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We study the flow above non-optimal riblets, specifically large drag-increasing and
two-scale trapezoidal riblets. In order to reach large Reynolds numbers and large
scale separation while retaining access to flow details, we employ a combination
of boundary-layer hot-wire measurements and direct numerical simulation (DNS) in
minimal-span channels. Although the outer Reynolds numbers differ, we observe fair
agreement between experiments and DNS at matched viscous–friction-scaled riblet
spacings s+ in the overlapping physical and spectral regions, providing confidence that
both data sets are valid. We find that hot-wire velocity spectra above very large riblets
with s+ � 60 are depleted of near-wall energy at scales that are (much) greater than s.
Large-scale energy likely bypasses the turbulence cascade and is transferred directly to
secondary flows of size s, which we observe to grow in strength with increasing riblet
size. Furthermore, the present very large riblets reduce the von Kármán constant κ of the
spanwise uniform mean velocity in a logarithmic layer and, thus, reduce the accuracy of
the roughness-function concept, which we link to the near-wall damping of large flow
structures. Half-height riblets in the groove, which we use as a model of imperfectly
repeated (spanwise-varying) riblets, impede in-groove turbulence. We show how to scale
the drag optimum of imperfectly repeated riblets based on representative measurements of
the true geometry by solving inexpensive Poisson equations.
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1. Introduction

Riblets are streamwise-aligned grooves on a surface that modify wall-bounded turbulent
flow. Depending on their viscous–friction-scaled size, riblets can reduce or increase drag
compared with a smooth wall. Viscous–friction scaling, denoted in this study by a ‘+’
superscript, employs the kinematic viscosity ν and mean friction velocity uτ ≡ √

τw/ρ
with constant fluid density ρ and mean wall-shear stress (drag per unit plan area) τw. The
flow over riblets has been investigated extensively in laboratory experiments (e.g. Walsh &
Weinstein 1978; Suzuki & Kasagi 1994; Bechert et al. 1997; Lee & Lee 2001), numerical
simulations (e.g. Choi, Moin & Kim 1993; Chu & Karniadakis 1993; Goldstein & Tuan
1998; García-Mayoral & Jiménez 2011b; Endrikat et al. 2021b) and model calculations
(e.g. Luchini, Manzo & Pozzi 1991; Tullis & Pollard 1993; Chavarin & Luhar 2019; Ran,
Zare & Jovanović 2021).

1.1. Large drag-increasing and imperfectly repeated riblets
So far, most studies primarily focused on the drag-reducing regime of small and perfectly
repeated riblets, that is, in near-optimal conditions. Off-design conditions are less studied.
Large riblets constitute a limiting case of wall roughness and imperfectly repeated riblets
challenge the physical ideas behind models that estimate the drag change or an equivalent
boundary condition. We analyse these two off-design conditions: large drag-increasing
and imperfectly repeated riblets.

One recent study on drag-increasing riblets that are very large in viscous–friction scaling
is by Gatti et al. (2020), who acquired channel flow pressure-drop measurements in air
for trapezoidal riblets with spacings 8 � s+ � 111. They observe that riblets appear to
exhibit a fully rough behaviour for only a finite range of sizes, beyond which the drag
curve peels off from the expected fully rough asymptote. Local hot-wire measurements
inside the riblet groove, which revealed how very large riblets interact with the flow, were
first reported by Newton, Chung & Hutchins (2018).

Two-scale (also called ‘brother-and-sister’) riblets were initially devised for improved
maximum drag reduction, but the oil-channel experiments by Bruse et al. (1993) showed
that they have roughly the same minimum skin friction as single-scale riblets. We
revisit two-scale riblets starting at sizes around the drag optimum as an idealisation of
imperfectly repeated riblets towards estimating the drag performance due to manufacturing
inaccuracies such as varying riblet heights. Possible manufacturing techniques are
limited by difficulties in fabricating a large area of accurately repeated riblets with
minimal variation (West, Sammut & Tang 2018), but accepting a lower quality makes
manufacturing faster and more economical (Kaakkunen et al. 2018). Tiainen et al.
(2020) measured shape variation statistics of imperfect riblets manufactured with
nanosecond laser ablation on a curved airfoil. Their riblet heights are in the range
0.71–1.28 times the nominal height and they verified in laboratory experiments that
the surface nevertheless reduces drag. Without costly drag measurements, however,
a priori model estimates of the expected drag or optimal riblet size for given flow
conditions assume ideally repeated riblets with a well-defined cross-sectional area, for
which the drag reduction relative to a smooth wall follows a near-universal curve (as
shown by García-Mayoral & Jiménez 2011a). A more accurate drag estimate based on
geometry statistics would provide confidence that riblets manufactured with a given
technique could reduce drag in full-scale applications without the need for high-fidelity
data.
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Turbulence over large and spanwise-varying riblets

1.2. Outer-layer similarity and the roughness function
Most roughness as well as drag-reducing riblets only modify turbulence in a region
close to the surface termed the roughness sublayer. One common measure of the
roughness-sublayer height is the inhomogeneity of the mean flow (e.g. Raupach, Thom
& Edwards 1980; Pokrajac et al. 2006; Chan et al. 2018; Sharma & García-Mayoral
2020). Any measure of the roughness-sublayer height depends on the flow quantity, but
it generally scales with the element spacing rather than the element height (Raupach et al.
1980; Raupach, Antonia & Rajagopalan 1991), as further supported by direct numerical
simulations (DNS) of spanwise-aligned bars (MacDonald et al. 2018) and post arrays
(Sharma & García-Mayoral 2020). For riblets, Modesti et al. (2021) find that the roughness
sublayer of mean secondary (spanwise inhomogeneous) flows extends to a height of about
0.5s above the virtual origin of turbulence or, equivalently, the zero-plane displacement
(Raupach et al. 1991; Jiménez 2004; Chung et al. 2021), which is consistent with the study
of sinusoidal roughness by Chan et al. (2018). Higher-order statistics may be affected up
to greater heights.

The outer layer of the flow above the roughness sublayer, however, is similar to that
above a smooth wall and the logarithmic layer, which is common to the inner and the
outer layer, has a slope that is characterised by the same von Kármán constant κ ≈
0.40 for both rough and smooth walls. This similarity is a consequence of Townsend’s
(1956) hypothesis applied to the flow over relatively small roughness (for which the
boundary-layer thickness δ far exceeds the roughness or riblet height k and the friction
Reynolds number is high). Contrarily, the hot-wire velocity profiles by Newton et al.
(2018) suggest that very large riblets modify the mean velocity also in the outer layer,
although their conclusions are burdened by uncertainties about the friction velocity.
Without outer-layer similarity, the roughness function U+

smooth − U+ does not have a
constant value ΔU+ throughout the logarithmic layer. A constant ΔU+ permits full-scale
predictions from scaled experiments or simulations (Flack & Schultz 2014; Chung et al.
2021) by encapsulating the drag difference between two surfaces (Hama 1954; Clauser
1956), which is supposedly independent of the outer Reynolds number (Spalart & McLean
2011; García-Mayoral, Gómez-de-Segura & Fairhall 2019).

A lack of outer-layer similarity, either in the mean or fluctuations, has been reported
over non-transitionally rough porous surfaces (Manes, Poggi & Ridolfi 2011), large-pitch
transverse bars (Krogstadt & Antonia 1999; Krogstad & Efros 2012; Flack & Schultz
2014) and wavy roughness (Napoli, Armenio & De Marchis 2008; Schultz & Flack 2009;
Nugroho et al. 2021), among others. In some of these cases (Krogstad & Efros 2012;
Nugroho et al. 2021), outer-layer similarity has been recovered with an even larger scale
separation than the oft-quoted δ/k � 40 (Jiménez 2004). One way to understand the
stricter criterion for recovery is the presence of a much larger length scale than k, such
as pitch or wavelength of waviness, which sets the size of the roughness sublayer that is
correspondingly much larger than the oft-quoted 2k–3k (Chung et al. 2021). Notably, for
the riblets of Newton et al. (2018), the largest length scale of the surface is s = 2k and the
mean-flow inhomogeneity is confined to 0.5s = 0.5(2k) = k � δ/47 (based on Modesti
et al. 2021).

1.3. Outline
In the present study we extend the analysis of Newton et al. (2018) and mitigate
uncertainties related to the friction velocity by employing a drag balance together with
hot-wire measurements (§ 2.1) and combining this with DNS at a comparatively low
friction Reynolds number, but with accurately measured friction velocities (§ 2.2).
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In § 3.1 we observe a depletion of large-scale energy in hot-wire spectra even at heights
above riblet-induced mean-flow inhomogeneity (§ 3.2). Combining hot-wire and DNS data
sets gives us confidence that the present large s+ riblets modify the statistically spanwise
uniform mean flow in the logarithmic layer (§ 3.3) despite the large scale separation δ � k
and a high friction Reynolds number. We propose an explanation in § 3.4. The investigation
of turbulence also inside of large riblet grooves leads to a model for the average crest (slip)
velocity in § 3.5, that can be used to crudely estimate ΔU+. In § 4 two-scale riblets allow
us to also investigate effects of spanwise variations of riblet surfaces on the drag curve. We
propose a method for estimating the optimal size of imperfectly manufactured riblets with
negligible computational cost, that builds on the hydraulic length �H from García-Mayoral
& Jiménez (2011b)

Throughout this paper, x, y and z refer to the streamwise, spanwise and wall-normal
directions with corresponding velocity components u, v and w.

