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UNIFORM KADEC-KLEE LORENTZ SPACES Lw, 
AND UNIFORMLY CONCAVE FUNCTIONS 

S. J. DILWORTH AND C. J. LENNARD 

ABSTRACT. We consider the notion of a uniformly concave function, using it to 
characterize those Lorentz spaces Lw\ that have the weak-star uniform Kadec-Klee 
property as precisely those for which the antiderivative 0 of w is uniformly concave; 
building on recent work of Dilworth and Hsu. We also derive a quite general sufficient 
condition for a twice-differentiable <f> to be uniformly concave; and explore the extent 
to which this condition is necessary. 

1. Introduction. A dual Banach space (X,\\- \\x\ with predual (F, || • || y), is said to 
have the weak-star uniform Kadec-Klee property (with respect to Y) if for every £ > 0, 
there exists an r\ = ?y(e) G (0,1) such that whenever (xnJ^=x is a sequence in the closed 
unit ball B^ of X, converging weak-star t o i G J , and inf,^ \\x„ — xm\\x > £, it follows 
that ||x||^ < 1 — 77. 

The uniform Kadec-Klee property for the weak topology on a Banach space was in­
troduced by Huff [Hu] as a useful substitute for uniform convexity, especially in many 
nonreflexive spaces. Van Dulst and Sims [DS], building on work of Brodskiï and Mil'-
man [BM] and Kirk [Kil], showed that the uniform Kadec-Klee property for weak or 
weak-star topologies implied weak (resp. weak-star) normal structure. This geometric 
property implied in turn, via Kirk [Kil], that every norm nonexpansive mapping on a 
weakly (resp. weak-star) compact, convex set must have a fixed point. (The weak-star 
result is due to [DS] and is also implicit in [Ki2]). 

Many spaces have been found to have uniform Kadec-Klee (UKK) properties. Re­
cent related papers concerning UKK properties in Lorentz spaces are [CDL], [DDDLS] 
and [HK]. We will continue the study of weak-star UKK in Lorentz spaces initiated in 
[CDLT] and [DH]. 

An admissible weight function w is a function from (0,00) into (0,00) that is de­
creasing (i.e., non-increasing), satisfies \imt-,o+w(t) = 00 and \imt-toow(t) = 0, while 
Jo w(t) dt = 1 and JQ° w(f) dt — 00. We will denote the class of all such weights by 
WAïw e W, we define <f)(t) = <j>w(t) := JoHs)ds, for all t > 0. The function <j> is 
strictly increasing and concave, mapping (0,00) onto (0,00). We define the functions k\, 
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UNIFORM KADEC-KLEE LORENTZ SPACES 267 

k2 : (0,1) -> (0, oo) by setting, for all a G (0,1), 

ki(a) := sup —— and k2(a) := inf ——. 

We let Cj be the subset of W consisting of all w for which </>w is uniformly increasing; 
i.e., k\(a) < 1 for all a G (0,1). Similarly, we define C2 to be the set of all those w G W 
for which w is uniformly decreasing; i.e.,k2(a) > 1 for all a G (0,1). It is not hard to see 
that if w G C\, then &i is a strictly increasing function on (0,1), with lima_o+ k\(a) = 0 
and lima_+i_A:i(a) = 1. Also, if w G C2, then k2 is a strictly decreasing function on 
(0,1), with lima_->o+ ̂ (or) = oo and lima_>i_ k2(a) = 1. 

For all w G ^ the function space LWi\ = Lw\(0,oo) is the set of all (equivalence 
classes of) scalar-valued, Lebesgue-measurable functions/ on (0, oo) for which \[f\\w,\ '•= 

So°f*(t)w(t)dt is finite. Here,/" is the decreasing rearrangement of/. Under the usual 
duality in function spaces, the Banach dual of LWi\ is isometric to LWtOQ; which is the set 
of all (equivalence classes of) scalar-valued, Lebesgue-measurable functions/on (0, oo) 
for which |[/||w,oo '= sup/>0

 Jo' , (/)— is finite. Under the same duality, the subspace L°w?00, 
f /* (s) ds f f*(s) ds 

consisting of a l l / G Lw,oo for which lim^0+ JTÂ— ~ ^ anc* nm>-»oo T̂Â— = 0, is an 
isometric predual of Lw,\. 

We will use the following inequality later. A qualitative consequence of it is the well-
known fact that for an admissible weight w, w G C\ if and only if k\(ao) < 1 for some 
a 0 G(0 , l ) . 

