

)
(10.16)

transforms as a tensor. The part of this tensor symmetric under μ ↔ λ vanishes in

the frame where the metric is locally Minkowskian, and hence must vanish in all

frames. We thus obtain,

	τ
μλ = 1

2
gντ

(
∂μgνλ + ∂λgμν − ∂νgλμ

)
, (10.17)

for the components of the connection that are symmetric under μ ↔ λ. The corre-

sponding antisymmetric components of the connection are not determined by the

metric, but depend on the torsion tensor introduced above.
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10.1.4 Einstein Lagrangian and field equations

To obtain the field equations of GR from an action principle, we can try to find an

appropriate Lagrangian density, and vary the corresponding action S = ∫
Ld4x . For

L, we can construct a scalar by performing successive contractions on the Riemann

tensor:

Rντ = Rρ
νρτ (Ricci tensor), and (10.18a)

R = gντ Rντ (Ricci scalar). (10.18b)

The Ricci scalar R is a candidate Lagrangian density, but we also know that the

measure d4x is not invariant under GCTs. However,
√−g d4x is invariant, where

g = det(gμν). Thus, L = √−gR is a candidate Lagrangian density for GR, and is

known as the Einstein Lagrangian. Since the Lagrangian density must have mass

dimension four, it must be multiplied by a constant with dimensions of M2. Hence,

we write the Lagrangian density for the gravitational field as,

LG = − 1

2κ2

√−gR (10.19)

where κ−2 has dimensions of mass squared.

Exercise Using the transformation properties of gμν and d4x, show that
√−g d4x

is invariant under GCTs.

Exercise Show that the Ricci tensor obtained by contracting the Riemann curvature
tensor is symmetric.

Variation of the Einstein action with respect to the fields gμν is a lengthy calcula-

tion, but can be made simpler using the Palatini formalism wherein the connection

fields 	τ
μν and their derivatives are regarded as independent fields along with gμν(x).

Either approach leads to Einstein’s field equations in a vacuum:

Rμν − 1

2
gμν R = 0. (10.20)

This equation is generally covariant, and contains at most the second derivative of

the metric. We could have included higher powers of R into the action but these

would have led to higher derivatives in the equations of motion.

We may also add the effects of matter and/or energy to the Einstein La-

grangian. For instance, including a real scalar field φ with Lagrangian LM =√−g(gμν∂
μφ∂νφ − m2φ2) into the action will bring a source term involving the

symmetric energy momentum tensor Tμν into the equations of motion. Although

we have illustrated this for coupling to scalar fields, the same is true for coupling

https://doi.org/10.1017/9781009289801.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.011


10.1 Review of General Relativity 243

to all matter fields. The constant κ that we introduced for dimensional relations

determines the gravitational coupling of matter. It must be chosen to obtain agree-

ment with Newtonian gravity in the non-relativistic, weak field limit. It turns

out that κ2 = 8πGN/c4, with GN being Newton’s constant. In natural units with

� = c = 1, the Planck mass MPl = G−1/2
N . The reduced Planck mass is defined by

MP = MPl/
√

8π so that κ = 1/MP, with MP � 2.4 × 1018 GeV. It is common to

use units in which MP is also set to unity.

Finally, we can also include the term L� =
√−g
κ2 � into the Lagrangian density

without bringing higher derivatives of the metric into the field equations. Here,

� is known as the cosmological constant. Indeed there is evidence for a small

but non-zero cosmological constant (� ∼ (3 meV)4 in natural units) in Einstein’s

equations, indicative of a dark energy that pervades the Universe. Including matter

as well as the cosmological constant, Einstein’s field equations become,

Rμν − 1

2
gμν R − gμν� = 8πGNTμν. (10.21)

Notice that both sides of this equation are symmetric under interchange of tensor

indices.

10.1.5 Spinor fields in General Relativity

The preceding formulation of GR can admit fields transforming as scalars, vectors,

and tensors. In supersymmetry, we must necessarily include spinor fields as well, but

there exists no generalization of spinorial Lorentz transformation rules to general

co-ordinate transformations: mathematically speaking, the group GL(4) has no

finite dimensional spinor representations. What is done instead is to define, for

every point on the curved spacetime, a tangent space with a flat Minkowski metric in

which the spinors may transform. Thus, the action we construct should be invariant

under GCTs xμ → x ′μ on the curved manifold, and invariant under local Lorentz

transformations (LLTs) on the flat tangent space:

ξ a → ξ ′a = �a
b(x)ξ b. (10.22)

For each spacetime point, ξ a(x) define a (locally inertial) co-ordinate system in

the flat tangent space. It is customary to take Greek indices μ = 0–3 for objects

transforming under GCTs, and Latin indices a = 0–3 for objects transforming under

LLTs. The transformation from local Lorentz co-ordinates to general co-ordinates

is given by

∂ξ a

∂xμ
≡ ea

μ, (10.23)

https://doi.org/10.1017/9781009289801.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.011


244 Local supersymmetry

where ea
μ is known as the vierbein.