2. Experimental and numerical set-ups

2.1. Hot-wire anemometry in boundary layers
Experiments were performed in an open-return boundary-layer wind tunnel in the Walter
Bassett Aerodynamics lab at the University of Melbourne. The test section has dimensions
5.7 m × 0.94 m × 0.38 m (streamwise × spanwise × wall normal) with measurements
made in the boundary layer developed over the lower surface. Full details of this facility
are available in Harun et al. (2013). The test surface comprises of two 1.89 m × 0.94 m
(streamwise × spanwise) and three 0.63 m × 0.94 m tiles of acetal copolymer into
which the trapezoidal riblet geometry with s/k = 2, tip angle α = 30◦ and s = 2.73 mm
(figure 1a) is machined using a custom made trapezoidal end mill. The boundary layer
is tripped with a strip of P36 grit sandpaper at the inlet to the working section where
the riblet surface starts and all measurements are made 4 m downstream of this trip.
For the present cases, the flow adjusts to the riblet surface over a streamwise distance of
about 50–60 times the boundary-layer thickness before reaching the measurement location.
Nominally zero pressure gradient conditions are established by adjusting the flexible
perspex ceiling of the working section. Static pressure taps located every Δx = 0.5 m
(between streamwise distance x = 0 m and x = 5.5 m) along the ceiling are used to
measure the local pressure difference Δp = p0 − p, where p0 is the local static pressure
at x = 0 (the entrance to the working section), from which the pressure coefficient Cp is
computed (≡ 2Δp/ρU2∞, where U∞ is the free-stream velocity and ρ is the air density).
For all measurements reported here (riblet surfaces with U∞ ∈ [5, 25] m s−1 in table 1),
Cp = 0 ± 0.06.

Boundary-layer profiles are acquired using hot-wire anemometry above both the crest
and trough of the riblet geometry (figure 1). Each profile consists of measurements at 50
logarithmically spaced wall-normal locations z. For the measurements over the trough,
the wall-normal starting position for the traverse is below the roughness crest. A modified
Dantec 55P05 probe has Wollaston wire with 2.5 μm diameter platinum core soldered
across the probe tips. The 0.5 mm (≈0.18s) active sensor length is exposed by etching
the silver jacket using nitric acid solution, yielding a length-to-diameter ratio of 200
(as recommended by Ligrani & Bradshaw 1987). Since the same probe was used at all
free-stream velocities, the viscous-scaled sensor length l+ increases with U∞ (see table 1).
Possible spanwise positioning errors over the crest and trough, and also uncertainty in
the etched sensor length l, are explored in the Appendix. The hot-wire probe is operated
in constant temperature mode with an overheat ratio of 1.8 using an in-house designed
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Figure 1. (a) Cross-sectional sketch of the riblet surface in the wind tunnel. The shaded areas indicate the
spanwise extent and two locations of the active sensor of the hot-wire probe as it traverses in the wall-normal
direction. (b) Sketch of the test section with the riblet surface and drag balance consisting of a floating element,
an arm with its pivot and a digital scale.

Case U∞ (m s−1) ν (m2 s−1) uτ (m s−1) δ′99 (m) δ′+99 s+ δ′99/k l+

5 5.0 1.59 × 10−5 0.21 0.065 850 36 47.6 7
7 7.5 1.60 × 10−5 0.31 0.065 1250 53 47.4 10
10 10.0 1.61 × 10−5 0.40 0.066 1640 68 48.6 12
15 15.0 1.59 × 10−5 0.60 0.064 2420 103 47.0 19
20 19.8 1.60 × 10−5 0.78 0.062 3000 132 45.3 24
25 24.6 1.59 × 10−5 0.96 0.063 3840 165 46.4 30

Table 1. Wind tunnel and flow parameters for the hot-wire measurements. For all cases, the spacing-to-height
ratio of the riblets is s/k = 2 and the tip angle α = 30◦. The mean friction velocity uτ is measured using a
drag balance. The 99 % boundary-layer thickness δ′99 is measured from the virtual origin, here assumed to be
�t = k/2 below the riblet crest. The etched (active) length of the hot wire is l = 0.5 mm.

Melbourne University constant temperature anemometer (MUCTA). The fluctuating
voltage signal output from the MUCTA is sampled at a frequency f = 50 kHz yielding a
viscous-scaled sample interval 0.05 � Δt+ � 1.16 for the range of 5 < U∞ < 25 m s−1,
where Δt+ = u2

τ /( f ν), to ensure adequate resolution of the highest frequencies. Adequate
convergence of low frequency turbulent energy (following Hutchins et al. 2009) is
achieved with a sampling duration T of 150s, which corresponds to 11 000 � TU∞/δ′99 �
58 000 for the present range of free-stream velocities. The hot-wire sensor is calibrated
in situ prior to and after each boundary layer traverse by positioning the hot wire in the
free stream of the flow adjacent to a Pitot-static tube. Calibration coefficients are obtained
by fitting a third-order polynomial to the mean voltage from the MUCTA and Pitot-static
tube measured velocity. During the boundary layer traverse experiment, temperature-based
interpolation is applied between pre- and post-calibration curves to compensate for any
temperature drift. The time average of the acquired streamwise velocity at two y positions
is denoted by U( y, z). When comparing to a smooth-wall flow, the (virtual) origin of z is
required, which we denote to be �t below the riblet tips (figure 1a). We generally consider
all locations between the groove bottom and riblet crest, but arbitrarily assume �t = k/2 to
show profiles for only one realistic origin in some figures, as done by, for example, Squire
et al. (2016b) for hot-wire measurements above sandpaper roughness. The assumption
is employed for figures 3, 4, 8, 9 and 11, but does affect any conclusions drawn based
on them.
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The mean friction velocity uτ is measured using a custom designed cantilever type drag
balance of a similar design to that described in Krogstad & Efros (2010). This device has
a long moment arm (0.4 m) to maximise sensitivity to the wall-shear stress and minimise
sensitivity to any normal forces due to local pressure gradients in the facility. Wall-shear
stress was measured on a floating element of size 0.43 m × 0.29 m with either a smooth
or riblet surface. The gap width surrounding this floating element was<1 mm throughout,
and the use of a restorative balance ensured that this gap does not change with U∞. The
upstream and downstream edges of the floating element tile are chamfered (undercut) to
minimise moments due to pressure forces at the gaps. The drag balance is validated for the
smooth surface, with the balance-measured results exhibiting agreement with uτ obtained
from Clauser fitted profiles to within ±2 % when U∞ ≈ 5 m s−1, improving to ±0.2 %
when U∞ ≈ 25 m s−1.

2.2. Direct numerical simulations of minimal-channel flow
We conduct DNS of turbulent and fully developed open channel flow to obtain the flow
field over riblets with varying spacing s+ at friction Reynolds numbers of δ+ ≡ δuτ /ν =
395 and δ+ = 1000 (table 2). Here, δ = zδ − zm is the cross-sectional area per channel
width, i.e. the half-channel height measured from the riblet mean height zm (figure 2).
Our data set comprises single-scale trapezoidal riblets with a tip angle α = 30◦ (case
names TAs+) and two-scale trapezoidal riblets (TMs+) that have one additional half-sized
riblet with the same tip angle in the centre of the groove. We previously analysed parts
of this data set in (Endrikat et al. 2021a; Modesti et al. 2021). The numerical domain is
sketched in figure 2 and geometrical parameters including domain extents are given in
table 2. Simulations of smooth-wall flow at matching friction Reynolds numbers serve as
a common reference.

The Navier–Stokes equations for an incompressible fluid

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + ν∇2u − 1
ρ

dP
dx

ex, ∇ · u = 0, (2.1a,b)

are solved using the finite volume code Cliff by Cascade Technologies Inc. (Ham, Mattsson
& Iaccarino 2006; Ham et al. 2007). The velocity u has components (u, v,w) in the
streamwise (x), spanwise (y) and wall-normal (z) direction and time is t. A constant
pressure gradient dP/dx drives the flow in the streamwise direction indicated by ex and p
is the fluctuating component of pressure that we solve for.

The overline ( · )(z) denotes averages in t, x and y at one height z above the riblet crest.
In analogy to the hot-wire data, U( y, z) is the mean velocity averaged in t, x and over
the spanwise extent of the hot-wire probe, 0.18s, either centred around y = s/2 (centred
above troughs) or around y = s (centred above riblet tips). Inside the roughness sublayer,
ū(z) /= U(z) because ( · ) averages over s and the hot-wire averages only over 0.18s. Above
the roughness sublayer, the flow is statistically spanwise uniform and the averages over the
two regions are equal. Furthermore, ũw̃ = 〈u〉〈w〉 − ūw̄ denotes the dispersive component
of Reynolds stress, which cannot be measured by a single hot wire, because it is due to the
xt-averaged spatial variation 〈 · 〉( y, z) about ( · )(z) and here w̄ = 0 so ũw̃ = 〈u〉〈w〉.

All simulations are conducted in minimal-span channels (Jiménez & Moin 1991; Flores
& Jiménez 2010; Hwang 2013), which reduces the computational cost of evaluating the
flow over roughness compared with using full-span channels (MacDonald et al. 2017).
The flow above z+

c = 0.4L+
y , where Ly is the spanwise domain extent, is unphysically

constricted in narrow domains (Chung et al. 2015), but the flow field close to the wall is
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Lz = δ

Ly

Lx

�t

0

zt

zmzb

dx
dP–

δ

δ′

z

(a) (b)

Figure 2. (a) Spanwise-minimal numerical domain of case TA50, which has five riblets with s+ = 50 across
the span. (b) Sketch illustrating the wall-normal coordinate with the bottom of the groove z = zb, the mean
height z = zm, the virtual origin z = 0 and the riblet tips z = zt. The half-channel height δ is measured from
the mean height and δ′ from the virtual origin, �t below the tips.

representative of that in full-span channels and allows us to evaluate the effects of riblets
(Endrikat et al. 2021b).

3. Effects of large riblets on the flow

The two data sets of flow above large riblets from experiments and simulations have
different outer Reynolds numbers (tables 1, 2), but they complement each other at matched
s+ in the common physical and spectral regions analysed in this section. We first consider
velocity spectra and then the mean flow.