LEMMA 1.1. Letw eW. Then for allO <a < (3 < 1, 

a(l-*i(«)) < / ? ( l - * i Q3)) 
1 - a - 1-/3 " 

PROOF. Fix 0 < a < /3 < 1. Let 7 := /?/a. Then j} < 1 < 7, and so there is a 
A G (0,1) for which 1 = (1 - A)/3 + À7. Indeed, A = ^ | ^ | . Thus, for all t > 0, since </> 
is concave and increasing, we see that 

0(0 - <f>m > (1 - A)0(/3Q + A0(7Q - 0Ç3Q = A(0(7p ~ 0(ffO) 
0(0 " 0(0 ~~ 0(0 

/3(1 - a) V <j>(t) J ~ p(\ - a) V 0(70 /" 

Consequently, 1 - *, ((3) > ^ ^ ( 1 - k{ (a)). . 

We remark that weights of class C\ are known in the literature as regular weights. 
They have been studied for a long time. See, for example, [Ha], [Al] and [C]. 
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2. Uniformly concavity of </> and the weak-star UKK property. 
Recently Dilworth and Hsu [DH] proved the following theorem. 

THEOREM 2.1. Let w G W. Then the Lorentz space Lw,\ has the weak-star uniform 
Kadec Klee property with respect to its predual L°w ^ if and only z/'w G Ci Pi C2. 

This theorem makes uniform a result of Sedaev [S], who showed that LHj has the 
weak-star Kadec-Klee property (w.r.t. L°%00) if and only if </> is strictly concave; which is 
equivalent to the condition that w is strictly decreasing. However, for the uniform case, 
the condition that w is uniformly decreasing (w G C2) is not equivalent to the weak-star 
UKK property; as was shown in [DH]. Indeed, w G Ci does not imply w G Ci, and 
w G C | does not imply w G C2. 

It is one of the purposes of this note to show that a single condition on </>, in the 
spirit of Sedaev's result, is equivalent to the weak-star UKK property in LWi\ : which is 
that </> is uniformly concave. The following définition gives this notion. Luxemburg [Lu] 
introduced the analogous notion of a uniformly convex function. Moreover, Kamihska 
[Ka 1 ] extended a result of [Lu] to show that an Orlicz function space with the Luxemburg 
norm is uniformly convex if and only if the defining convex Orlicz function is a uniformly 
convex function and satisfies the A2 condition (at 0 and 00). (Also see [Ak],[Ka2]). We 
thank Anna Kamihska for showing us that a function 1/7 is uniformly concave in the sense 
of Definition 2.2 if and only if ^~] is uniformly convex and satisfies the A2 condition. 

DEFINITION 2.2. (a) Consider a mapping xjj : (0,00) —> (0,00). Then 1/; is said to be 
uniformly concave if for every £ G (0,1), there exists a 6 > 0 such that for all 0 < a < b 
with b — a > eb, it follows that 

4>(^-)-\{m+m)>wb). 

(b) We define, for any function ip : (0,00) —->• (0,00), the modulus of uniform concavity, 
6 = 64 : (0,1) -» [0,00) by setting, for all e G (0,1), 

1 a + b\ 1 S(£):=^^KV)-2^f l )+#)) 0<a < 6 a n d 1 - ~ > e] 
b J 

We note that ijj : (0,00) —• (0,00) is uniformly concave if and only if 5^{e) > 0 for 
all e G (0,1). We also note that since a uniformly concave function with range in (0,00) 
is concave and increasing, we may replace "> 61/7(6)" by "> 6\IJ(U)" in Definition 2.2(a), 
where u := (a + b)/2, to get an equivalent definition of uniform concavity; and we may 
replace " ^ r " by " i " in Definition 2.2(b) to get an equivalent modulus of uniform 
concavity. 

THEOREM 2.3. Let w G W. The following are equivalent. 

(i) The Lorentz space Lw,\ has the weak-star uniform Kadec Klee property with re­
spect to its predual £° 500. 
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(ii) 0 = <f)w is uniformly concave. 

PROOF. We will use the fact, from Theorem 2.1, that (i) holds if and only if w G 
CiHC2. 

