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Abstract
A conic bundle is a contraction 𝑋 → 𝑍 between normal varieties of relative dimension 1 such that −𝐾𝑋 is relatively
ample. We prove a conjecture of Shokurov that predicts that if 𝑋 → 𝑍 is a conic bundle such that X has canonical sin-
gularities and Z isQ-Gorenstein, then Z is always 1

2 -lc, and the multiplicities of the fibres over codimension 1 points
are bounded from above by 2. Both values 1

2 and 2 are sharp. This is achieved by solving a more general conjecture
of Shokurov on singularities of bases of lc-trivial fibrations of relative dimension 1 with canonical singularities.
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1. Introduction

We work over the field of complex numbers C.
A Q-conic bundle is a proper morphism 𝑋 → 𝑍 from a 3-fold with only terminal singularities to

a normal surface such that all fibres are connected and 1-dimensional, and −𝐾𝑋 is relatively ample
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over Z. A conjecture of Iskovskikh predicts that the base surface Z has only canonical singularities, or
equivalently Z is 1-lc. This conjecture has important applications to the rationality problem of conic
bundles [21]. Mori and Prokhorov proved Iskovskikh’s conjecture by showing that Z has only Du Val
singularities of type A and giving a complete local classification ofQ-conic bundles over a singular base
in [30, 31].

Motivated by Iskovskikh’s conjecture, it is natural to study the singularities of the base surface Z
when X has worse singularities: for example, canonical singularities. Such a contraction also appears
naturally in the birational classification of 3-dimensional algebraic varieties. Indeed when 𝜌(𝑋/𝑍) = 1,
it is one of the three possible outcomes of the minimal model program for canonical 3-folds of negative
Kodaira dimension. However, Z may no longer be 1-lc for such contractions. Shokurov conjectured that
Z is always 1

2 -lc, and the value 1
2 is optimal (see Remark 1.2). More generally, Shokurov’s conjecture is

expected to hold for conic bundles with canonical singularities in all dimensions.

Conjecture 1.1 (Shokurov, compare [38, 34]). Let 𝜋 : 𝑋 → 𝑍 be a contraction between normal varieties
such that

1. dim 𝑋 − dim 𝑍 = 1,
2. X is canonical,
3. 𝐾𝑍 is Q-Cartier, and
4. −𝐾𝑋 is ample over Z.

Then Z is 1
2 -lc.

Remark 1.2. 1. In Conjecture 1.1, the assumption in (4) can be replaced by ‘−𝐾𝑋 is nef and big over
Z’, which can be reduced to Conjecture 1.1 by taking the anti-canonical model over Z.

2. In a private communication, Prokhorov shared his expectation that Z should be 1
2 -klt in Conjecture

1.1 motivated by [34, Example 10.6.1]. However, this is not always the case if dim 𝑋 ≥ 3; see
Example 1.3.

Example 1.3 (compare [34, Example 10.6.1]). Consider the following action of μ4𝑚 on P1
𝑥 × C

2
𝑢,𝑣 :

(𝑥; 𝑢, 𝑣) ↦→ (−𝑥; 𝜉𝑢, 𝜉2𝑚−1𝑣),

where m is a positive integer and 𝜉 is a primitive 4𝑚th root of unity. Let 𝑋 = (P1×C2)/μ4𝑚, 𝑍 = C2/μ4𝑚
and 𝜋 : 𝑋 → 𝑍 the natural projection. Since μ4𝑚 acts freely in codimension 1, −𝐾𝑋 is 𝜋-ample. Note
that Z has an isolated cyclic quotient singularity of type 1

4𝑚 (1, 2𝑚 − 1) at the origin 𝑜 ∈ 𝑍 , and
mld(𝑍 � 𝑜) = 1

2 (see [4] for the computation of minimal log discrepancies of toric varieties). On the
other hand, X is covered by 2 open affine charts (𝑥 ≠ 0) and (𝑥 ≠ ∞), and each chart is isomorphic
to the affine toric variety C3/ 1

4𝑚 (2𝑚, 1, 2𝑚 − 1), which is canonical (see [36, Theorem (4.11)]) and
Gorenstein. Note that in this case, 𝜌(𝑋/𝑍) = 1 and the singular locus of X is the whole fibre 𝜋−1 (𝑜),
which is 1-dimensional. It is not clear yet whether there are such examples where X has isolated canonical
singularities.