3.1. Riblets damp large-scale motions near the wall
Figure 3 shows streamwise spectra of the streamwise velocity component at different
heights for three riblet sizes (rows) and two spanwise positions (columns). The spectra
demonstrate that large riblets reduce the energy of large-scale motions close to the wall
relative to smooth-wall flow. A particularly clear example of this is given in figure 3(e,f ),
which shows the largest s+ case. Here, if we compare the filled contours for the riblets with
the grey line contours of the smooth wall, we see substantial missing large-scale energy
near the wall at λ+x ≈ 10 000–50 000 and (z − zb)/k � 5. Over a smooth-wall, long flow
structures are coherent down to the viscous buffer region at z+ ≈ 15 (Hutchins & Marusic
(2007), Monty, Harun & Marusic (2011), Squire et al. (2016a), and smooth-wall contours
in figure 3). The large riblets, however, significantly weaken the near-wall part of long
flow structures in figure 3. Even though these large motions lose energy as they scrape the
riblets, the flow structures that scale with distance to the wall in the logarithmic region
(Townsend 1976) appear intact (see dashed lines in figure 3, which show λx = 30z). The
difference above the large riblets compared with smooth-wall flow is that flow structures
scaling with wall distance seem to lack coherence with the wall.

The DNS spectra only extend to λ+x = L+
x ≈ 2000. The domain length is therefore

too short to observe the energy difference at larger scales, but the spectra nevertheless
show some of the energy reduction that riblets introduce. The DNS (red) contour lines in
figure 3(a–d) run horizontally around λ+x ≈ 1000, where smooth-wall flow with vertical
contour lines retains higher energy (only shown for smooth-wall experiments, but contour
lines for smooth-wall DNS also run vertically).
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Figure 3. Spectra of the turbulent component of streamwise velocity fluctuations (normalised by u2
τ and

premultiplied by the wavenumber k+
x ) with contour levels at k+

x Ex+
uu = (0.2, 0.4, 0.6, 0.8, 1) for three riblet

sizes at two spanwise positions: in the groove centre (a,c,e) and above the riblet tips (b,d,f ). Contours (blue)
are for hot-wire riblet data and red lines for DNS (drawn up to zc). Bottom axes are normalised by the riblet
height. Top axes show z+ − z+

b for each hot-wire riblet case. For smooth-wall hot-wire contour lines (grey),
z is normalised by k from the matching hot-wire riblet case and the origin is assumed at (z − zb)/k = 0.5.
Smooth-wall spectra in (a–d) were recorded during the campaign by Wangsawijaya et al. (2020) in the same
facility as the present riblet cases and smooth-wall spectra in (e,f ) are from Chandran et al. (2017). Vertical
dotted lines mark the riblet crest. Dashed lines represent λx = 30z for zt < z < δ′99. Arrows label a region of
reduced energy around λx ≈ 5δ′99.
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Figure 4. Energy of large-scale motions λx � 30z (integrated above the dashed line in figure 3e) that are
damped by riblets relative to smooth-wall flow (Chandran et al. 2017) and sandpaper roughness (Squire et al.
2016b, case with k+

s = 22). Only showing the spanwise location above the riblet groove centre, starting at the
height of the crest. Assuming a virtual origin with �t = k/2.

Velocity fluctuations in and just above the riblet groove are well resolved in both
hot-wire measurements and DNS (figure 3), which allows us to correct for the positional
z error innate to hot-wire measurements by comparing to DNS data with well defined
z/k. The z corrections, applied for all figures, are in the range [−0.57,−0.4] mm in the
groove centre and in the range [−0.55,−0.12] mm at the riblet crest. As a reference, the
riblet height k = 1.365 mm. All of these shifts are negative (i.e. downward), consistent
with the tunnel floor being pulled upwards slightly by the flow and the probe support
shifting downward slightly under aerodynamic loading. The corrections need not be
exactly the same at both positions, because the probe is manually repositioned at
each spanwise location using a z-positioning microscope (Titan Tool Supply), incurring
different positioning errors.

In figure 4 we integrate spectra only over long wavelengths λx � 30z, i.e. above the
dashed line in figure 3. Comparison to smooth-wall flow with roughly matching δ′+99
illustrates the reorganisation of near-wall turbulence. The large riblets significantly reduce
the streamwise energy of large-scale motions at riblet-scaled heights of at least z � zt + 2s
(or, equivalently, z � zb + 5k as in figure 3) and at outer-scaled heights z � (0.1–0.2)δ′99,
i.e. into the logarithmic layer. The sandpaper roughness investigated by Squire et al.
(2016b), shown by red dashed lines in figure 4, also reduces large-scale energy, but
markedly less so than the riblets. The near-wall energy reduction of large flow structures
by riblets in figures 3 and 4 is noticeable even at heights above the riblet-induced spanwise
inhomogeneity of the mean flow, which we analyse in the following section.

3.2. Roughness sublayer of the mean flow
The mean flow U+( y, z), measured at two spanwise positions of the riblet groove,
indicates the extent of the roughness sublayer in figure 5: the two profiles overlap for
z � zt + k (above the dotted line) in both experiments and DNS. An exception is the
s+ = 36 hot-wire profile at the tip position, which differs from the DNS data and does
not fully join the hot-wire profile in the groove centre (figure 5a). The mismatch indicates
experimental errors for the tip profile, because the DNS profiles for the same s+ = 36
in figure 5(a) fit the trend observed for all other cases in both data sets: riblet-induced
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10 10
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3

18.0 ν/uτ 26.5 ν/uτ 34.0 ν/uτ 51.5 ν/uτ 66.0 ν/uτ 82.5 ν/uτ

4
s+ = 36 s+ = 53 s+ = 68 s+ = 103 s+ = 132 s+ = 165

(a) (b) (c) (d ) (e) ( f )

DNS

Hot-
wire

(z
 −

 z b)
/k

Figure 5. Mean streamwise velocity at two spanwise positions: y = 0 (at the riblet tips) and y = s/2 (in the
groove centre). Direct numerical simulation profiles are averaged in y only over the 0.18s covered respectively
by the hot-wire probe and, for this figure only, interpolated to match the experimental s+. The portion of profiles
shown is below zc and, therefore, unaffected by the minimal domain width. The dotted horizontal line marks
the approximate extent of the roughness sublayer based on mean-flow inhomogeneity.

spanwise variations of the mean flow are limited to heights z � zt + k = zt + 0.5s. The
scale separation between the height of the roughness sublayer of the mean flow and
δ′99 ≈ 47k (table 1) is therefore large in our experiments. Nevertheless, the effect of riblets
on the turbulence structure (at least z � zt + 4k, § 3.1) extends far beyond the spanwise
variations of the mean flow.

Scaling of the mean-flow roughness sublayer with the horizontal roughness spacing
as in figure 5 (with 0.5s = k) has more generally been observed for canopy roughness
(e.g. Raupach et al. 1980), streamwise ridges (e.g. Wang & Cheng 2006; Hwang & Lee
2018), sinusoidal roughness (Chan et al. 2018) and smaller riblets (Modesti et al. 2021).
The blocking effect of a smooth wall causes large eddies to mostly produce wall-parallel
(inactive) motions (Townsend 1976), but large riblets interact with lateral flow to create
mean secondary motions in the cross-stream plane (Goldstein & Tuan 1998; Modesti et al.
2021). Therefore, a convenient measure of the roughness sublayer in DNS is the extent of
dispersive (form-induced) stresses due to time-averaged secondary flows. These motions
are not defined instantaneously, but they can be sensed statistically as dispersive Reynolds
stresses that extend to heights of about half the horizontal roughness period (Chan et al.
2018; Modesti et al. 2021).

In figure 6(a) we confirm, for the present large riblets, that the dispersive Reynolds
stresses of secondary flows (indicating mean-flow inhomogeneity) are limited to z �
zt + (0.4–0.8)s, depending on the threshold. Dispersive stresses of blunt, scalloped riblets
are confined to similar heights (Rastegari & Akhavan 2018, figure 5(f ) s = 0.288δ).
The peak value of dispersive stresses in figure 6(b) increases with s+, but approaches
a maximum (the negative of viscous-scaled Reynolds shear stress is less than 1). The
same trend is evident in the time-averaged cross-flow of figure 7, which strengthens
with increasing s+, as discussed by Modesti et al. (2021). Furthermore, the roughness
sublayer of the two-scale riblets (dashed lines in figure 6a) also scales with s, even though
the additional half-height riblet in the groove visibly displaces turbulence upwards in
figure 7(g–j) compared with the single-scale riblets in figure 7(a–d). The displacement
of turbulence and the reduction of dispersive stresses by two-scale riblets in figure 6(b)
reduce ΔU+ at matched s+ (following the drag decomposition from, e.g. Modesti et al.

952 A27-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.897


S. Endrikat and others

0 0.5 1.0 1.5
10−4

10−3

10−2

10−1

100

uw
/u

w
t

Approximation:

Approximation for s+ > 50:

0.71 (1 + exp(54 – s+)/21)
–1

exp(–8(z – zt)/s)

(a) (b)

.

.

20 40 60 80 100 120 140 1600

0.2

0.4

0.6

+

0.8

.

.

(z – zt)/s s+

∼

~
~

~
~

–
uw

t
~

~

Figure 6. The extent of DNS dispersive stresses defines the roughness sublayer of mean secondary flows.
Profiles of dispersive stresses against z/s (a) collapse when shown relative to their respective peak value at
the riblet tips −ũw̃

+
t (b). This is similar to the coherent component of pressure fluctuations analysed by Seo,

García-Mayoral & Mani (2015). Dotted lines are empirical approximations.
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Figure 7. Cross-flow averaged in time, the streamwise direction and over riblet periods. Contours show
wall-normal velocity and lines show the stream function ψ+ − ψ+

w = ±(1, 21, 41, 61)× 10−4 relative to
ψ+

w = 0 on the wall (—– for counterclockwise rotation and - - - - for clockwise rotation).

(2021), and shown in § 4). However, in § 4 we consider different measures of the riblet size
and demonstrate that the half-height riblets do not actually provide an overall drag benefit
compared with the single-scale trapezoidal riblets once their size is scaled appropriately.