The vierbein transforms under GCTs as

ea
μ(x) → e′a

μ (x ′) = ∂xν

∂x ′μ ea
ν (x), (10.24)

and under LLTs as

ea
μ → e′a

μ = �a
beb

μ(x). (10.25)

The vierbein allows us to connect one co-ordinate system with the other. Thus,

an object vμ which transforms as a vector under GCTs can be related to an object

V a which transforms as a vector under LLTs via

V a = ea
μvμ. (10.26)

In particular, the metric tensor in each space is related as

gμν(x) = ea
μeb

νηab, (10.27)

where ηab is the usual Minkowski metric. From the above relation, knowledge of the

vierbein completely determines the form of the metric tensor, and it is sometimes

convenient to think of the vierbein as a “square root” of the metric tensor. The

Minkowski metric tensor ηab (ηab) can be used to lower (raise) Latin indices, just

as gμν (gμν) can be used to lower (raise) Greek indices. Thus, we also have

gμν = eμ
a eν

b ηab. (10.28)

Taking the determinant of Eq. (10.27), we are able to replace the Jacobian factor√−g by e ≡ det(ea
μ).

Spinors transform under LLTs as

ψm(x) → ψ ′
m(x ′) = � 1

2
mnψn(x) (10.29)

where � 1
2

mn = [
e−iεrs (x)σrs

]

mn , and the spinor index m = 1–4, and σrs = i
2
[γr , γs].3

The Dirac matrices satisfy {γr , γs} = 2ηrs in local Lorentz space. They are related

to the curved space gamma matrices via γ μ = eμ
r γ r , and where

{γ μ(x), γ ν(x)} = 2gμν(x). (10.30)

The transformation parameter εrs is antisymmetric on rs and includes six parame-

ters: three rotations and three boosts.

In order to define a covariant derivative for spinor fields Dμψ such that

Dμψ → D′
μψ ′ = � 1

2

(
Dμψ

)
, (10.31)

3 We are economizing notation here by not writing the transformation matrix as D(�1/2)mn , as is the practice by
many authors.
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we introduce spin connection fields ωrs
μ such that

Dμψ = ∂μψ − i

4
ωrs

μ σrsψ, (10.32)

and, as usual, require these to transform so that (10.31) is satisfied. The covariant

derivative of the vierbein will involve both connection and spin connection fields:

Dμea
ν = ∂μea

ν − 	λ
μνea

λ + ωa
μbeb

ν . (10.33)

A field strength tensor can be computed from the spinor field covariant derivative,

just as from a vector field covariant derivative.

Exercise Evaluate the commutator of spinor covariant derivatives and show that
it can be written as

[Dμ, Dν]ψ = − i

4
σuv Ruv

μνψ (10.34a)

where

Ruv
μν = ∂μωuv

ν − ∂νω
uv
μ + ωu

μrω
rv
ν − ωv

μrω
ur
ν . (10.34b)

This quantity is related to the Riemann curvature tensor via

Ruv
μν = eu

ρ ev
σ Rρσ

μν . (10.34c)

Hint: Recall the generators Mab = σab/2 of the Lorentz group obey the algebra
(4.6).

We can again apply the principle of equivalence as we did to obtain Dμgνλ = 0,

but this time for the vierbein: Dμea
ν = 0. This gives 4 × 6 = 24 constraints, the

number of independent components of the spin connection, which can be eliminated

as an independent field. Indeed, the spin connection fields ωab
μ can be constructed

from knowledge of the vierbein via,

ωab
μ = 1

2
eaν(∂μeb

ν − ∂νeb
μ) + 1

4
eaρebσ (∂σ ec

ρ − ∂ρec
σ )ecμ − (a ↔ b) . (10.35)

10.2 Local supersymmetry implies (super)gravity

Our next goal is to examine what happens when we allow the parameters α that

characterize SUSY transformations to be spacetime dependent; i.e. when we allow

SUSY to be a local symmetry. Such local SUSY transformations are known as

supergravity transformations since, as we will see presently, a consistent imple-

mentation of local SUSY transformations necessarily brings a massless spin 2 field
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into the theory. Moreover, this spin 2 field couples to the energy-momentum tensor

for matter, just as in general relativity, and its quanta are identified with gravitons.

The spin 3
2

Rarita–Schwinger field is needed since SUSY requires that the gravitons

must have fermionic partners with spin differing by 1/2. Its quanta are referred to

as gravitinos.

An aside on the spin 3
2

Rarita–Schwinger field We briefly discuss the basics of
massive spin 3

2
fields, since after supersymmetry breaking the gravitinos acquire

a mass. A free massive gravitino may be described by a “vector-spinor” field
ψλ(x), each of whose Majorana spinor components (the spinor index is suppressed)
satisfies the Dirac equation,

(i∂/ − m)ψλ = 0, (10.36a)

and is subject to the subsidiary condition,

γ λψλ = 0. (10.36b)

Contracting (10.36a) with γ λ, it is easy to see that,

∂λψλ = 0. (10.36c)

To understand why ψλ describes a spin 3
2

particle, let us examine the plane
wave solutions ψλ(x) = uλ(k)e−ikx of (10.36a) in the rest frame of the particle.
Eq. (10.36a) then implies

γ 0uλ = uλ. (10.37a)

It is most convenient to do the analysis using the standard representation for the
gamma matrices. Exactly as for the case of a massive spin 1

2
particle in its rest frame,

we find that the lower two components of all four uλ must vanish. The subsidiary
condition (10.36b) implies that

u0 = 	γ · 	u, (10.37b)

where 	u has as its components the three four-spinors u1, u2, and u3, all of whose
lower components vanish, and whose three upper components are the three two-
spinors χ1, χ2, and χ3. Using the explicit form of the 	γ matrices, we see from
(10.37b) that,

u0 = 0

	σ · 	χ = 0. (10.37c)

The two constraints (10.37c) imply that just four of the six components of 	χ are
truly independent. Since the spinors ψλ are completely fixed by 	χ , we see that these
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are specified by four independent components, just the right number to describe a
massive spin 3

2
particle in its rest frame.