The main purpose of this paper is to give an affirmative answer to Shokurov’s conjecture.

Theorem 1.4. Conjecture 1.1 holds.

Theorem 1.4 follows from a more general result; see Theorem 1.7. In order to state the result, we
recall some background. Let 𝜋 : (𝑋, 𝐵) → 𝑍 be an lc-trivial fibration (see Definition 2.12: for example,
𝜋 : 𝑋 → 𝑍 is a contraction between normal varieties, and (𝑋, 𝐵) is an lc pair with 𝐾𝑋 + 𝐵 ∼R,𝑍 0). By
the work of Kawamata [24, 25] and Ambro [3], we have the so-called canonical bundle formula

𝐾𝑋 + 𝐵 ∼R 𝜋∗(𝐾𝑍 + 𝐵𝑍 + 𝑀𝑍 ),
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where 𝐵𝑍 is the discriminant part and 𝑀𝑍 is the moduli part; see Section 2.4 for more details. For
inductive purposes, it is useful and important to study the relation between singularities of (𝑋, 𝐵)
and those of (𝑍, 𝐵𝑍 + 𝑀𝑍 ). In this context, Shokurov proposed the following conjecture. Recall that
mld(𝑋/𝑍 � 𝑧, 𝐵) is the infimum of all the log discrepancies of prime divisors over X whose image on
Z is 𝑧 (see Definition 2.5).
Conjecture 1.5 (Shokurov, compare [2, Conjecture 1.2]). Let d be a positive integer and 𝜖 a positive
real number. Then there is a positive real number 𝛿 = 𝛿(𝑑, 𝜖) depending only on 𝑑, 𝜖 satisfying the
following. Let 𝜋 : (𝑋, 𝐵) → 𝑍 be an lc-trivial fibration and 𝑧 ∈ 𝑍 a point of codimension ≥ 1 such that

1. dim 𝑋 − dim 𝑍 = 𝑑,
2. mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 𝜖 , and
3. the generic fibre of 𝜋 is of Fano type.

Then we can choose 𝑀𝑍 ≥ 0 representing the moduli part such that (𝑍 � 𝑧, 𝐵𝑍 + 𝑀𝑍 ) is 𝛿-lc.
Remark 1.6. 1. The formulation of Conjecture 1.5 here is stronger than that in the previous literature

[2, 5], where a stronger assumption (2’) that ‘(𝑋, 𝐵) is an 𝜖-lc pair’ is required instead of the
assumption in (2), and 𝛿 depends on dim 𝑋 and 𝜖 instead of just dim 𝑋 − dim 𝑍 and 𝜖 . In our
formulation, B can be non-effective and (𝑋, 𝐵) can have non-klt centers over 𝑍 \ {𝑧}.

2. Birkar [5] proved Conjecture 1.5 under assumption (2’) for the following cases: (a) (𝐹, 𝐵 |𝐹 ) belongs
to a bounded family, where F is a general fibre of 𝜋, or (b) dim 𝑋 = dim 𝑍 + 1. Hence, under
assumption (2’), Conjecture 1.5 holds when the coefficients of 𝐵 |𝐹 are bounded from below away
from zero as a consequence of the Borisov–Alexeev–Borisov conjecture proved by Birkar [7, 8]. Very
recently, Birkar and Y. Chen [10] proved Conjecture 1.5 under assumption (2’) for toric morphisms
between toric varieties. We refer the reader to [6, Theorems 1.9 and 2.5] for more related results.

3. Following ideas in [5], it is indicated by [11, Proposition 7.6] (see [13, Theorem 1.10] for an
embryonic form) that Conjecture 1.5 might be a consequence of Shokurov’s 𝜖-lc complements
conjecture. Moreover, following the proof of [5, Corollary 1.7], [11, Theorem 1.3] implies that
Conjecture 1.5 holds for dim 𝑋 = dim 𝑍 + 1.