3.3. Mean velocity in the logarithmic layer
As shown in the previous section, spanwise variations of the mean flow in the roughness
sublayer are confined to about z � zt + k, but we next observe that the mean flow U+ is
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Figure 8. (a) Mean streamwise velocity from hot-wire measurements with a virtual origin �t = k/2. Only
showing the spanwise invariant flow above the roughness sublayer (figure 5). Filled circles mark measurements
that are considered to lie within the logarithmic region (lower bound: z+ = max(100, z+

t + 0.5s+), upper
bound: z = 0.19δ′99). Red dashed line: sandpaper roughness for which uτ is measured with a drag balance
(Squire et al. 2016b, k+

s = 22, δ+99 ≈ 3950, ΔU+ ≈ 2.7, δ/k ≈ 384 and κ ≈ 0.378). Dotted line: smooth-wall
flow (Chandran et al. 2017). Error bars in (b–d) are for virtual origins between the groove bottom zb (�t = k)
and the riblet crest zt (�t = 0). (b) Fitting parameter κ(s+) that describes the slope of the logarithmic region
(dots in a) as a function of the riblet spacing. The fit only marginally depends on the choice of the lower
bound. (c) Roughness functions using smooth-wall hot-wire data from Marusic et al. (2015), Chandran et al.
(2017), Wangsawijaya et al. (2020) and Ramani et al. (2020) are only shown above the roughness sublayer and
up to z = δ′99/2. (d) Drag curve as measured in (c). Direct numerical simulation values are measured at zc
and matched Ly to cancel out minimal-channel effects. Empty circles are for thicker trapezoidal riblets with
α = 53.5◦ from Gatti et al. (2020, figure 4).

nevertheless modified in the spanwise homogeneous logarithmic layer, where the present
riblets damp large-scale energy.

3.3.1. Increased slope of the mean velocity profile
Figure 8(a) shows a hot-wire velocity profile above a smooth wall (······), for which the
slope in the logarithmic region is well known to be described by the von Kármán constant
κ ≈ 0.40. The riblet-flow profiles in figure 8(a) are only shown in the spanwise uniform
region above the roughness sublayer (figure 5) and we assume a virtual origin at the
mid-point of the groove (�t = k/2) for these profiles. The highlighted logarithmic region
in figure 8(a) shows a clear trend of increasing slope with increasing riblet size for this
choice of the virtual origin. The outer layers of the flow above the present large riblets
and smooth wall are therefore not similar. Figure 8(a) additionally shows a velocity profile
above sandpaper roughness from Squire et al. (2016b), with the same definition of the
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virtual origin, as an example of rough-wall flows that commonly have the same κ ≈ 0.40
as smooth-wall flows.

In figure 8(b) we measure the slope of the hot-wire mean profile by fitting a line to the
logarithmic region. A reduction in κ with increasing s+ is clearly visible for any virtual
origin between the groove bottom and the riblet crest (error bars). Even with the origin
at the riblet crest (top of the error bars), κ ≈ 0.34 for the largest riblets. To illustrate the
effect of the origin on the apparent local value of κ = (z+dU+/dz+)−1, consider a fixed
measurement location in the logarithmic layer. A higher origin reduces the distance z+
between the measurement location and the virtual origin, increasing κ . In a similar manner,
the positional adjustment applied to the hot-wire locations z in § 3.1, which accounts for
the wall and probe-support movement under aerodynamic load, also slightly increased κ
relative to the raw data. The friction velocity used for the riblet profiles is measured with a
drag balance (§ 2.1) and could include an error. If we were to reduce uτ to match the DNS
profiles in figure 5, the apparent local value of κ would reduce further.

In hot-wire boundary-layer studies uτ and the virtual origin are generally found by
forcing κ = 0.4 (or a close value like κ = 0.384 ± 0.005 as determined by Nagib &
Chauhan 2008). However, with uτ fixed by drag-balance measurements and z-positional
errors corrected by comparing to spectra and mean profiles from DNS (§ 3.1), the position
of the virtual origin is the only variable affecting κ . Forcing κ = 0.4 requires the origin
to be about 0.7k above the riblet crest (see grey dots in the inset of figure 8b), which
seems unrealistic. Other studies of roughness (e.g. Raupach et al. 1991; Grimmond & Oke
1999) and small s+ riblets (e.g. Luchini et al. 1991; Endrikat et al. 2021a) use various
definitions, but all place the virtual origin below the roughness crest, as summarised by
Chung et al. (2021). Therefore, reasonable adjustments to the virtual origin or to uτ cannot
force κ ≈ 0.4, which provides confidence that κ is indeed a function of s+ for the present
large riblets, as shown in figure 8(b).

3.3.2. Outer-layer similarity
Breugem, Boersma & Uittenbogaard (2006) and Suga et al. (2010) observe reduced κ
above the permeable walls of porous surfaces at low friction Reynolds numbers (δ+ � 678
and δ+ � 432, respectively) and suggest the changes to the mean profile may be due to the
wall-normal permeability of their surfaces. Small riblets can be interpreted as behaving
similar to a porous surface, with an effective porosity that increases with riblet size
(García-Mayoral & Jiménez 2011b; Endrikat et al. 2021a). Reasoning for reduced κ above
permeable surfaces may therefore also be applicable to riblets. However, Manes et al.
(2011) show that insufficient separation between inner and outer length scales explains
the trend of reducing κ in the studies by Breugem et al. (2006) and Suga et al. (2010),
in which the roughness sublayer based on Reynolds stresses induced by the wall porosity
likely extends into the logarithmic layer.

For the present riblets, the roughness sublayer based on the extent of wall-parallel
inhomogeneity of the mean flow is limited to z � zt + k (figure 5). This extent of the
direct influence of riblets is small in outer units for all our experimental cases (table 1),
suggesting that outer-layer similarity should exist above z ≈ zt + k contrary to what we
observe in figure 8. One way to rule out insufficient scale separation for the present riblets
would be to repeat the experiments at matched s+, but at an even higher δ/k (Chung et al.
2021), which is not possible with the current set-up. Nevertheless, unlike the surfaces
that have been demonstrated to recover outer-layer similarity at larger scale separation
(Krogstad & Efros 2012; Flack & Schultz 2014; Nugroho et al. 2021), the present riblets
lack an obvious larger scale that could limit outer-layer similarity by farther extending the
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roughness sublayer of the mean flow. In this sense, the present riblets are exceptional. In
fact, the scale separation for the experimental data δ′99/k ≈ 47 is roughly constant (table 1),
but κ reduces nevertheless as δ′+99 and k+ increase (figure 8b).

If the damped large-scale streamwise energy is interpreted as a roughness sublayer
of turbulence, the affected region z � zt + 4k (figure 4) agrees with estimates of the
roughness-sublayer height by, for example, Jiménez (2004) and Lee & Sung (2007). In
§ 3.4 we propose a connection between the damped large-scale energy and the changes
to dU+/dz+ and κ that have been noted in figure 8 to persist beyond heights at which
mean-flow homogeneity has recovered. However, since δ′99/k ≈ 47 is roughly constant
for all experimental riblet cases (table 1), we cannot discern if the wall-normal extent
of large-scale energy reduction scales with the riblet size (e.g. these large scales are
damped at heights (z − zb) � 5k, as in figures 3, 4) or if it scales with the boundary-layer
thickness (e.g. these large scales are damped near the wall at z � (0.1–0.2)δ′99, as in
figure 4a). Consequently, it is not clear if increasing the scale separation δ′99/k would
restore outer-layer similarity in an increasingly large part of the logarithmic layer.

3.3.3. Roughness function
The mean velocity shifts U+

smooth − U+ for hot-wire profiles, shown in figure 8(c) and
calculated with smooth-wall data for almost matching δ′+99 , are visibly decreasing in the
logarithmic region for the larger riblet cases. Although the range of uncertainty in ΔU+
measured at different heights is only about 1, the clearly increased logarithmic slope for
the large riblets challenges our fundamental understanding and expectation of outer-layer
similarity. Consequently, the velocity deficit relative to smooth-wall flow ΔU+ may not be
an accurate measure of the drag change for these large riblets and, hence, cannot be easily
extrapolated to full scale.

If we nevertheless measure a value for ΔU+ at an otherwise appropriate height of
z = 0.1δ′99, the drag curve in figure 8(d) closely matches that from experimental channel
flow data by Gatti et al. (2020) for s+ � 80 (inferred from the pressure drop, as profile
measurements are not available). At larger s+ ≈ 100, our riblets with tip angle α = 30◦
have higher drag than the data for α = 53.5◦ of Gatti et al. (2020). If we force κ = 0.4 by
adjusting the virtual origin, the drag curve (grey dots in figure 8d) deviates significantly
from the reference data at all s+. The large deviation from the drag curve of similar riblets
supports the assumption that a virtual origin far above the riblet crest is unphysical.

We further show a fully rough asymptote for reference in figure 8(d), even though riblets
do not experience pressure drag, which is generally considered a prerequisite for fully
rough behaviour. Riblets appear to approach fully rough behaviour (Jiménez 2004), but,
as discussed by Gatti et al. (2020), only for a finite range of large s+ before the drag curve
departs from the fully rough asymptote. The same trend can be discerned in the present
data, although at higher s+ for the sharper geometry (α = 30◦ instead of α = 53.5◦).
Furthermore in § 3.5 we see that the friction-scaled velocity at the crest, which would be
constant in the fully rough regime, instead continues to increase with increasing s+. Direct
numerical simulation values of ΔU+ in figure 8(d) agree well with the experiments, within
the expected uncertainties.

3.4. Spectral shortcut linking damped large scales and altered mean profile
The reduced large-scale energy (§ 3.1) extends into the logarithmic layer (z � (0.1–0.2)δ′99
and at least z � zt + 4k), but riblet-induced spanwise velocity variations are limited to
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z � zt + k (§ 3.2). In the following, we therefore hypothesise that the large-scale energy is
transferred to secondary motions close to the wall, where large flow structures laterally
scrape the riblets. We then propose that this reorganisation of turbulence could be
associated with the unusually low κ ≈ 0.3 (§ 3.3).