Exercise Show that the Lagrangian density

L = −1

2
εμνρσ ψ̄μγ 5γν∂ρψσ − 1

4
mψ̄μ[γ μ, γ ν]ψν (10.38)

yields the Dirac equation (10.36a) as well as the constraint conditions (10.36b)
and (10.36c), assuming m 
= 0. You may find the identity

γ 5γ ν = i

3!
ενρστ γργσγτ

useful.
Notice that the Lagrangian for the massless case is invariant under the trans-

formation ψμ → ψμ + ∂μα. For this case, the constraints do not follow from the
Lagrangian, but have to be imposed as gauge fixing conditions.

To obtain a locally supersymmetric theory, we will adopt the Noether pro-

cedure, which was used to derive the simplest supergravity Lagrangians. The

Noether procedure is a systematic technique for obtaining a theory invariant under

a local symmetry transformation, starting from a theory that is invariant under the

corresponding global transformation.

QED serves as an illustrative example. We may start with the simple Dirac

Lagrangian for an electron L = iψ̄∂/ ψ which is invariant under a global phase

transformation ψ → eiαψ , where α is a constant. If we make the transformation

local, so that α → α(x), then this Lagrangian is no longer invariant, changing

by an amount δL = −ψ̄γ μψ∂μα. Invariance can be restored by adding a gauge

field term to L given by L′ = −eψ̄γ μ Aμψ , where the gauge field transforms as

Aμ → Aμ − 1
e ∂μα, and e in this case is the magnitude of the electric charge. The

final QED Lagrangian is obtained by adding the gauge field kinetic term − 1
4

Fμν Fμν

and an electron mass term −mψ̄ψ , which are separately locally gauge invariant.

To illustrate why local supersymmetry necessarily implies gravity, we apply the

Noether procedure to the Wess–Zumino model introduced in Chapter 3. To simplify

our analysis, we will examine only the free, massless case with the fields “on shell”,

meaning that these satisfy their equations of motion. Then we do not have to worry

about the auxiliary fields which can be set to zero. Furthermore, from (3.7d) and

(3.7e), we see that the SUSY transforms of the auxiliary fields also vanish as long

as the fermion field satisfies its equation of motion, ∂/ ψ = 0.

The Lagrangian for this very simplified model takes the form,

L = Lkin = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ̄∂/ ψ, (10.39)
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and is invariant under

δA = iᾱγ5ψ, (10.40a)

δB = −ᾱψ, (10.40b)

δψ = −i∂/ (−B + iγ5 A)α. (10.40c)

If we now let α → α(x), and define the local transformation so that the derivative

in (10.40c) acts only on the fields, a straightforward calculation shows that the

Lagrangian no longer transforms as a total derivative, but instead as,

δLkin = ∂μ

(
1

2
ᾱγμ∂/ (−B + iγ5 A)ψ

)

+ (∂μᾱ)
(
∂/ γμ(−B + iγ5 A)

)
ψ. (10.41)

The additional term can be cancelled by adding to the Lagrangian a term given by

L1 = −κψ̄μ∂ν(−B + iγ5 A)γ νγ μψ, (10.42)

where ψμ is a spin 3
2

field. It has mass dimensionality [ψμ] = 3
2
, so that a di-

mensional constant κ with [κ] = −1 must be included to give a dimension four

Lagrangian term. The field ψμ is effectively a gauge field for the local supersym-

metry transformation, just as Aμ was the gauge field for a local phase transformation

in the QED example. If ψμ transforms under local SUSY as ψ̄μ → ψ̄μ + 1
κ
∂μᾱ,

then the transformation term involving ∂μᾱ will cancel!

This of course does not mean that the action corresponding to the Lagrangian

density Lkin + L1 is supersymmetric because we must now apply the local SUSY

transformation laws to the additional Lagrangian termL1 as well. Clearly, the terms

resulting from this transformation areO(κ). Indeed a somewhat lengthy calculation

shows that,

δ(Lkin + L1) = −2iκψ̄μγνT μνα + · · · , (10.43a)

where the ellipsis denotes terms involving derivatives of α or total derivatives, and

T μν = (∂μ A)(∂ν A) + (∂μ B)(∂ν B) − 1

2
ημν

[
(∂ρ A)2 + (∂ρ B)2

] + i

2
ψ̄γ μ∂νψ,

(10.43b)

is the canonical energy–momentum tensor for the WZ model.

Exercise Verify the transformation (10.43a).
To obtain the T μν term on the right-hand side of (10.43a) which is written

up to derivatives of the parameter α, we need to consider only “global” SUSY
transformations when performing the variation. We need to Fierz transform the
fermion quartic term so that the transformation parameter α is contracted with the
gravitino spinor: only the vector and axial-vector combinations survive. Moreover,
since we write this variation only up to a total derivative, and for “on-shell fields”,
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many terms vanish due to (10.36a)–(10.36c). Finally, we note that the ημν terms
for the scalar field contributions to T μν vanish when the fields are on-shell.