(i) = > (ii) Suppose w e C] H C2. Fix 0 < a < 6. Let e := 1 - a/b G (0,1), 
w := (# + 6)/2 and v := (b — a)/2. Then 

T:= 
1 

: W) I 
1 

20(6) 
1 

2^(6) 
1 

20(e) 

" # / ) - - (0(a) + 0(6)) 

[0(a) - 0 ( a ) - (0(6) -0(W))] 

£ "w(O^- (0 (6 ) -0 ( W ) ) l 

y^~ w(s - v) ds - (0(6) - 0(a)) 

Now s •—> (5 — v)/s is an increasing function on [w, 6] and &2 decreases on [0,1]. Thus, 
for all s e [w, 6], 

w(s — v) ^ , /s — v\ ^ , fb — v^ 
w{s) 

and consequently, 

r> ' 

>fc(4i)>fc(ïzï).fc(;)=fc(,-ï): 

2*0) 
*2(i - 1 ) £ u w(̂ ) A - (0(A) - # 0 ) 

-ïK'-i) -][-11 ^K-i)-'][•-*(!) 
= Ï K ' - | ) - ' ] [ I - * . ( ' - | ) ] = : « * 

Note that £ is a strictly increasing function on (0,1) and lim5__o+ £(e) = 0. From the 
above reasoning, we see that 0 is uniformly concave and è^(e) > £(5) > 0, for all 
e e (0,1). 

(ii) =^> (i) Suppose that 0 = 0W is uniformly concave. Fix or G (0,1). Fix / > 0. Let 
5 = 8^ be the modulus of uniform concavity of 0. In Definition 2.2(b) substitute a = at, 
6 = t and let u = ^ = ( ^ ) f . Note that ^ = 1 - a. Then 

0<8(l-a)< 
1 

20(/) 
[0(a)-0(aO-(0(0 "0("))] 

1 
/ w(s) ds — w(s) ds 

20(0 |>' 
1 (\-a 

< 
1 

[w(a0(w - at) - w(0(^ - w)] 
2/w(0 

1 — a \ r w(at) 

2tw(t) 
( — > M « O - W ( 0 ] = ( — ) [ — - - i j . 

So> ^ ^ lf=Sp + l>for a11 ' > °- Hence' ̂ ( a ) - l i = ^ + *' for a11 a G (°» ^ and 

so w G C2. 
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Again fix a G (0,1); and then t > 0. Making the same substitutions into Defini­
tion 2.2(b) as in the first part of the proof of (ii) ==> (i) gives us that 

0 < « 5 ( l - a ) < — 
w) 

0 ( M ) - 1 ( ^ 0 + 0(0) 

u)-<j>{at)-(<t>(t)-m)} 

^ ^W(t)-<!>&)] = \ 
20(0 2 

</>(«') 

</>(/) 

So, ^ < 1 - 25(1 - a), for all t > 0. Consequently, kx(cc) < 1 - 26(1 - a), for all 
a G (0,1); and so w G C]. • 

We remark that the estimates for k\(a) and ^ ( a ) in (ii) = > (i) of the above proof 
are best for a close to 1. Moreover, limf_>o+ 6(e) / £ — 0, and we have the following 
estimates. 

COROLLARY 2.4. Let w G W. Then, for all e G (0,1), 

4 £ 4 

PROOF. The left hand inequality is simply the inequality in the first part of the proof 
of (ii) => (i) in Theorem 2.3 above, with a replaced by 1 — e. The right hand estimate is 
derived from the proof of (i) => (ii) above and Lemma 1.1. Indeed, for each e G (0,1 ), 
substitute a := l / 2 < 1 — e /2=: /3 in Lemma 1.1. Then the result readily follows. • 

3. A second derivative characterization of the uniform concavity of 0. Let w G 
W and G(t) = Gw(t) := $&, for all t > 0. Note that <j>(t) > tw(t) implies that G(t) > 1, 
for all t > 0. The following characterization of the class C\ is straightforward and well-
known. We therefore omit the proof. 

LEMMA 3.1. Let w G W. Then w G Ci <=> G is bounded on (0, oo). 

Next, let us assume that w G W is such that w'(s) exists for all s G (0, oo). Let W° 
be the collection of all such weights w. We consider now the function T = TH., defined 
for all w G W° by T(t) := : = ^ 1 = I I ^ } , for all f > 0. Our next result gives a useful 
sufficient condition for the uniform concavity of </>. 

THEOREM 3.2. Let w G W°. Ifl := inf />0r(0 > 0, then <j> = </>vv /s uniformly 
concave and 64(e) > ^-, for all e G (0,1). 