3.4.1. Spectral shortcut mechanism
The energy carried by dispersive Reynolds shear stresses increases with increasing s+
(figure 6b), which correlates with both the energy reduction around λx ≈ 5δ′99 (figures 3,
4) and the reduction of κ (figure 8b). However, the dispersive fluctuations of secondary
flows cannot be measured by a single probe and, therefore, cannot be discerned from
the spectra in figure 3. We nevertheless hypothesise that the reduction of large-scale
streamwise energy by riblets compared with smooth-wall flow in experiments (discussed
in § 3.1) is the result of a spectral shortcut as described by Finnigan (2000, figure 14) for
wake production in plant canopies: Following Goldstein & Tuan (1998), the interaction
of large flow structures (λy � s) with riblets induces smaller flow structures of spanwise
size λy = s, which appear as secondary motions in the time average and enhance
cross-flow fluctuations in the roughness sublayer. Therefore, even without streamwise
pressure drag that could damp the large-scale motions, riblets transfer energy directly
from large-scale streamwise fluctuations to s-scaled Reynolds stresses of secondary flows.
This accumulation of energy in the dispersive component at λy = s is demonstrated, for
example, by the cross-plane streamfunction contours in figure 7, that scale with the riblet
spacing for all groove sizes. The interplay between turbulent and secondary motions is
further supported by the study of Modesti et al. (2021), who decompose the drag change
ΔU+ and show that riblet surfaces with a large drag penalty due to secondary flows have
a relatively low drag penalty due to purely turbulent velocity fluctuations and vice versa.

Zampiron, Cameron & Nikora (2021) describe a similar mechanism for the generation
of secondary flows by triangular streamwise ridges. They decompose the stress balance
equation for particle image velocimetry data and conclude that secondary flows extract
energy from cross-flow velocity fluctuations, which in turn receive energy from turbulent
streamwise fluctuations. Furthermore, the near-wall large-scale motions in the sandpaper
study (isotropic roughness) of Squire et al. (2016b) are much less damped than over
our riblets (figure 4), suggesting that anisotropic roughness elements (with some defined
direction, like riblets) strengthen secondary motions. A clearer picture will have to
await high-Reynolds-number measurements of secondary motions in the wall-parallel or
cross-stream plane above riblets.

3.4.2. Spectral shortcut at DNS-resolved scales
The present hot-wire experiments resolve long enough flow structures to reveal a reduction
of energy at scales λ+x ≈10 000–50 000 (figure 3e,f ) that exceed typical numerical
domains. However, some of the flow structures that interact with sufficiently large riblets
to create secondary flows belong to the near-wall cycle (λ+x ≈ 1000 and λy � s) and are
resolved by both hot-wire measurements and DNS. Consequently, the energy reduction
relative to smooth-wall flow observed in experiments (figure 4) is also evident at the largest
scales resolved in the present DNS (λ+x � 2000, table 2).

In figure 9 we subtract spectra from the DNS over a smooth wall from those over
large riblets at matched heights above the virtual origin (�t = k/2). Blue contours
in figure 9(a,c) indicate a reduction of streamwise velocity fluctuations by riblets at
super-riblet scales (i.e. larger-than-riblet scales) λy � 2s, and red contours indicate an
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Figure 9. Premultiplied energy difference to smooth-wall flow k+
x k+

y (E
+ − E+

smooth) above large riblets
with s+ = 100, 150. Streamwise velocity fluctuations in (a,c,e) and Reynolds shear stress in (b,d,f ).
Two-dimensional spectra in (a–d) are at z − zt = 0.1s. Contour levels range from blue (negative) to red
(positive) between the limits k+

x k+
y (E

+
uu − E+

uu,smooth) = ±0.22 in steps of 0.04 (a,c) and k+
x k+

y (−E+
uw +

E+
uw,smooth) = ±0.09 in steps of 0.02 (b,d). The three integration regions for (e,f ) are sub-riblet scales at λy � s

and λx < ∞, super-riblet (larger-than-riblet) scales at λy � 2s and the dispersive component at λx = ∞ and
λy = s including smaller scale harmonics. The threshold 2s is chosen for the super-riblet scales to only select
the largest flow structures in the domain and avoid including energy at λy ≈ s that spills into adjacent modes.

increase of energy at sub-riblet scales λy � s. Figure 9(e) shows profiles of the integrated
energy difference for the super-riblet scales, the sub-riblet scales and for the dispersive
component. The solid lines for super-riblet scales in figure 9(e) are below zero, indicating
large-scale energy reduction in DNS that is qualitatively the same as that seen in the
hot-wire profiles (dotted smooth-wall profiles are above the solid riblet profiles in figure 4).
In both data sets, energy of super-riblet scales is reduced at heights of at least z − zt � 2s
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or, equivalently, z − zb � 2.5s = 5k. This extent is much greater than that of the dispersive
fluctuations, which are also shown in figure 9(e).

3.4.3. Spectral shortcut affects the mean velocity
In DNS the energy reduction is likewise visible in Reynolds shear stresses (figure 9b,d,f ).
Large riblets reorganise some of the super-riblet-scale Reynolds shear stress to the
dispersive component discussed in § 3.2 and shown again in figure 9(f ), which only
extends to heights z � zt + 0.5s. Figure 9(f ) therefore suggests that the spectral shortcut
created by large riblets reorganises the turbulence by reducing super-riblet-scale Reynolds
shear stresses at z � zt + 2s and increasing dispersive shear stresses closer to the wall
at z � zt + 0.5s. Although not measured in experiments, we can assume based on DNS
that the largest s+ riblets, shown in figure 4(a), reorganise Reynolds shear stress from
super-riblet scales at z/δ′99 = 0.1 in the logarithmic layer to dispersive stresses of s-scaled
secondary flows below the logarithmic layer. The net reduction of Reynolds shear stress in
the logarithmic layer is relatively small, but nevertheless accompanied by a clear increase
of local dU+/dz+ or, correspondingly, a reduction of κ as observed in figure 8. Such a
connection between damped large-scale energy and reduced κ is likewise demonstrated in
numerical experiments by Jiménez (2022), in which the longest streaks in channel flow are
artificially damped.

The even larger flow structures around λx ≈ 5δ′99 in figure 3 are also damped by the
spectral shortcut that acts on super-riblet scales, but they might not affect dU+/dz+,
because such large flow structures do not contribute significantly to Reynolds shear stress
at heights in the logarithmic layer z  λx (Baidya et al. 2017; Kwon & Jiménez 2021) and
are therefore ordinarily considered inactive at those heights (Townsend 1976).

3.5. Scaling of the crest velocity
Significant turbulence in the groove of riblets with s+ � 60 (figures 3, 7) suggests that
a substantial part of the velocity deficit ΔU+ is incurred below the riblet crest. In this
section we therefore model the mean velocity at the riblet crest to crudely estimate the
drag change ΔU+(s+) for a given riblet shape.

3.5.1. Turbulence inside very large grooves
The flow in the groove of small drag-reducing riblets is dominated by viscosity, but
the wall at the bottom of very large grooves creates a secondary peak of sustained u
fluctuations inside the groove, which we capture in spectra of both DNS and hot wire
(figure 3e). The secondary peak at λ+x ≈ 1000 and (z − zb)/k ≈ 0.18 in the DNS, i.e. about
13 wall units above the groove bottom, suggests the formation of a nascent near-wall
cycle inside the groove with s+ � 100, which is also partially visible for s+ = 63 in
figure 3(c). The emergence of a nascent near-wall cycle inside the groove of single-scale
trapezoidal riblets with s+ � 100 agrees with the spanwise extent required to sustain
near-wall turbulence in numerical experiments of narrow but doubly periodic smooth-wall
channels (Jiménez & Moin 1991), even though the riblet grooves with no-slip side walls
further constrain the flow. The half-height riblet in figure 7(j) displaces turbulence upwards
in the groove compared with the single-scale riblets with the same spacing in figure 7(d)
and presumably delays the formation of secondary near-wall turbulence to s+ � 200.
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Figure 10. (a) Sketch of turbulent mixing in the groove of large riblets. (b) Streamwise velocity at the height
of the riblet tips shown for the single-scale trapezoidal riblets, Aw/Ap = 1.77 and for the two-scale riblets
Aw/Ap = 2.15 (the additional riblet increases the wetted area by a factor of 1.22). Solid lines show the laminar
crest velocity for the two riblet shapes (as described by Modesti et al. 2021). Dashed lines are the power laws
as labelled.

3.5.2. Phenomenological model for the crest velocity
In the following, we propose a phenomenological power law for the mean streamwise
velocity at the height of the riblet tips ū+

t ∝ Ap/Aw(s+)1/4, where the total wall plan area is
Ap and the wetted area Aw. Figure 10(b) shows that the power law is consistent with values
from our DNS for riblets with s+ � 60 and it therefore appears to capture the relevant flow
physics in large riblet grooves.

Similar, but distinctly different scaling laws have been developed for roughness by
Brutsaert (1975) and for superhydrophobic surfaces by Seo & Mani (2016), among others.
Seo & Mani (2016) developed a 1/3-power law for the slip velocity of superhydrophobic
surfaces with no-slip posts. They assume that a Prandtl–Blasius laminar-like boundary
layer forms on each of the no-slip sections, which are spaced apart in the streamwise
direction. This assumption is, of course, not valid for streamwise uniform riblets. The
surface-renewal arguments of Brutsaert (1975) are developed for roughness, where
temporarily stagnant eddies form in between the roughness elements. Here, diffusion
limits the transport of a scalar from the stagnant eddies to the surface. Streamwise uniform
riblets do not create such regions of stagnant flow, but viscous diffusion still limits the
transport of momentum from the convecting eddies to the surface, an idea we use below.