This term can now be cancelled by adding another term,

L2 = −gμνT μν, (10.44)

to the Lagrangian density. We see that the Noether procedure forces us to introduce a

massless spin 2 field gμν that couples to the energy momentum tensor as in General

Relativity. The quanta of this field are the gravitons. We require this spin 2 field

gμν to transform as

δgμν = −iκᾱ(γνψμ + γμψν). (10.45)

We see that local supersymmetry implies gravity. The dimensionful coupling con-

stant κ that we have been forced to introduce can be related to Newton’s gravitational

constant.

The procedure we have outlined was for the simple case of the massless, non-

interacting on-shell WZ model. The locally supersymmetric couplings of the (on-

shell) scalar supermultiplet of the Wess–Zumino model can be found in Ferrara

et al., and includes many more terms.4 One must, of course, also include kinetic

terms for both the graviton and gravitino fields, and derivatives must be made

covariant with respect to general co-ordinate and local Lorentz transformations. A

complete derivation is beyond the scope of this text, and we will simply present the

answer. The relevant Lagrangian is given by a sum of a pure (supersymmetrized)

gravity piece together with a second piece that describes the supersymmetrized

gravitational couplings of matter:

L = LG + LM. (10.46)

Here, LG is given by a sum of the Einstein Lagrangian and the kinetic term (10.38)

for the massless Rarita–Schwinger field:

LG = − e
2κ2

R − 1

2
ελρμνψ̄λγ5γμ Dνψρ, (10.47)

where e, the determinant of the vierbein, is the Jacobian factor
√−g that appears

in the Einstein Lagrangian. A comparison with Eq. (10.19) shows that the constant

κ introduced in our discussion of local supersymmetry transformations indeed

coincides with the same constant that appears in our discussion of general relativity.

4 S. Ferrara, D. Freedman, P. van Nieuwenhuizen, P. Breitenlohner, F. Gliozzi and J. Scherk, Phys. Rev. D15,
1013 (1977).
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The (super)gravitational interactions of the matter supermultiplet take the form,

LM = egμν

(
1

2
∂μ A∂ν A + 1

2
∂μ B∂ν B

)

+ e
i

2
ψ̄ 
Dψ

− κ

2
e ψ̄μ∂ν(−B + iγ5 A)γ νγ μψ − κ2

16
e (ψ̄γ5γμψ) (ψ̄γ5γ

μψ)

− i
κ2

8
(B

↔
∂ σ A)

[
εμνρσ ψ̄μγνψρ − ie ψ̄γ5γ

σψ
]

+ κ2

16
ψ̄γ5γσψ

[
iεμνρσ ψ̄μγνψρ + e ψ̄μγ5γ

σψμ

]
, (10.48)

which includes relativistically covariant kinetic energy terms for scalar and spinor

fields together with interaction terms involving the gravitational coupling constant

κ . At low energies, these terms are suppressed by inverse powers of MP. The

covariant derivatives that appear in (10.47) and (10.48) are given by,


Dψ = γ μ(∂μ − i

4
ωrs

μ σrs)ψ and (10.49a)

Dνψρ = ∂νψρ − i

4
ωrs

ν σrsψρ − 	σ
ρνψσ . (10.49b)

Of course, the last term of Dνψρ makes no contribution to the kinetic energy of

the gravitino once the connection is written as a function of the metric (using the

equations of motion) so that it is symmetric in its lower indices.

The local SUSY transformation laws are given by

δA = iᾱγ5ψ, (10.50a)

δB = −ᾱψ, (10.50b)

δψ = −i∂/ (−B + iγ5 A)α + i
κ

2
(ψ̄μψ)γ μα + i

κ

2
(ψ̄μγ5ψ)γ μγ5α

+1

4
κ2 [ᾱ(−B + iγ5 A)γ5ψ] γ5ψ, (10.50c)

δea
μ = −iκᾱγ aψμ, and (10.50d)

δψμ = 2

κ
Dμα + i

2
κ(B

↔
∂ μ A)γ5α − κ2

4
[ᾱ(−B + iγ5 A)γ5ψ]γ5ψμ. (10.50e)

Notice that the transformation law for the vierbein reproduces the SUSY trans-

formation (10.45) for the metric that we had obtained above. We do not write the

transformation law for the connection fields as these are complicated, and are not

needed for our discussion. The gravitino and vierbein fields can be combined into

what is called the metric superfield. This is the gravitational analogue of the gauge

superfield and, hence, is a real superfield. Since the gravitino carries a vector index,

the metric superfield is a real vector superfield.
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The reader may have noticed that the supergravity Lagrangian contains non-

renormalizable terms. This was also true of the Lagrangian for Einsteinian gravity.

Such non-renormalizable terms enter because the gravitational coupling constant

κ has dimensions of inverse mass. The situation is analogous to Fermi’s theory

of β-decay which though non-renormalizable was practically useful, and which

has since been understood as the low energy limit of a more fundamental theory

(the Standard Model). In the same vein, we will regard the non-renormalizable

supergravity Lagrangian as the low energy limit of an as yet unformulated locally

supersymmetric fundamental theory (perhaps, superstring theory) to be discovered

in the future.