4. It is worthwhile to mention that Conjecture 1.5 implies McKernan’s conjecture on Mori fibre spaces
[2, Conjecture 1.1], which is closely related to Iskovskikh’s conjecture. Alexeev and Borisov [2]
proved McKernan’s conjecture for toric morphisms between toric varieties.
Our second main result gives the optimal value of 𝛿(1, 𝜖) = 𝜖 − 1

2 for any 𝜖 ≥ 1.
Theorem 1.7. Let 𝜋 : (𝑋, 𝐵) → 𝑍 be an lc-trivial fibration and 𝑧 ∈ 𝑍 a codimension ≥ 1 point such that
1. dim 𝑋 − dim 𝑍 = 1, the geometric generic fibre of 𝜋 is a rational curve, and
2. mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 1.
Then we can choose 𝑀𝑍 ≥ 0 representing the moduli part such that

mld(𝑍 � 𝑧, 𝐵𝑍 + 𝑀𝑍 ) ≥ mld(𝑋/𝑍 � 𝑧, 𝐵) −
1
2
≥

1
2

.

The lower bound in Theorem 1.7 is optimal by Example 4.1.
As a corollary, we have the following global version of Theorem 1.7 with less technical notation

involved.

Corollary 1.8. Let (𝑋, 𝐵) be a pair and 𝜋 : 𝑋 → 𝑍 a contraction between normal varieties such that

1. dim 𝑋 − dim 𝑍 = 1,
2. (𝑋, 𝐵) is canonical and B has no vertical irreducible component over Z,
3. 𝐾𝑋 + 𝐵 ∼R,𝑍 0, and
4. X is of Fano type over Z.

Then we can choose 𝑀𝑍 ≥ 0 representing the moduli part such that (𝑍, 𝐵𝑍 + 𝑀𝑍 ) is 1
2 -lc.
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Remark 1.9. 1. We remark that if dim 𝑋−dim 𝑍 = 1, then exceptional divisors over X cannot dominate
Z, so the assumption in (2) in Corollary 1.8 is equivalent to the assumption that mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 1
for any codimension ≥ 1 point 𝑧 ∈ 𝑍 .

2. Note that 1
2 is the maximal accumulation point of the set of minimal log discrepancies in dimension 2

(see [1, Corollary 3.4], [37]). Thus it would be interesting if one could give a new proof of Iskovskikh’s
conjecture by applying Theorems 1.4 and 1.7 without using the classification of terminal singularities
in dimension 3. In fact, we can apply Corollary 1.8 to show that in the setting of Iskovskikh’s
conjecture, Z is 1

2 -klt; see Corollary 4.5. Recall that in order to prove Iskovskikh’s conjecture, it
suffices to show that Z is 2

3 -klt (see [22, Lemma 5.1]), but our method could not achieve this. The
reason is that in Corollary 4.5, there is no assumption on dim 𝑋 , but Prokhorov provides us with
Example 4.7 showing that Corollary 4.5 cannot be improved if dim 𝑋 ≥ 4.

Theorem 1.7 is a consequence of the following result, which gives a lower bound of certain log canon-
ical thresholds for lc-trivial fibrations. We refer the reader to [11, Problem 7.18] for more discussions.

Theorem 1.10 (compare [38, Conjecture]). Let 𝜋 : (𝑋, 𝐵) → 𝑍 be an lc-trivial fibration and 𝑧 ∈ 𝑍 a
codimension 1 point such that

1. dim 𝑋 − dim 𝑍 = 1, the geometric generic fibre of 𝜋 is a rational curve, and
2. mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 1.

Then

lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) ≥ mld(𝑋/𝑍 � 𝑧, 𝐵) −
1
2
≥

1
2

.

In particular, if B is effective, then the multiplicity of each irreducible component of 𝜋−1(𝑧) is bounded
from above by 2.

The bounds in Theorem 1.10 are optimal by Example 4.1.
Y. Chen informed us that together with Birkar, they also got the lower bound 1

2 in Theorem 1.10
for toric morphisms between toric varieties in an earlier version of [10]. As a related result, when
dim 𝑋 − dim 𝑍 = 2, Mori and Prokhorov [32] showed that any 3-dimensional terminal del Pezzo
fibration has no fibres of multiplicity > 6.