For large riblet grooves, we envision an incipient turbulent Richardson–Kolmogorov
cascade that mixes the momentum vigorously, except in the viscous sublayer enveloping
the wetted wall. The well-mixed flow is assumed to have a velocity 〈u〉 = ū(z)+ ũ( y, z) ≈
ūt that is uniform everywhere in the groove except in the wetted viscous boundary layer.
In this unobstructed spectral region, the Kolmogorov cascade passes energy from size s
to the dissipation length η ≡ (ν3/ε)1/4, where ε = Ku3

τ /s is the dissipation rate of s-sized
structures, with a constant K of O(1). We assume Cη to scale the thickness of the viscous
layer inside the groove with another constant C of O(1) (sketched in figure 10a). With the
velocity varying linearly inside the viscous layer, we can express the surface-perpendicular
gradient by ūt/(Cη). The drag is thus

D
ρ

= Awν〈∂u
∂n

〉w ≈ Awν
ūt

Cη
= Awν

ūt

C

(
ν3

Ku3
τ /s

)−1/4

, (3.1)
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where 〈 · 〉w = A−1
w

∫
w( · ) dS averages over the riblet wall and n is locally normal to the

surface. The wall-shear stress τw/ρ = D/(ρAp) ≡ u2
τ and, therefore, to within an O(1)

constant,

u2
τ ∝ Aw

Ap
νūt

(
u3
τ

sν3

)1/4

⇒ ū+
t ∝ Ap

Aw
(s+)1/4. (3.2)

Figure 10(b) shows that the crest velocity of the largest of our riblets indeed follows
this trend, whereas the Stokes prediction for the crest velocity holds for smaller (s+ �
30) riblets, ū+

t = �+u ∝ s+, where �u is the streamwise protrusion height (Bechert &
Bartenwerfer 1989; Luchini et al. 1991).

The crest velocity is only marginally affected by the secondary half-height riblet inside
the groove at the present riblet sizes (figure 10b). For small sizes, the flow in the groove
is dominated by viscosity and the secondary riblet has no noticeable effect on turbulence
in the groove. In this regime, the 1/4-power law does not apply and the difference in
Aw between the two surfaces does not significantly affect ūt. At large riblet sizes with
turbulence in the groove, the secondary riblet affects flow structures up to a height well
above the riblet crest, where dispersive stresses in figure 6 are reduced compared with
the single-scale riblets with the same spacing. The crest velocity, however, only captures
the reorganisation of turbulent flow inside the groove. Therefore, even at s+ = 63 of our
largest two-scale riblets, the crest velocity does not yet reflect the geometry differences. At
much greater riblet sizes, we would expect the half-sized additional riblets to reduce the
crest velocity in proportion to the increased Aw in (3.2).

3.5.3. Approximating ΔU+
For very small riblets (s+ ∼ 0), the roughness function is approximately constant from
the crest upwards, as outlined by García-Mayoral et al. (2019) following the slip-lengths
argument by Luchini (1996). Therefore, the crest (slip) velocity, along with the position of
the virtual origin, describes the drag change ΔU+ relative to a smooth wall (Ibrahim et al.
2021). For larger riblets, the drag change inferred at the crest is not an accurate measure, in
part because the outer layers of the flow above the larger riblets studied here are not similar
to smooth-wall flow. Furthermore, Gatti et al. 2020 do not observe fully rough behaviour,
where the skin-friction coefficient would be independent of the Reynolds number. The
present data also show a departure from the solid straight line in figure 8(d).

Nevertheless, we crudely estimate ΔU+ ≈ U+
t,Smooth − ū+

t based on the velocity ū+
t ≈

a(Ap/Aw)(s+)1/4 at the crest of large riblets (s+ � 60), with an empirical constant a.
For the present trapezoidal riblets, a(Ap/Aw) ≈ 2.7 (figure 10b). The corresponding
smooth-wall velocity at the height of the riblet crest is U+

t,Smooth ≈ ln(�+t )/0.4 + 5.1 if
�t � 12 as for our large riblets (table 2, assuming �t = k/2). The approximation

ΔU+(s+) ≈ ln(�+t )/0.4 + 5.1 − a(Ap/Aw)(s+)1/4, where s+ � 60, (3.3)

neglects variations in the roughness function above the crest and, therefore, overestimates
ΔU+ for our DNS cases by [1.63, 0.95, 0.54] at s+ = [63, 100, 150] and for the hot-wire
cases by [1.87, 1.24, 0.98, 0.71] at s+ = [67, 102, 132, 165]. Being valid for very large
riblets, the approximation (3.3) approaches the value measured at z+

c (DNS) or 0.1δ′99 (hot
wire) as the riblet size increases.
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4. Drag-curve scaling for imperfectly repeated riblets

García-Mayoral & Jiménez (2011b) show that drag curves of single-scale riblets collapse
reasonably well when the riblet size is expressed by the square root of the groove
cross-sectional area �+g . However, imperfectly manufactured riblets have a different drag
curve and the riblet size of optimal drag reduction can generally not be estimated reliably
based on the nominal riblet shape. The present two-scale trapezoidal riblets can be thought
of as an idealised example of imperfectly repeated riblets, for which every other riblet is
smaller than designed. If we compare the single-scale and two-scale riblets by matching s+
(measured for the two-scale riblets between two of the perfectly repeated and in this case
larger riblets), the additional half-height riblet reduces dispersive stresses and, therefore,
drag (figure 6b). For a fair comparison, however, we have to use a suitable length scale for
the two-scale (imperfectly manufactured) riblets.

The empirically derived riblet size �+g scales drag curves of single-scale riblets, because
it is linearly proportional to the hydraulic (penetration) length �+H given by García-Mayoral
& Jiménez (2011b) and García-Mayoral et al. (2019), which is a physics-based measure
of the riblet size that accounts for the exact groove geometry. Curiously, �+H scales all
drag curves despite being derived based on a Kelvin–Helmholtz-like instability that was
later shown to only affect a subset of the riblet geometries (Endrikat et al. 2021a). The
hydraulic length �H can be readily found for any two-dimensional riblet shape, including
our two-scale riblets, by solving a Poisson equation in the cross-section of the riblet groove
between the wall (subscript w) and the height of the riblet tips (subscript t),

�3
H = 1

s

∫
Ag

f dA, where ∇2
yzf = −1 with

df
dz

∣∣∣∣
t
= 0, and f |w = 0. (4.1)

García-Mayoral & Jiménez (2011b) suggest that the wall-normal gradient of f should
vanish at the height of the riblet tips (for not too shallow grooves) and that the no-slip
boundary condition of velocity applies to f at the wall. We solve the same equation to
find �H in the groove of our single-scale and two-scale riblets as well as the single-scale
and two-scale (‘brother-and-sister’) blade riblets investigated by Bruse et al. (1993). For
the two-scale surfaces, we consider the larger riblets to define the spacing s and groove
size �+g . The drag curves are shown in figure 11. Drag curves for different surfaces are
closer together when we use �+H to characterise the riblet size (figure 11b) than with s+ or
�+g (figure 11a,c), based on the reduced size of the grey enveloping area. For the two-scale
riblets, �+H is only poorly approximated by �+g , suggesting that the square root of the groove
area between the larger riblets, �+g , does not characterise the drag regimes of two-scale
riblets.

We propose a different geometric generalization of �H for two-scale riblets,

�2
g,i (k1/k) =

{
Ag − (0.5Ag)(k1/k) if k1 � k,
Ag − (0.5Ag)(k1/k)−1 if k1 > k,

(4.2)

which depends on the ratio of the two riblet heights k1/k. As for the single scale �g = √
Ag,

we first need to calculate the groove cross-sectional area Ag, which is also a function only
of k1/k once the riblet size (e.g. s or k) is set. The fluid-filled groove area of the trapezoidal
riblets is shaded in figure 12(c–f ) and can be calculated by subtracting the area of the two

952 A27-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.897


S. Endrikat and others

s+

–1.2

–0.8

–0.4

0

0.4

0.8

�
U

+

2.8�+
H

–1.2

–0.8

–0.4

0

0.4

0.8

�g
+

–1.2

–0.8

–0.4

0

0.4

0.8

�
U

+

0 5 10 15 20 25 30 35 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

�+
g,i

–1.2

–0.8

–0.4

0

0.4

0.8

(a) (b)

(c) (d )

(Bruse et al. 1993)

Figure 11. Drag curves for trapezoidal riblets (DNS, table 2) and blade riblets (from experiments by Bruse
et al. 1993) with fixed s/k = 2. Experimental data are converted to ΔU+ at a matched bulk-flow Reynolds
number between the smooth and riblet wall and have heights k1/s = {0, 0.2, 0.25, 0.3}. Each panel shows a
different measure of the riblet size: (a) the (large) riblet spacing s+, (b) the physics-based length �+H from (4.1)
as suggested by García-Mayoral & Jiménez (2011b), (c) the square root of the whole groove cross-sectional
area, (d) the geometrical length �+g,i from (4.2).

solid-filled triangular regions from the entire rectangular area below the crest, i.e.

Ag = s × max(k, k1)− k2 tan(α/2)− k2
1 tan(α/2) or (4.3)

Ag/k2 = (s/k)× max(1, k1/k)− tan(α/2)− (k1/k)2 tan(α/2), (4.4)

if normalised by the main riblet height k. The ratio s/k = 2 and the tip angle α = 30◦ are
fixed for the present riblets. The normalised groove area Ag/k2 is therefore only a function
of k1/k. Similarly for the two-scale blade riblets from Bruse et al. (1993) with s/k = 2 and
a thickness-to-spacing ratio t/s = 0.01,

Ag = s × max(k, k1)− (t/s)sk − (t/s)sk1 or (4.5)

Ag/k2 = (s/k)× max(1, k1/k)− (t/s)(s/k)− (t/s)(s/k)(k1/k), (4.6)

if normalised by the main riblet height k. To define the two-scale riblet size �g,i in (4.2), we
linearly interpolate between the two extreme cases where the height of the smaller riblet
is either k1 = 0 or k1 = k. Figure 12 shows both �g and �g,i as a function of k1/k and the
groove area Ag is shaded in figure 12(c–f ). If k1 = 0 as in figure 12(c), �2

g,i = Ag is the
same as �2

g. However, if the secondary riblets have the same height k1 = k as the main
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Figure 12. Three definitions of the riblet size expressed relative to the spacing for trapezoidal riblets (a) and
blade riblets (b). The main riblet has height k = 0.5s and the additional riblet has the varying height k1. The
size of the whole groove Ag is shaded in the (c–f ) and defines �g ≡ √

Ag as suggested by García-Mayoral &
Jiménez (2011b) for single-scale riblets. The interpolated size of two-scale riblets �g,i from (4.2) is closely
proportional to the hydraulic length �H (markers) from (4.1). Insets in (a,b) show f of (4.1).

riblets, only half of the shaded area in figure 12(e) should be considered and �2
g,i = 0.5Ag.