10.3 The supergravity Lagrangian

We have seen that the construction of locally supersymmetric field theories forces

us to consider non-renormalizable interactions. If we give up the restriction of

renormalizability the globally supersymmetric Lagrangian for gauge theories in

(6.47) can be generalized to,

L = −1

4

∫

d4θ K
(

Ŝ†e−2gtA�̂A , Ŝ
)

− 1

2

[∫

d4xd2θL f̂ (Ŝ) + h.c.

]

−1

4

∫

d2θL f AB(Ŝ)Ŵ c
AŴB . (10.51)

In particular, the Kähler potential and the superpotential functions are no longer

restricted to be quadratic and cubic polynomials, though the latter is still required

to be an analytic function of the fields. Moreover, we have introduced the gauge
kinetic function f AB(Ŝ) which, like the superpotential f̂ (Ŝ), is an analytic function

of the chiral superfields Ŝi so that, like the superpotential term, the last term is also

an F-term of a chiral superfield (and hence supersymmetric). Renormalizability

(and gauge invariance) restricted f AB = δAB in (6.47), but now the more general

form is possible. To preserve gauge invariance, f AB must transform as the sym-

metric product of two adjoints of the gauge group. As before, choosing the Kähler

potential K (Ŝ†, Ŝ) and the superpotential f̂ (Ŝ) to be invariant under global gauge

transformations guarantees local gauge invariance of (10.51). Except for these re-

strictions from gauge invariance, the Kähler potential, the superpotential and the

gauge kinetic function are arbitrary functions of all chiral superfields.

Although it is possible in principle to obtain the complete Lagrangian for lo-

cally supersymmetric gauge theories by applying the Noether procedure to the

globally supersymmetric Lagrangian (10.51), in practice, more efficient techniques

involving tensor calculus of local supersymmetry have been developed to obtain the

complete result including all auxiliary fields. A discussion of these techniques is

https://doi.org/10.1017/9781009289801.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.011


252 Local supersymmetry

beyond the scope of this text. The final result, analogous to our master formula, but

for local supersymmetry, was first obtained in 1982 by Cremmer et al.5 We simply

present it here, in terms of component fields, after all auxiliary fields have been

eliminated. It is customary to factor out the Jacobian term e, and to write the result

in units with MP = 1. The reduced Planck mass can be re-inserted term-by-term

by requiring the dimensionality of each term be equal to four.

Although the Lagrangian for a general non-renormalizable supersymmetric the-

ory depends on three independent functions, K , f̂ , and f AB , the remarkable feature

of the supergravity Lagrangian is that it depends on the gauge kinetic function and

just one combination,

G(Ŝ†, Ŝ) = K (Ŝ†, Ŝ) + log | f̂ (Ŝ)|2, (10.52)

of the Kähler potential and superpotential. We will refer to G as the Kähler function,

not to be confused with the Kähler potential K .6 In what follows, derivatives of the

Kähler function with respect to chiral superfields are denoted by,

Gi = ∂G

∂Ŝi

∣
∣
∣
∣
Ŝ=S

and G j = ∂G

∂Ŝ j†

∣
∣
∣
∣
Ŝ=S

. (10.53a)

Also,

Gi
j = ∂2G

∂Ŝi∂Ŝ j†

∣
∣
∣
∣
Ŝ=S

(10.53b)

defines the Kähler metric.7 Higher derivatives of G are analogously defined. Finally,

we define the inverse of the metric by,

(G−1)i
j G

j
k = δi

k . (10.53c)

Exercise If the Lagrangian depends only on the combination G rather than sep-
arately on K and f̂ , the choice of the superpotential is not unique. Show that
(classically) the transformations,

K (Ŝ†, Ŝ) → K − [h(Ŝ)]† − h(Ŝ)

f̂ (Ŝ) → exp
(
h(Ŝ)

)

5 E. Cremmer, S. Ferrara, L. Girardello and A. van Proeyen, Nucl. Phys. B212, 413 (1983).
6 Some authors refer to G as the Kähler potential. Moreover, what we call K is sometimes denoted by d and, to

make matters worse, a different K is defined by d = −3 log(−K/3).
7 The use of j , the index labeling the adjoint of the j th field, as a superscript is merely conventional and should

not cause confusion. It allows for contraction of upper and lower indices according to “usual rules” of tensor
calculus. For notational clarity, we write the gauge generator matrix with only lower indices.
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leave G (and hence the Lagrangian) invariant. This means that we can move all
the analytic terms in the Kähler potential to the superpotential if we wish or,
alternatively, that we may choose the superpotential to be a positive constant.

We are now in a position to write down the locally supersymmetric Lagrangian

for a Yang–Mills gauge theory coupled to gravity. We break up this Lagrangian into

purely bosonic terms LB , and terms with fermions LF . We further divide each of

these terms into two parts: one part (LC
B) independent of the gauge kinetic function,

and the other (LG
B ) containing all the dependence on f AB . The latter piece is, of

course, absent in a theory without gauge fields. The purely bosonic Lagrangian can

be written as,

LB = LC
B + LG

B (10.54)

with (in units where the coupling κ = 1)

e−1LC
B = − R

2
+ Gi

j DμSi DμS j∗ − eG
(
Gi (G

−1)i
j G

j − 3
)

(10.55a)

and

e−1LG
B = − 1

4
(Re f AB)FAμν Fμν

B − 1

4
(Im f AB)FAμν F̃μν

B

− g2

2
(Re f −1

AB )Gi tAi jS j G
ktBk�S�, (10.55b)

where F̃μν

B = 1
2
εμνρσ FBρσ . Here, LG

B has been written as though the gauge group

is simple: if the gauge group has several factors, a sum over each of these factors is

implied. The first term in LC
B is the Einstein Lagrangian (10.19). The second term

contains the kinetic energy terms for the scalar components of the chiral superfields

(hence the superscript C on this Lagrangian) while the last term in LC
B is the part

of the scalar potential that originates in the superpotential. Notice that, unlike the

scalar potential for globally supersymmetric theories, this term may be negative.