It turns out that Theorem 1.10 can be reduced to a local problem on estimating the lower bound of
the log canonical threshold of a smooth curve with respect to a canonical pair on a smooth surface germ;
see Corollary 3.12. Here, we prove a general result as it might have broader applications in other topics
in birational geometry (compare [28, Corollary 6.46]).

Theorem 1.11. Let (𝑋 � 𝑃, 𝐵) be a germ of surface pair such that X is smooth and mult𝑃 𝐵 ≤ 1.
Let C be a smooth curve at P such that 𝐶 � Supp(𝐵). Set mult𝑃 𝐵 = 𝑚, (𝐵 · 𝐶)𝑃 = 𝐼. Then
lct(𝑋 � 𝑃, 𝐵; 𝐶) ≥ min{1, 1 + 𝑚

𝐼 − 𝑚}.

Example 3.10 shows that the lower bound in Theorem 1.11 is optimal (even in the case when Supp 𝐵
is irreducible). It would be interesting to get an optimal lower bound of lct(𝑋 � 𝑃, 𝐵; 𝐶) if we do not
assume that C is smooth in Theorem 1.11, as it might be related to alpha invariants; see [23, Lemmas
3.1, 3.2] for an attempt in this direction.

It would also be interesting to ask the following question.

Question 1.12. When dim 𝑋 = 3, can one give a complete local classification of the extremal case in
Conjecture 1.1 when Z is strictly 1

2 -lc? Or, more generally, can one give a complete local classification
in Conjecture 1.1 when Z is singular?

(Sketch of proofs.). By applying [35, Theorem 8.1], we may reduce Theorem 1.7 to Theorem 1.10. Here,
the sub-pair setting plays a key role, since it makes this reduction step simpler than that of the pair setting
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(compare [5, Lemma 3.4, Proposition 3.5]), and it enables us to treat the case mld(𝑋/𝑍 � 𝑧, 𝐵) > 1.
On the other hand, the sub-pair setting causes new technical difficulties in the proof of Theorem 1.10.
By taking hyperplane sections of the base Z, we may reduce Theorem 1.10 to the case dim 𝑋 = 2. By an
MMP argument, we may reduce Theorem 1.10 to the case when 𝑋 → 𝑍 is a P1-bundle and 𝐵 ≥ 0, so
the problem is reduced to a special case of Theorem 1.11 when mult𝑃 𝐵 ≤ 1 and (𝐵 · 𝐶)𝑃 ≤ 2. Since
the conditions mult𝑃 𝐵 ≤ 1 and (𝐵 · 𝐶)𝑃 ≤ 2 do not behave well under blow-ups, one may encounter
difficulties in applying the ideas in [1, 11, 18], which deal with the minimal log discrepancies for
surfaces. The key idea is to consider 𝑋 , the completion of X along P, and decompose B into irreducible
components on 𝑋 . By using the log canonical threshold polytope and applying the convexity of log
canonical thresholds carefully, we may reduce Theorem 1.11 to the case when Supp(𝐵) is irreducible
on 𝑋 . Here, recall that lct(𝑋 � 𝑃, 𝐵; 𝐶) = lct(𝑋 � 𝑃, 𝐵; 𝐶). Finally, for this last case, following the
ideas in [29], we may give a lower bound of lct(𝑋 � 𝑃, 𝐵; 𝐶) by using the first pair of Puiseux exponents
of B. The proof of Theorem 1.11 is provided in Section 3, and the proofs of other main results in this
paper are provided in Section 4.

2. Preliminaries

In this section, we collect basic definitions and results. We adopt the standard notation and definitions
in [27] and [9]. Recall that we work over the complex number field.

2.1. Divisors

Let K be either the rational number field Q or the real number field R. Let X be a normal variety. A
K-divisor is a finite K-linear combination 𝐷 =

∑
𝑑𝑖𝐷𝑖 of prime Weil divisors 𝐷𝑖 , and 𝑑𝑖 denotes the

coefficient of 𝐷𝑖 in D. A K-Cartier divisor is a K-linear combination of Cartier divisors.
We use ∼K to denote the K-linear equivalence between K-divisors. For a projective morphism

𝑋 → 𝑍 , we use ∼K,𝑍 to denote the relativeK-linear equivalence and ≡𝑍 to denote the relative numerical
equivalence.