PROOF. Fix 0 < a < b. Let u = (a + 6)/2. Then, by Taylor's theorem, 

</>(tf) = </>(") + (a - «)<£'(") + ^ ^ ^ " ( O , for some Ç G (a, u\ and 
0(6) = </>(w) + (b- u)(j)'(u) + ^ V ' ( ? / ) , for some ?/ G (w, 6). 
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Hence, using our hypothesis on T, 

l-[4>(a)+<m\ = <K«)+^f-i<t>'\o+4>"m 

< <Ku) + 
(b-a)2 

16 
-70(0 + -700?) 

c2 

But s H—> (f>(s)/s is decreasing on (0, oo) because sw(.s) < 4>(s) for all 5; and consequently, 

7 (b-a\2 

I[#a) + flfc)]<0(„)-7^-^-
b2 b2 -™-lFr)«* 

It follows that 0 is uniformly concave with 8^,(e) > ^-, for all e 6 (0,1). 

EXAMPLE 3.3. The converse to Theorem 3.2 generally fails. For example, define 

1 
w(t) := 

Then 

w'(t) 

tl/2(V2 + sin({ In t)Y 

(w(/))2
 r . . (\ 

Vit'12 1 +sin ( * < • ? ) 

for all f > 0. 

< 0, for all / > 0. 

So w G W°, and since w'(/) vanishes at at least one f, 7 := inf,>o —777̂  = 0. Next, fix 
a G (0,1). For all f > 0 , let 

F(t) := 

</>(» 

w(a/) \/2 + sin(^ln0 

KO a V î ^ + si^i lnCto))) ' 

It's not hard to see that a1/2 F has the same local extreme values as H\ R —> R given by 

>/2 + s in ( j -£ ) 
//(s) := -7= , 5GR, 

V 2 + sin(s + 5) 
where B := £ In a. (Indeed, 5 = (1 /2) In / + 5). / / is 27r-periodic, and for e~4n < a < 1, 
sin B < 0; so that elementary calculations give us that H(s) is minimal when H(s) = 
V(a), where 

Via) 
y/2- -±cos2B + ^JT^ ±cos2BsinB 

B - y/T^l[cos?BsmB' A/2 - ^- cos2 

It follows that k2(a) := inf/>0 F(t) = ^ , for all a G (e-4;r, 1). Basic calculations with 
power series give us that as a —* 1—, ̂ ( a ) — 1 = ft(l — a)3 + oU\ — a)4), where 
K is a positive constant. In particular, for a close enough to 1 we have that fe(^) > 1; 
and so w G Ci. Moreover, it is easy to check that <\>{t) < Mtw(t) for all t > 0, for 
some M G (0,00); so that w G C\ by Lemma 3.1. It is now clear that <j> = </>H is 
uniformly concave, and yet the hypothesis of Theorem 3.2 that 7 > 0 fails. (We remark 
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that K — 1 /96 and we may take M = 2(\fl + l)2). This completes the discussion of our 

example. 

We show below that by assuming more about the weight function w, we can prove 
a converse to Theorem 3.2. We do this by eliminating the possibility of an oscillatory 
w', such as the one described in 3.3 above. We will assume henceforth that w G W is 
such that w'(s) exists for all s G (0, oo) and w' is an increasing function. Let Wx be 
the collection of all such weights w. Note that for all w G Wx, —W is a non-negative, 
decreasing function on (0, oo), and w itself is both absolutely continuous and convex. 

To give some idea of the regularizing effect on the function T = r n of the hypothesis 
that w G Wx, we state the following proposition. We omit the proof, since we do not use 
this result later. 

PROPOSITION 3.4. Let w G W\ Then sup/>0 T(t) < oo. 

We come now to a converse of Theorem 3.2. 

THEOREM 3.5. Let w G Wx and suppose that <j> — (j)w is uniformly concave. Then 
7 : = i n f , > 0 r ( 0 > 0 . 

PROOF. From Section 2 we know that w G Cx n C2. Fix a G (0,1). Then for all 
t G (0, oo), T(t) = R(t)S(t\ where R, S : (0, oo) —* (0, oo) are given by 

<t>{t) ' (w(t)-w(t/a))' 

Fix t G (0, oo). Then, via Lemma 3.1, M := sup/>0 G(i) G [1, oo); and so 

m=(_^L _ x)»m > {k2ia) - iw
(^)vf (a)) 

\w(t/a) J cf)(t) v J V (/>(//a) / 

Also, because — w7 is a decreasing, non-negative function on (0, oo), 

1 _ w(t)~w(t/a) _ ft
/a-wf(s)ds -w'(t)((t/a) - t) _ \ - a 

W) ~ -tw\i) " -t w\i) ~ -tw'{t) ~ a 

Thus for all t > 0, T(t) = R(t)S(t) > ± K \_J • m 

By Corollary 2.4 and the last line of the previous theorem, together with Theorem 3.2, 
we have the following estimates. 
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COROLLARY 3.6. Letw e Wx (1C\, and 7 and M be as defined in the statement and 
proof of Theorem 3.5. Then for the function 4> = <f>w we have that, for all e G (0,1), 