The kinetic terms for the gauge fields are contained in LG
B .

The part of the Lagrangian involving fermions is more complicated, and for

convenience of writing we further split it into terms which give the kinetic energy

terms LF,kin and other terms that only contain interactions, i.e.

LF = LF,kin + LF,Int. (10.56a)

As before, each of these is further split into pieces, depending on whether or not

there is dependence on the gauge kinetic function. We then have,

LF,kin = LC
F,kin + LG

F,kin, (10.56b)
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and

LF,Int = LC
F,Int + LG

F,Int. (10.56c)

The terms that appear in LF,kin are given by,

e−1LC
F,kin = −e−1

2
εμνρσ ψ̄μγ5γν Dρψσ +

(
i

2
Gi

j ψ̄iRγ μ Dμψ
j

R + h.c.

)

+
(

e−1

8
εμνρσ ψ̄μγνψρGi DσSi + h.c.

)

+
(

i

2
ψ̄iR 
DS jψ

k
R(−Gi j

k + 1

2
Gi

k G j )

+ i√
2

G j
i ψ̄μR 
DS i†γ μψ jL + h.c.

)

(10.57a)

and

e−1LG
F,kin =

[
1

2
Re( f AB)

(
i

2
λ̄A 
DλB + 1

4
λ̄Aγ μσ νρψμFBνρ

− i

2
Gi DμSi λ̄ALγμλBL

)

+ 1

8
Im ( f AB)e−1 Dμ(eλ̄Aγ5γ

μλB)

− 1

4
√

2

∂ f AB

∂Si
ψ̄iRσμν FAμνλBL

]

+ h.c. (10.57b)

The first two terms in (10.57a) contain the kinetic energies of the gravitino and the

chiral fermions, while the first term of (10.57b) contains the kinetic energy of the

gauginos. Finally, the pieces of LF,Int are given by

e−1LC
F,Int =

[
i

2
eG/2ψ̄μLσμνψνR + 1

2
gGi tAi jS j ψ̄μRγ μλAR

− g
√

2G j
i tA jkSk λ̄ALψ i

R

− 1

2
eG/2(−Gi j − Gi G j + Gi j

k (G−1)k
�G�)ψ̄iRψ jL

− 1√
2

eG/2Gi ψ̄μLγ μψiL

+ i

16
G j

i ψ̄iLγdψ jL

(
εabcdψ̄aγbψc − iψ̄aγ 5γ dψa

)

+
(

1

8
Gi j

kl − 1

8
Gi j

m (G−1)m
n Gn

kl − 1

16
Gi

k G j
l

)

ψ̄iRψ jLψ̄k
Lψ l

R

]

+ h.c. (10.58a)
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and

e−1LG
F,Int =

[
1

4
eG/2 ∂ f ∗

AB

∂S j∗ (G−1)
j
k Gk λ̄ALλBR

+ g

2
√

2
(Re f AB)−1 ∂ fBC

∂Sk
Gi tAi jS j ψ̄kRλCL

− 1

32
(G−1)k

l

∂ f AB

∂Sl

∂ f ∗
C D

∂Sk∗ λ̄ARλBLλ̄CLλDR

+ 3

32

[
Re ( f AB)λ̄ARγμλBR

]2 + i

16
Re ( f AB)λ̄Aγ μσρσψμψ̄ργσλB

+ i

4
√

2

∂ f AB

∂Si

(

ψ̄iRσμνλALψ̄νRγμλBR + i

2
ψ̄μLγ μψiLλ̄ARλBL

)

+ 1

16
ψ̄iRγ μψ

j
Rλ̄DLγμλCL

[

Gi
j Re ( fC D) + 1

2
Re

(

f −1
AB

∂ f AC

∂Si

∂ f ∗
B D

∂S j∗

)]

− 1

16
ψ̄iRψ jLλ̄CRλDL

×
(

−2Gi j
k (G−1)k

l

∂ fC D

∂Sl
+ 2

∂2 fC D

∂Si∂S j
− 1

2
Re f −1

AB

∂ f AC

∂Si

∂ fB D

∂S j

)

− 1

128
ψ̄iRσμνψ jLλ̄CRσμνλDLRe

(

f −1
AB

∂ f AC

∂Si

∂ fB D

∂Sj

)]

+ h.c.

(10.58b)

The transformation laws of local supersymmetry are given by,

δSi = −i
√

2ᾱψiL, (10.59a)

δψiL =
√

2 
DSiαR + i
√

2eG/2(G−1)
j
i G jαL

− i

2
√

2
αLλAλBR(G−1)

j
i

∂ f ∗
AB

∂S∗ j
+ · · · , (10.59b)

δea
μ = −iᾱγ aψμ, (10.59c)

δψμ = 2Dμα + ieG/2γμα + · · · , (10.59d)

δV μ

A = −iᾱγ μλA, (10.59e)

δλAR = i

2
σμν FAμναR − igRe ( f −1

AB )Gi (tB)i jS jαR + · · · (10.59f)

The ellipses represent additional terms that we will not need for our subsequent

discussion. These terms contain products of fermion fields, or, as in (10.59d),

contain derivatives of scalar fields.