Definition 2.1 (compare [35]). Let X be a normal variety. Consider an infinite linear combination
D :=

∑
𝐷 𝑑𝐷𝐷, where 𝑑𝐷 ∈ K and the infinite sum runs over all divisorial valuations of the function

field of X. For any birational model Y of X, the trace of D on Y is defined by D𝑌 :=
∑

codim𝑌𝐷=1 𝑑𝐷𝐷.
Such a D is called a b-K-divisor (or b-divisor for short when the base field is clear) if on each birational
model Y of X, the trace D𝑌 is a K-divisor, or equivalently, D𝑌 is a finite sum. If 𝑑𝐷 ≠ 0 in D for some
D, D is called a birational component of D.

Let D be a K-Cartier divisor on X. The Cartier closure of D is the b-K-divisor 𝐷 whose trace on
every birational model 𝑓 : 𝑌 → 𝑋 is 𝑓 ∗𝐷.

A b-K-divisor D is said to be b-semi-ample if there is a birational model 𝑋 ′ over X such that D𝑋 ′ is
K-Cartier and semi-ample, and D = D𝑋 ′ .

2.2. Pairs and singularities

Definition 2.2. Let 𝜋 : 𝑋 → 𝑍 be a morphism between varieties. We say that 𝜋 : 𝑋 → 𝑍 is a contraction
if 𝜋 is projective and 𝜋∗O𝑋 = O𝑍 . In particular, 𝜋 is surjective and has connected fibres.

Definition 2.3. Let 𝜋 : 𝑋 → 𝑍 be a contraction between normal varieties. For a prime divisor E on X, E
is said to be horizontal over Z if E dominates Z, and E is said to be vertical over Z if E does not dominate
Z. An R-divisor on X is said to be vertical over Z if all its irreducible components are vertical over Z.

Definition 2.4 (compare [11, Definition 3.2]). A sub-pair (𝑋, 𝐵) consists of a normal variety X and an
R-divisor B on X such that 𝐾𝑋 + 𝐵 is R-Cartier. We say that (𝑋, 𝐵) is a pair if (𝑋, 𝐵) is a sub-pair and
B is effective.
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A (relative) sub-pair (𝑋/𝑍 � 𝑧, 𝐵) consists of normal varieties 𝑋, 𝑍 , a contraction 𝜋 : 𝑋 → 𝑍 ,
a scheme-theoretic point 𝑧 ∈ 𝑍 and an R-divisor B on X such that 𝐾𝑋 + 𝐵 is R-Cartier over an open
neighbourhood of z and dim 𝑧 < dim 𝑋 . We say that (𝑋/𝑍 � 𝑧, 𝐵) is a (relative) pair if (𝑋/𝑍 � 𝑧, 𝐵) is
a sub-pair and B is effective. We say that a pair (𝑋/𝑍 � 𝑧, 𝐵) is a germ near z if z is a closed point. When
𝑍 = 𝑋 , 𝑧 = 𝑥 and 𝜋 is the identity map, we will use (𝑋 � 𝑥, 𝐵) instead of (𝑋/𝑍 � 𝑧, 𝐵) for simplicity.
When 𝐵 = 0, we will use X or 𝑋/𝑍 � 𝑧 instead of (𝑋, 0) or (𝑋/𝑍 � 𝑧, 0) for simplicity.

Definition 2.5. Let (𝑋/𝑍 � 𝑧, 𝐵) be a sub-pair with contraction 𝜋 : 𝑋 → 𝑍 and E a prime divisor over
X. Let 𝜙 : 𝑌 → 𝑋 be a proper birational morphism such that E is a divisor on Y and write 𝐾𝑌 + 𝐵𝑌 =
𝜙∗(𝐾𝑋 +𝐵). The log discrepancy of E with respect to (𝑋, 𝐵) is defined to be 𝑎(𝐸, 𝑋, 𝐵) := 1−mult𝐸 𝐵𝑌 ,
which is independent of the choice of Y.