For heights k1 � k in between, we linearly interpolate the area �2
g,i = Ag − (0.5Ag)(k1/k)

as in the first row of (4.2). We therefore consider less than the groove area Ag shaded in
figure 12(d) to define the riblet size �g,i. If k1 > k as in figure 12(f ), the riblet spacing
is related to the smaller riblet, because we maintain s = 2k /= 2k1. Therefore, �g,i/s from
(4.2) is asymmetric with respect to k1/k = 1 (figure 12a).

Using the newly defined �+g,i to describe the groove size of two-scale riblets, drag curves
in figure 11(d) collapse as they do when shown against �+H (figure 11b), i.e. the grey
area enveloping the drag curves is almost identical. The curves for two-scale trapezoidal
and blade riblets closely match their single-scale counterparts for post-drag-breakdown
sizes and into the drag-increasing regime, i.e. for �+g,i � 20. The ratio �+g,i/�

+
H ≈ 2.7 for

the two-scale trapezoidal and blade riblets (markers in figure 12a,b), which is close to
the ratio �+g /�

+
H ≈ 2.8 observed by García-Mayoral & Jiménez (2011b) for single-scale

riblets. Describing the size of two-scale riblets by the empirical fit �+g,i therefore seems to
capture their drag characteristics, because it is closely proportional to the hydraulic scale
�+H . Conveniently, �+g,i is a geometrical length found without having to solve the Poisson
equation (4.1).

Seeing as �H scales the drag curves of single-scale riblets (García-Mayoral &
Jiménez 2011b) and also of two-scale trapezoidal and blade riblets (figure 11b), we
can assume that �H , or the proportional �g,i, would likewise scale other imperfectly
repeated riblets, because the Poisson equation (4.1) accounts for the exact geometry. For
example, trapezoidal riblets with nominally equal height (k1 = k) have �g,i/s = 0.428 in
figure 12(a), but a surface with some k1 < k and some k1 > k would have an average �g,i/s
that is larger. For the trapezoidal riblets, �g,i/s can be calculated for any ratio k1/k by
substituting (4.4) with k = 0.5s into (4.2). As an example of manufacturing inaccuracies,
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we consider a hypothetical surface with the two-scale trapezoidal riblets for which every
other riblet k1 is normal distributed with average k1 = k and most k1 ∈ [0.7, 1.3]k (two
standard deviations equal 0.3k), which is loosely based on the geometry measurements by
Tiainen et al. (2020). With that distribution of k1/k, the average �g,i/s = 0.468 is roughly
9 % greater than �g,i/s = 0.428 for the perfectly manufactured surface with all k1 = k. The
imperfections therefore shift the surface to the right along the drag curve in figure 11(d).
If the spacing s in physical units (μm) was chosen to reach the optimum at, for example,

�+g,i = 11 < �+g,i for given flow conditions, then the imperfect surface should be scaled
down by �g,i/�g,i to achieve optimal drag reduction.

In general, calculating a few representative values of �g,i/s for an imperfectly
manufactured riblet surface would approximate the average �g,i/s, which can then be
used to account for surface imperfections by adjusting the riblet size. While this approach
approximates the riblet size of optimal drag reduction, the actually achieved drag reduction
at that size remains unknown and could only be found in laboratory experiments or DNS
of imperfectly manufactured riblets with sufficiently many riblet periods across the span
to attain statistical convergence.

5. Conclusions

We generated hot-wire and DNS data sets of flow over riblets of matched trapezoidal
geometry for roughly the same range of spacings s+ and observed close agreement of the
near-wall flow. The riblet sizes are very large, such that most surfaces increase drag.

The present hot-wire measurements above large riblets show a reduction of large-scale
energy around λx ≈ 5δ′99 in the spectrum of purely turbulent streamwise velocity
fluctuations (fluctuations about the local temporal mean) relative to smooth-wall flow at
a matched Reynolds number (figures 3, 4). We hypothesise that the large-scale energy is
reduced when long flow structures laterally scrape large riblets and transfer energy directly
to smaller secondary flows of size λy ≈ s, which have previously been identified in the
time average (Goldstein & Tuan 1998; Modesti et al. 2021). A similar spectral shortcut
was proposed by Finnigan (2000, figure 14) for wake production in plant canopies.

The reduction of large-scale energy extends into the logarithmic layer of the largest
s+ case (z � (0.1–0.2)δ′99 and at least z � zt + 4k in figure 4a), but spanwise variations
of the mean velocity in hot-wire measurements (figure 5) and secondary mean flows in
DNS (figures 6, 7) are limited to heights z � zt + k. The present DNS further demonstrate
that the large-scale energy reduction also applies to Reynolds shear stress (figure 9f ). The
hypothesised spectral shortcut therefore reorganises some Reynolds shear stresses from
large flow structures in the logarithmic layer to secondary flows closer to the wall, below
the logarithmic layer. This small net reduction of Reynolds shear stress in the logarithmic
layer agrees with observations that the present large riblets modify the mean velocity
even in the statistically spanwise uniform logarithmic layer. Specifically, we observe an
increase of the logarithmic slope of the mean velocity profile in the logarithmic region,
or equivalently, a decrease of the von Kármán constant κ from about 0.4 to about 0.3
for riblets with s+ � 60 (figure 8). The apparent value of κ is affected by the choice
of virtual origin, but nevertheless in the range 0.26 � κ � 0.34 for origins between the
groove bottom and crest of the largest riblet case. Forcing κ = 0.4, as commonly done in
hot-wire boundary-layer experiments, requires the virtual origin to be about 0.7k above the
riblet crest, which would be unusual and probably unrealistic. The friction velocity, which
generally also affects the apparent value of κ , is fixed by drag-balance measurements in
the present experiments.
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The altered mean velocity profile questions the usefulness of ΔU+ to characterise
the drag change by trapezoidal riblets with s+ � 60. Nevertheless, the conservatively
estimated uncertainty in ΔU+ introduced by the z dependency of the roughness function
in the logarithmic layer is only about 1 even for our largest case with s+ ≈ 165 (figure 8c).
We also show that ΔU+ as a function of s+ � 60 can be crudely estimated based on
the velocity at the height of the riblet crest (figure 10) as ΔU+ ≈ ln(�+t )/0.4 + 5.1 −
a(Ap/Aw)(s+)1/4, where we assume a virtual origin with �t = k/2 and a(Ap/Aw) ≈ 2.7
for the present trapezoidal riblets.

The addition of secondary half-height riblets in the groove prevents some turbulence
from entering the groove and, thus, reduces drag at matched s+. However, a new
generalization of the hydraulic length �H (proposed by García-Mayoral & Jiménez (2011b)
for single-scale riblets) collapses the drag curves of single-scale and two-scale trapezoidal
riblets, demonstrating that the drag optimum is almost unaffected by the half-height
riblet inside the groove. The two-scale riblets therefore illustrate that the drag curves
of imperfectly repeated riblets can be scaled by �H (or by the roughly proportional �g,i)
to determine the optimal size for given flow conditions if representative measurements
of the true geometry are available. In a hypothetical example of realistic manufacturing
inaccuracies, riblets would need to be scaled down by 9 % to restore optimal drag
reduction.
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Appendix. Effects of potential measurement errors

The active part of the hot wire is nominally 0.5 mm long and positioned in the middle
between two riblets with spacing s = 2.73 mm (§ 2.1). The probe therefore averages the
flow in the spanwise direction across a distance of 0.18s. In this appendix we use the
spatially resolved DNS data set to estimate the effects of probe misalignment within the
riblet groove.

Figure 13(a,b) shows the effect of changing the length of the active part of the hot-wire
probe on the mean streamwise velocity U+ and its fluctuations u′+, for a range of riblet
sizes from the DNS data set. Doubling the probe length (width of the averaging area) only
has minor effects on the measured profiles for both the mean and fluctuations. The most
significant differences occur for the fluctuations above the largest riblets with s+ = 150,
particularly for the profile at the spanwise location above the riblet (blue, starting at the
crest). Here, a wider probe measures lower fluctuation energy as u′ is highest at the riblet
crest and reduces along the spanwise direction towards the centre of the groove.
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Figure 13. Estimating the effect of hot-wire probe errors based on DNS profiles of the mean streamwise
velocity U+ and the root-mean-square value u′(z). (a,b) Influence of probe width for two spanwise positions
evaluated in DNS data. The wide probe spans 0.36s (dashed) and the narrow probe spans 0.18s (solid). Red
profiles starting at the bottom are taken in the centre of the groove (centre at y = 0.5s) and blue profiles starting
at the crest are taken above the riblets (centre at y = s). (c,d) Influence of the spanwise probe location for a fixed
probe width of 0.18s. Fluctuations in (b,d) are shifted upwards by multiples of 0.5uτ to improve readability,
but u′(z = zb) = 0 as per the boundary condition.

A spanwise misalignment of the probe from its nominal position at y = 0.5s is simulated
in figure 13(c,d). Aligning the probe centre at an extreme y = 0.3s (or y = 0.7s conversely)
reduces the mean velocity in the groove, because flow close to the no-slip groove side wall
enters the average. Fluctuations are reduced in the lower half of the groove and increased
around the riblet crest as the probe approaches the riblet laterally.

In summary, realistically expected spanwise misalignments of the probe and deviations
from the nominal probe length are likely to have only negligible effects on the measured
profiles of mean and fluctuating velocity. The alignment error in the wall-normal direction
is more relevant for measurement comparisons.

REFERENCES

BAIDYA, R., PHILIP, J., HUTCHINS, N., MONTY, J.P. & MARUSIC, I. 2017 Distance-from-the-wall scaling
of turbulent motions in wall-bounded flows. Phys. Fluids 29 (2), 020712.

BECHERT, D. & BARTENWERFER, M. 1989 The viscous flow on surfaces with longitudinal ribs. J. Fluid
Mech. 206, 105–129.