Except for the restrictions from gauge invariance and analyticity already men-

tioned, there is no known principle for the choice of the Kähler potential, the super-

potential, and the gauge kinetic function in a general non-renormalizable theory.
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Supergravity couplings, however, depend only on the gauge kinetic function and the

Kähler function G. Choosing the Kähler potential and the gauge kinetic function

to be what they are in renormalizable theories,

K =
∑

i

Ŝ i†Ŝi (10.60a)

and

f AB(Ŝ) = δAB, (10.60b)

leads to canonical kinetic energy terms for “matter” (scalar and fermion) fields and

for gauginos, respectively. The theory that is obtained from the general supergravity

Lagrangian (10.54)–(10.58b) for this choice of the Kähler potential and the gauge

kinetic function is sometimes referred to as “minimal supergravity”.8

Exercise Verify that for any gauge-invariant superpotential f̂ (Ŝ),

∂ f̂

∂Ŝi

tAi j Ŝ j = 0.

Exercise (Recovering the Lagrangian for global SUSY) The locally supersym-
metric Lagrangian must reduce to the globally supersymmetric Lagrangian in our
master formula (6.44) if we take the limit MP → ∞.

(a) Identify the kinetic energy terms for all the fields.
(b) Convince yourself that the coupling of matter and gauge fields with gravitons

and gravitinos, as well as all contributions from non-minimal terms in K and
f AB, all result in non-renormalizable interactions suppressed by powers of the
reduced Planck mass. We can thus confine ourselves to the minimal supergravity
choice,

K =
∑

i

Ŝ i†Ŝi

M2
P

,

and

f AB = δAB

for these functions in the remainder of this exercise. Notice that we have in-
serted appropriate powers of the reduced Planck mass required to make K
dimensionless.

8 This should be distinguished from the minimal supergravity model discussed in the next chapter, where the
same Kähler potential and a related gauge kinetic function are used. The reader should also note that the
field-independent choice of the gauge kinetic function leaves gauginos massless at the tree level.
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(c) Verify that the last term of (10.55a) reduces to − ∑

i

∣
∣
∣

∂ f̂
∂Si

∣
∣
∣
2

, the part of the

scalar potential that originates in the superpotential on the third line of the
master formula. Using the result of the previous exercise, show that the last
term of (10.55b) reduces to the remainder of the scalar potential in our master
formula. Remember that we have written the supergravity Lagrangian in units
where κ = 1/MP = 1. You will have to reinsert this factor on the various terms
using dimensional analysis.

(d) Finally, convince yourself that the terms on the second and third lines of (10.58a)
reduce to the couplings of gauginos to the sfermion–fermion pair and to chiral
fermion superpotential Yukawa couplings, respectively.

10.4 Local supersymmetry breaking

In Chapter 7, we showed that in order for global SUSY to be broken, the variation

of a spinorial operator had to be non-zero. The same holds for models with local

supersymmetry, i.e. we may have either 〈0|δψi |0〉 
= 0, or 〈0|δλA|0〉 
= 0.

When we considered the spontaneous breaking of global supersymmetry with-

out also breaking the Poincaré symmetry, we were led to just two possibilities:

F-type SUSY breaking with 〈0|Fi |0〉 
= 0, or D-type breaking with 〈0|DA|0〉 
= 0.

For both cases, some auxiliary fields acquired a vacuum expectation value. For the

case of local supersymmetry, the same is true although we cannot see this because

we have written these supersymmetry transformations, (10.59a)–(10.59f), with the

auxiliary fields already eliminated. If we assume that fermion fields cannot acquire

vacuum expectation values, the condition for local SUSY breaking from (10.59b) is

〈0|eG/2(G−1)
j
i G j |0〉 
= 0 (10.61a)

or from (10.59f),

〈0|Re ( f AB)−1Gi tBi j S j |0〉 
= 0. (10.61b)

The terms denoted by ellipses in the supergravity transformations (10.59a)–

(10.59f) cannot acquire VEVs, and so are not relevant for this discussion. These

conditions are the generalization of the conditions for global supersymmetry

breaking that we found in Chapter 7.

These conditions take a simpler form for the minimal supergravity case in-

troduced earlier. Then (G−1)
j
i = δ

j
i , and Gi = Si + 1

f̂ ∗ ∂ f̂ ∗/∂S i∗, and the F-type

breaking condition reduces to,

∂ f̂

∂Si
+ S i∗ f̂

M2
P


= 0. (10.62)
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Clearly, this condition reduces to Eq. (7.3a) in the limit MP → ∞. It is easy to see

that (10.61b) is, similarly, a generalization of the D-term SUSY breaking condition

Eq. (7.3b).