Set

𝔇(𝑋/𝑍 � 𝑧) := {𝐸 | 𝐸 is a prime divisor over 𝑋, 𝜋(center𝑋 (𝐸)) = 𝑧}.

The minimal log discrepancy of (𝑋/𝑍 � 𝑧, 𝐵) is defined to be

mld(𝑋/𝑍 � 𝑧, 𝐵) := inf{𝑎(𝐸, 𝑋, 𝐵) | 𝐸 ∈ 𝔇(𝑋/𝑍 � 𝑧)}.

By [11, Lemma 3.5], the infimum is a minimum if (𝑋/𝑍 � 𝑧, 𝐵) is an lc sub-pair, and it can be
computed on a log resolution 𝜙 : 𝑌 → (𝑋, 𝐵), where Supp(𝜙−1(𝜋−1 (𝑧))) + 𝜙−1

∗ Supp(𝐵) + Exc(𝜙) is a
simple normal crossing divisor.

When 𝑋 = 𝑍 , 𝑧 = 𝑥, and 𝜋 is the identity map, we use mld(𝑋 � 𝑥, 𝐵) instead of mld(𝑋/𝑍 � 𝑧, 𝐵)
for simplicity.

Example 2.6. We emphasise that our definition of mld(𝑋/𝑍 � 𝑧, 𝐵) requires that 𝜋(center𝑋 (𝐸)) = 𝑧,
so it only reflects the singularities in a neighbourhood of z. For example, if 𝑋 = 𝑍 = P2, 𝐵 = 𝐿1 + 𝐿2,
𝐵′ = 1

2 𝐿1 + 2𝐿2, where 𝐿1, 𝐿2 are 2 distinct lines. Then

mld(𝑋/𝑍 � 𝑧, 𝐵) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 𝑧 ∉ 𝐿1 ∪ 𝐿2;
1 if 𝑧 ∈ 𝐿1 ∪ 𝐿2 \ 𝐿1 ∩ 𝐿2;
0 if 𝑧 ∈ 𝐿1 ∩ 𝐿2,

and

mld(𝑋/𝑍 � 𝑧, 𝐵′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 𝑧 ∉ 𝐿1 ∪ 𝐿2;
3
2 if 𝑧 ∈ 𝐿1 \ 𝐿1 ∩ 𝐿2;
−∞ if 𝑧 ∈ 𝐿2.

Definition 2.7. Fix a non-negative real number 𝜖 . We say that the sub-pair (𝑋/𝑍 � 𝑧, 𝐵) is 𝜖-lc
(respectively, 𝜖-klt, klt, lc) if mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 𝜖 (respectively, > 𝜖 , > 0, ≥ 0).

We say that (𝑋, 𝐵) is 𝜖-lc (respectively, 𝜖-klt, klt, lc) if (𝑋 � 𝑥, 𝐵) is so for any codimension ≥ 1
point 𝑥 ∈ 𝑋; we say that (𝑋, 𝐵) is canonical (respectively, terminal) if 𝑎(𝐸, 𝑋, 𝐵) ≥ 1 (respectively,
𝑎(𝐸, 𝑋, 𝐵) > 1) for any exceptional prime divisor E over X. These coincide with the usual definitions
(compare [27, Definition 2.34]).

The following lemma is well-known to experts, saying that being lc over 𝑧 ∈ 𝑍 is an open condition.

Lemma 2.8. Let (𝑋/𝑍 � 𝑧, 𝐵) be a sub-pair with contraction 𝜋 : 𝑋 → 𝑍 , and fix a log resolution
𝑓 : 𝑌 → (𝑋, 𝐵) such that 𝑓 −1

∗ Supp 𝐵 + 𝑓 −1𝜋−1(𝑧) is a simple normal crossing divisor, and write
𝐾𝑌 + 𝐵𝑌 = 𝑓 ∗(𝐾𝑋 + 𝐵). The following are equivalent:

1. (𝑋/𝑍 � 𝑧, 𝐵) is lc.
2. For any prime divisor E on Y with 𝜋( 𝑓 (𝐸)) � 𝑧, mult𝐸 𝐵𝑌 ≤ 1.
3. There exists an open neighbourhood U of 𝑧 ∈ 𝑍 such that (𝜋−1 (𝑈), 𝐵 |𝜋−1 (𝑈 ) ) is lc.
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Proof. By definition, (3) implies (2). By direct computations ([27, Corollary 2.31]), if (2) holds for the
given log resolution Y, it holds for any log resolution. Thus (2) implies (3). It is obvious that (3) implies
(1). It suffices to show that (1) implies (2).