BECHERT, D., BRUSE, M., HAGE, W., VAN DER HOEVEN, J. & HOPPE, G. 1997 Experiments on
drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87.

952 A27-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.897


Turbulence over large and spanwise-varying riblets

BREUGEM, W.P., BOERSMA, B.J. & UITTENBOGAARD, R.E. 2006 The influence of wall permeability on
turbulent channel flow. J. Fluid Mech. 562, 35–72.

BRUSE, M., BECHERT, D.W., VON DER HOEVEN, J.G.T., HAGE, W. & HOPPE, G. 1993 Experiments with
conventional and with novel adjustable drag-reducing surfaces. In Proc. Intl Conf. Near-Wall Turbul. Flow
(ed. R.M.C. So & C.G. Speziale), pp. 719–738.

BRUTSAERT, W. 1975 A theory for local evaporation (or heat transfer) from rough and smooth surfaces at
ground level. Water Resour. Res. 11 (4), 543–550.

CHAN, L., MACDONALD, M., CHUNG, D., HUTCHINS, N. & OOI, A. 2018 Secondary motion in turbulent
pipe flow with three-dimensional roughness. J. Fluid Mech. 854, 5–33.

CHANDRAN, D., BAIDYA, R., MONTY, J.P. & MARUSIC, I. 2017 Two-dimensional energy spectra in
high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 826, R1.

CHAVARIN, A. & LUHAR, M. 2019 Resolvent analysis for turbulent channel flow with riblets. AIAA J. 58 (2),
589–599.

CHOI, H., MOIN, P. & KIM, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech.
255, 503–539.

CHU, D.C. & KARNIADAKIS, G.E. 1993 A direct numerical simulation of laminar and turbulent flow over
riblet-mounted surfaces. J. Fluid Mech. 250, 1–42.

CHUNG, D., CHAN, L., MACDONALD, M., HUTCHINS, N. & OOI, A. 2015 A fast direct numerical
simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431.

CHUNG, D., HUTCHINS, N., SCHULTZ, M.P. & FLACK, K.A. 2021 Predicting the drag of rough surfaces.
Annu. Rev. Fluid Mech. 53, 439–471.

CLAUSER, F.H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 1–51.
ENDRIKAT, S., MODESTI, D., GARCÍA-MAYORAL, R., HUTCHINS, N. & CHUNG, D. 2021a Influence of

riblet shapes on the occurrence of Kelvin–Helmholtz rollers. J. Fluid Mech. 913, A37.
ENDRIKAT, S., MODESTI, D., MACDONALD, M., GARCÍA-MAYORAL, R., HUTCHINS, N. & CHUNG, D.

2021b Direct numerical simulations of turbulent flow over various riblet shapes in minimal-span channels.
Flow Turbul. Combust. 107, 1–29.

FINNIGAN, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519–571.
FLACK, K.A. & SCHULTZ, M.P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26

(10), 101305.
FLORES, O. & JIMÉNEZ, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22

(7), 071704.
GARCÍA-MAYORAL, R., GÓMEZ-DE-SEGURA, G. & FAIRHALL, C.T. 2019 The control of near-wall

turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.
GARCÍA-MAYORAL, R. & JIMÉNEZ, J. 2011a Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369

(1940), 1412–1427.
GARCÍA-MAYORAL, R. & JIMÉNEZ, J. 2011b Hydrodynamic stability and breakdown of the viscous regime

over riblets. J. Fluid Mech. 678, 317–347.
GATTI, D., VON DEYN, L., FOROOGHI, P. & FROHNAPFEL, B. 2020 Do riblets exhibit fully rough

behaviour? Exp. Fluids 61, 81.
GOLDSTEIN, D. & TUAN, T.C. 1998 Secondary flow induced by riblets. J. Fluid Mech. 363, 115–151.
GRIMMOND, C.S.B. & OKE, T.R. 1999 Aerodynamic properties of urban areas derived from analysis of

surface form. J. Appl. Meteorol. 38 (9), 1262–1292.
HAM, F., MATTSSON, K. & IACCARINO, G. 2006 Accurate and stable finite volume operators for unstructured

flow solvers. In Center for Turbulence Research, Stanford University/NASA AMES, Annual Research Briefs
(ed. P. Moin & N.N. Mansour), pp. 243–261. Stanford University

HAM, F., MATTSSON, K., IACCARINO, G. & MOIN, P. 2007 Towards time-stable and accurate LES on
unstructured grids. In Complex Effects in Large Eddy Simulations (ed. S.C. Kassinos, C.A. Langer,
G. Iaccarino & P. Moin), pp. 235–249. Springer.

HAMA, F.R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Soc. Nav. Archit. Mar. Engrs
62, 333–358.

HARUN, Z., MONTY, J.P., MATHIS, R. & MARUSIC, I. 2013 Pressure gradient effects on the large-scale
structure of turbulent boundary layers. J. Fluid Mech. 715, 477–498.

HUTCHINS, N. & MARUSIC, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond.
A 365 (1852), 647–664.

HUTCHINS, N., NICKELS, T.B., MARUSIC, I. & CHONG, M.S. 2009 Hot-wire spatial resolution issues in
wall-bounded turbulence. J. Fluid Mech. 635, 103–136.

HWANG, H.G. & LEE, J.H. 2018 Secondary flows in turbulent boundary layers over longitudinal surface
roughness. Phys. Rev. Fluids 3, 014608.

952 A27-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.897


S. Endrikat and others

HWANG, Y. 2013 Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723,
264–288.

IBRAHIM, J.I., GÓMEZ-DE-SEGURA, G., CHUNG, D. & GARCÍA-MAYORAL, R. 2021 The smooth-wall-like
behaviour of turbulence over drag-altering surfaces: a unifying virtual-origin framework. J. Fluid Mech.
915, A56.

JIMÉNEZ, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196.
JIMÉNEZ, J. 2022 The streaks of wall-bounded turbulence need not be long. J. Fluid Mech., 945, R3.
JIMÉNEZ, J. & MOIN, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–

240.
KAAKKUNEN, J., TIAINEN, J., JAATINEN-VÄRRI, A., GRÖNMAN, A. & LOHTANDER, M. 2018 Fabrication

of surfaces with reduced friction using nanosecond laser. Procedia Manuf. 17, 14–21.
KROGSTAD, P.-Å. & EFROS, V. 2010 Rough wall skin friction measurements using a high resolution surface

balance. Intl J. Heat Fluid Flow 31 (3), 429–433.
KROGSTAD, P.-Å. & EFROS, V. 2012 About turbulence statistics in the outer part of a boundary layer

developing over two-dimensional surface roughness. Phys. Fluids 24 (7), 075112.
KROGSTADT, P.-Å. & ANTONIA, R.A. 1999 Surface roughness effects in turbulent boundary layers. Exp.

Fluids 27 (5), 450–460.
KWON, Y. & JIMÉNEZ, J. 2021 An isolated logarithmic layer. J. Fluid Mech. 916, A35.
LEE, S.-H. & SUNG, H.J. 2007 Direct numerical simulation of the turbulent boundary layer over a

rod-roughened wall. J. Fluid Mech. 584, 125–146.
LEE, S.J. & LEE, S.H. 2001 Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids

30 (2), 153–166.
LIGRANI, P.M. & BRADSHAW, P. 1987 Spatial resolution and measurement of turbulence in the viscous

sublayer using subminiature hot-wires probes. Exp. Fluids 5, 407–417.
LUCHINI, P. 1996 Reducing the turbulent skin friction. Comput. Meth. Appl. Sci. 3, 466–470.
LUCHINI, P., MANZO, F. & POZZI, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow.

J. Fluid Mech. 228, 87–109.
MACDONALD, M., CHUNG, D., HUTCHINS, N., CHAN, L., OOI, A. & GARCÍA-MAYORAL, R. 2017 The

minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 5–42.
MACDONALD, M., OOI, A., GARCÍA-MAYORAL, R., HUTCHINS, N. & CHUNG, D. 2018 Direct numerical

simulation of high aspect ratio spanwise–aligned bars. J. Fluid Mech. 843, 125–155.
MANES, C., POGGI, D. & RIDOLFI, L. 2011 Turbulent boundary layers over permeable walls: scaling and

near-wall structure. J. Fluid Mech. 687, 141–170.
MARUSIC, I., CHAUHAN, K.A., KULANDAIVELU, V. & HUTCHINS, N. 2015 Evolution of

zero-pressure-gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379–411.
MODESTI, D., ENDRIKAT, S., HUTCHINS, N. & CHUNG, D. 2021 Dispersive stresses in turbulent flow over

riblets. J. Fluid Mech. 917, A55.
MONTY, J.P., HARUN, Z. & MARUSIC, I. 2011 A parametric study of adverse pressure gradient turbulent

boundary layers. Intl J. Heat Fluid Flow 32 (3), 575–585.
NAGIB, H. & CHAUHAN, K. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20,

101518.
NAPOLI, E., ARMENIO, V. & DE MARCHIS, M. 2008 The effect of the slope of irregularly distributed

roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385–394.
NEWTON, R., CHUNG, D. & HUTCHINS, N. 2018 An experimental investigation into the breakdown of riblet

drag reduction at post-optimal conditions. In 21st Australasian Fluid Mechanics Conference.
NUGROHO, B., MONTY, J.P., UTAMA, I.K.A.P., GANAPATHISUBRAMANI, B. & HUTCHINS, N. 2021

Non-k-type behaviour of roughness when in-plane wavelength approaches the boundary layer thickness.
J. Fluid Mech. 911, A1.

POKRAJAC, D., FINNIGAN, J., MANES, C., MCEWAN, I. & NIKORA, V. 2006 On the definition of the shear
velocity in rough bed open channel flows. River Flow 1, 89–98.

RAMANI, A., NUGROHO, B., BUSSE, A., MONTY, J.P., HUTCHINS, N. & JELLY, T.O. 2020 The effects
of anisotropic surface roughness on turbulent boundary-layer flow. In 22nd Australasian Fluid Mechanics
Conference, 7-10 Dec 2020, Brisbane, Australia.
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