Ml£2 IE2 

> 04(e) > —. 
4(1 ~ef 

We remark that the right-most inequality in the above inequalities is still true if we 
just assume w <E W°, by the proof of Theorem 3.2. Also, the coefficient off2 in the right­
most inequality is the largest possible. Indeed, for 1 < p < 00, let w(t) := I/1/**-1, for 
all t > 0. Then <j)(t) — txlp\ while the corresponding function T is a constant function, 
with value 7 = -V Here,/?' := p/(p — 1). Moreover, it is easy to calculate that 

PF 

s, *,-(^)"'-i<-^4 
Consequently, 6(e) = ^e2 + 0(E5). 

ACKNOWLEDGEMENT. We thank Anna Kamihska for helpful conversations concern­
ing this paper. 

REFERENCES 

[Ak] B. A. Akimovic, On uniformly convex and uniformly smooth Orlicz spaces, Teor. Funktsiï Funktsional. 
Anal, i Prilozhen. 15(1972), 114-220. 

[AI] Z. Altshuler, Uniform convexity in Lorentz sequence spaces, Israel J. Math. 20(1975), 260-274. 
[BM] M. S. Brodskiï and D. P. Mil'man, On the center of a convex set, Dokl. Akad. Nauk. SSSR(N.S.) 

59(1948), 837-840. 
[C] N. L. Carothers, Symmetric Structures in Lorentz Spaces, Ph.D. Diss., Ohio State U. 1982. 
[CDL] N. L. Carothers, S. J. Dilworth and C. J. Lennard, On a localization of the UKK property and the fixed 

point property in Lw^\, Proc. Conf. Func. Anal., Harm. Anal, and Prob., Univ. Missouri-Columbia, 1994, 
to appear. 

[CDLT] N. L. Carothers, S. J. Dilworth, C. J. Lennard and D. A. Trautman, A fixed point property for the 
Lorentz space LpA{y), Indiana Univ. Math. J. 40(1991) 345-352. 

[DH] S. J. Dilworth and Y. P. Hsu, The uniform Kadec-Klee property for the Lorentz spaces Lw^\, J. Austral. 
Math. Soc, to appear. 

[DDDLS1 P. G. Dodds, T. K. Dodds, P. N. Dowling and F. A. Sukochev, A uniform Kadec-Klee property for 
symmetric operator spaces, Math. Proc. Camb. Philo. Soc, to appear. 

[DS] D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach 
spaces with norms of type (KK), (Banach Theory and its Applications, Proceedings Bucharest, Lecture 
Notes in Mathematics 991), Springer-Verlag(1983), 35-43. 

[Ha] I. Halperin, Uniform convexity in function spaces, Duke Math. J. 21(1954), 195—204. 
[HK] H. Hudzik and A. Kamihska, Monotonicity properties of Lorentz spaces, 1994, preprint. 
[Hu] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10( 1980) 743-749. 
[Kal] A. Kamihska, On uniformly convex Orlicz spaces, Indag. Math. 44(1982), 27-36. 
[Ka2] , Uniformly convexity of generalized Orlicz spaces, Arch. Math. 56(1991), 181—188. 
[Kil] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 

72(1965), 1004-1006. 
[Ki2] , An abstract fixed point theorem for nonexpansive mappings, Proc. Amer. Math. Soc. 82(1981), 

640-642. 

https://doi.org/10.4153/CMB-1996-034-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-034-1


274 S. J. DILWORTH AND C. J. LENNARD 

[Lu] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft 1955. 
|S] A. A. Sedaev, The H-property in symmetric spaces, Teor. Funktsiï Funktsional. Anal, i Prilozhen. 11(1970), 

67-80. 

Department of Mathematics 
University of South Carolina 

Columbia, SC 29208 

U.S.A. 

e-mail: dilworth@math.scarolina.edu 

Department of Mathematics and 
Statistics 

University of Pittsburgh 

Pittsburgh, PA 15260 

U.S.A. 

e-mail: chris@lennext.math.pitt. edu 

https://doi.org/10.4153/CMB-1996-034-1 Published online by Cambridge University Press

mailto:dilworth@math.scarolina.edu
chris@lennext.math.pitt
https://doi.org/10.4153/CMB-1996-034-1