Suppose that sub-pair (𝑋/𝑍 � 𝑧, 𝐵) is lc. Assume to the contrary that there exists a prime divisor E
such that mult𝐸 𝐵𝑌 > 1 and 𝐸 ∩ 𝑓 −1𝜋−1(𝑧) ≠ ∅. Then by successively blowing up some components
of the closure of 𝐸 ∩ 𝑓 −1𝜋−1 (𝑧) several times, we can replace Y by a higher model such that there
exists a prime divisor 𝐸 ′ on Y with 𝜋( 𝑓 (𝐸 ′)) = 𝑧 and mult𝐸′ 𝐵𝑌 > 1 (compare [27, Corollary 2.31]),
a contradiction. To be more precise, suppose that there exists a prime divisor D in 𝑓 −1𝜋−1 (𝑧), which
maps to 𝑧 such that 𝐷 ∩ 𝐸 ≠ ∅, and suppose mult𝐷 𝐵𝑌 = 𝑑 and mult𝐸 𝐵𝑌 = 𝑒 > 1; then we can blow
up 𝐷 ∩ 𝐸 to get a new log resolution 𝑓 ′ : 𝑌 ′ → 𝑋 with 𝐾𝑌 ′ + 𝐵𝑌 ′ = 𝑓 ′∗ (𝐾𝑋 + 𝐵) such that there exists
a prime divisor in 𝐷 ′ ∩ 𝑓 ′−1𝜋−1 (𝑧), which maps to 𝑧 with mult𝐷′ 𝐵𝑌 ′ = 𝑑 + 𝑒 − 1. So, inductively, we
can replace Y by a higher model to find the required 𝐸 ′. �

Definition 2.9. A non-klt place of a sub-pair (𝑋, 𝐵) (respectively, (𝑋/𝑍 � 𝑧, 𝐵)) is a prime divisor E
over X (respectively, 𝐸 ∈ 𝔇(𝑋/𝑍 � 𝑧)) such that 𝑎(𝐸, 𝑋, 𝐵) ≤ 0, and a non-klt center is the center of a
non-klt place on X.

2.3. Log canonical thresholds

Definition 2.10. Let (𝑋/𝑍 � 𝑧, 𝐵) be an lc sub-pair with contraction 𝜋 : 𝑋 → 𝑍 , and let 𝐷 ≠ 0 be an
effective R-Cartier R-divisor on X such that 𝑧 ∈ 𝜋(Supp(𝐷)). The log canonical threshold of D with
respect to (𝑋/𝑍 � 𝑧, 𝐵) is

lct(𝑋/𝑍 � 𝑧, 𝐵; 𝐷) := sup{𝑡 ∈ R | (𝑋/𝑍 � 𝑧, 𝐵 + 𝑡𝐷) is lc}.

When 𝑧 ∈ 𝑍 is a codimension 1 point, we may assume that 𝑧 is a Cartier divisor on a neighbourhood
U of 𝑧 ∈ 𝑍 . Then we define

lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) := sup{𝑡 ∈ R | (𝑋/𝑍 � 𝑧, 𝐵 + 𝑡𝜋∗𝑧) is lc over 𝑈},

and this definition does not depend on the choice of the neighbourhood U of 𝑧 ∈ 𝑍 .

We may write lct(𝑋/𝑍 � 𝑧; 𝐷) := lct(𝑋/𝑍 � 𝑧, 0; 𝐷) when 𝐵 = 0. When 𝑋 = 𝑍 , 𝑧 = 𝑥 and 𝜋 is the
identity map, we may write lct(𝑋 � 𝑥, 𝐵; 𝐷) := lct(𝑋/𝑍 � 𝑧, 𝐵; 𝐷).