Our discussion of local supersymmetry breaking up to now has omitted one

important possibility that was actually mentioned in Section 7.5. Supersymmetry

may also be broken if the last term in Eq. (10.59b) acquires a VEV. This is not

possible if gauge couplings remain perturbative. There may, however, be gauge

interactions (not contained in the MSSM) that become strong at a high scale, and

cause the associated gauginos to condense.9

It is also instructive to calculate the form of the scalar potential for minimal

supergravity. In this case, from the LB terms in the supergravity Lagrangian, we

obtain

V = e
Si†Si

M2
P

⎛

⎝− 3

M2
P

| f̂ |2 +
∣
∣
∣
∣
∣

∂ f̂

∂Si
+ S i† f̂

M2
P

∣
∣
∣
∣
∣

2
⎞

⎠ + g2

2
S i†tAi jS jSk†tAk�S�. (10.63)

The negative term above offers the possibility of a small or even zero cosmological

constant in supergravity theories (even if supersymmetry is broken), whereas in

global SUSY the scalar potential was always positive semi-definite. There is no

known reason though why the negative and positive terms should (almost) cancel,

and a small cosmological constant is only possible by severe fine-tuning.

10.4.1 Super-Higgs mechanism

Recall that Goldstone bosons are the relics of spontaneous breaking of global

symmetries: corresponding to every symmetry generator that does not annihilate the

ground state, there is a massless boson (with derivative couplings) in the physical

spectrum. If instead the spontaneously broken symmetry is local, the Goldstone

boson is “eaten by the gauge fields”, in that it becomes the longitudinal component of

a gauge field which then acquires a mass. This is the well-known Higgs mechanism.

The situation for supersymmetry is quite similar. We have already seen that when

global SUSY is spontaneously broken we obtain a massless Goldstone fermion, the

goldstino, in the spectrum. In supergravity theories, where we have invariance under

local SUSY transformations, the gravitino plays the same role that gauge fields

play in local gauge theories. If SUSY is spontaneously broken, it is then natural to

examine whether the goldstino degrees of freedom become the longitudinal degrees

of freedom of the gravitino, the gauge field of supergravity, thereby endowing it

9 In this context, we should mention that condensation of chiral fermions associated with new gauge interactions
is also a possibility. Indeed, if there are chiral fermions in the adjoint representation of the gauge group, hybrid
ψ̄λ condensates may also be possible. In these cases, the terms denoted by the ellipses in the supergravity
transformations may be relevant.
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with a mass. Although we do not analyze the details of the “supersymmetric Higgs

mechanism” here, we see from the first term of Eq. (10.58a) that the gravitino

becomes massive if the Kähler function G acquires a VEV:

i

2
e

G
2 ψ̄μσμνψν → i

2
e

G0
2 ψ̄μσμνψν, (10.64)

where G0 is the VEV of G. Thus the gravitino mass can be identified as

m2
3/2 = eG0 M2

P . (10.65)

The goldstino associated with either D- or F-type SUSY breaking is absorbed by

the gravitino, and does not appear in the physical spectrum, while the gravitino

becomes massive. Indeed, with an appropriate (field-dependent) choice of the local

SUSY transformation parameter (unitarity gauge choice), the goldstino field can

be completely eliminated from the Lagrangian.

We should also mention that the supertrace formula (7.35) that we obtained in

Chapter 7 is also modified if the supersymmetry is local. For the case of minimal

supergravity with N chiral supermultiplets, from Cremmer et al. we have

ST rM2 = 2
∑

A

DAT r (gtA) + (N − 1)(2m2
3/2 − DADA

M2
P

). (10.66)

The first term is the same as the case for global SUSY but the last term is new. This

term will play an important role in the next chapter where we consider realistic

supergravity models of particle physics.

Exercise For the flat Kähler metric show that the gravitino mass, assuming that
the cosmological constant vanishes, can be written as

m2
3/2 = 〈Fi Fi∗〉

3M2
P

, (10.67a)

where

Fi = e
G
2

(
G−1

) j

i
G j (10.67b)

is the auxiliary field whose VEV (10.61a) breaks supersymmetry.

An illustrative example: the Polonyi superpotential

A particularly simple illustration of the ideas that we have just discussed is obtained

for the minimal supergravity model with a single chiral scalar superfield coupled

via the Polonyi superpotential f̂ given by,

f̂ = m2
(
Ŝ + β

)
, (10.68)

where m2 and β are real constants.
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Figure 10.1 The scalar potential of the Polonyi model (in units of m4) versus

Re (S)/MP for the choice β = (2 − √
3)MP with ImS set to zero. Supersymmetry

is necessarily broken, and the cosmological constant is zero for this choice of
parameters.

It is straightforward to obtain the scalar potential which is given by,

V = m4eS
∗S

(∣
∣1 + S∗(S + β)

∣
∣2 − 3 |S + β|2

)

, (10.69a)

while the condition (10.62) for SUSY to remain unbroken becomes,

1 + S∗(S + β) = 0. (10.69b)

It is easy to see that SUSY is broken if β2 < 4 (in Planck units).

The scalar potential has several extrema. In the following, we confine ourselves

to those minima with V = 0, which implies
∣
∣1 + S∗(S + β)

∣
∣2 = 3 |S + β|2 .

We can see that S = (
√

3 − 1)MP is one such minimum if β = (2 − √
3)MP.10 The

shape of the scalar potential is shown in Fig. 10.1 for ImS = 0. In this minimum,

the gravitino mass is given by,

m3/2 = eG0/2 MP = e(2−√
3) m2

M2
P

MP. (10.70)

Thus, if the parameter m ∼ 1010 GeV, then m3/2 ∼ 100 GeV.

10 This is an incredible fine-tuning. For any other value of β the cosmological constant would be very large.
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