Remark 2.11 ([26]). Keep the same setting as in Definition 2.10. Log canonical thresholds can be
computed by a log resolution. In fact, take 𝑔 : 𝑋 ′ → 𝑋 to be a log resolution of (𝑋, 𝐵 + 𝐷), and write
𝐾𝑋 ′ + 𝐵′ = 𝑔∗(𝐾𝑋 + 𝐵). Then

lct(𝑋/𝑍 � 𝑧, 𝐵; 𝐷) = min
𝐸

1 − mult𝐸 (𝐵′)

mult𝐸 𝑔∗𝐷
,

where the minimum runs over all prime divisors 𝐸 ⊆ Supp(𝑔∗𝐷) such that 𝜋(𝑔(𝐸)) � 𝑧 (compare
Lemma 2.8(3)).

2.4. Canonical bundle formula

The discrepancy b-divisor A = A(𝑋, 𝐵) of a sub-pair (𝑋, 𝐵) is the b-divisor of X with the trace A𝑌

defined by the formula

A𝑌 = 𝐾𝑌 − 𝑓 ∗(𝐾𝑋 + 𝐵),

for any proper birational morphism 𝑓 : 𝑌 → 𝑋 between normal varieties. Similarly, we define A∗ =
A∗(𝑋, 𝐵) by A∗

𝑌 =
∑

𝑎𝑖>−1 𝑎𝑖𝐸𝑖 for any proper birational morphism 𝑓 : 𝑌 → 𝑋 between normal
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varieties, where A𝑌 =
∑

𝑎𝑖𝐸𝑖 . Note that A∗(𝑋, 𝐵) = A(𝑋, 𝐵) if and only if (𝑋, 𝐵) is klt. See [14, 2.3]
for more details.
Definition 2.12 (compare [14, Definition 3.2], [20, Definition 3.1]). An lc-trivial fibration 𝜋 : (𝑋, 𝐵) →
𝑍 consists of a contraction 𝜋 : 𝑋 → 𝑍 between normal varieties and a sub-pair (𝑋, 𝐵) satisfying the
following properties:
1. (𝑋, 𝐵) is lc over the generic point of Z,
2. rank 𝜋∗O𝑋 (�A∗(𝑋, 𝐵)�) = 1, and
3. there exists an R-Cartier R-divisor L on Z such that 𝐾𝑋 + 𝐵 ∼R 𝜋∗𝐿.

Remark 2.13. Here, we discuss more details about the condition in (2). If B is effective on the generic
fibre of 𝜋, then O𝑋 (�A∗(𝑋, 𝐵)�) = O𝑋 over the generic point of Z, so in this case the condition in (2)
holds. Conversely, if the geometric generic fibre of 𝜋 is a rational curve, then rank 𝜋∗O𝑋 (�A∗(𝑋, 𝐵)�) = 1
implies that B is effective on the generic fibre of 𝜋.

Let 𝜋 : (𝑋, 𝐵) → 𝑍 be an lc-trivial fibration. Then we may write 𝐾𝑋 + 𝐵 ∼R 𝜋∗𝐿 for some R-Cartier
R-divisor L. By the work of Kawamata [24, 25] and Ambro [3] (see [20, Section 3] for R-divisors), we
have the so-called canonical bundle formula

𝐾𝑋 + 𝐵 ∼R 𝜋∗(𝐾𝑍 + 𝐵𝑍 + 𝑀𝑍 ),

where 𝐵𝑍 is defined by

𝐵𝑍 :=
∑
𝑃

(1 − lct(𝑋/𝑍 � 𝜂𝑃 , 𝐵; 𝜋∗𝑃))𝑃 (2.1)

and

𝑀𝑍 := 𝐿 − 𝐾𝑍 − 𝐵𝑍 . (2.2)

Here, the sum runs over all prime divisors P on Z, 𝜂𝑃 is the generic point of P and it is known that it is a
finite sum. So 𝐵𝑍 is uniquely determined by (𝑋, 𝐵), and 𝑀𝑍 is determined up to R-linear equivalence.
Here, 𝐵𝑍 is called the discriminant part and 𝑀𝑍 is called the moduli part of the canonical bundle
formula. Recall that if B is effective, then 𝐵𝑍 is also effective.

In the following, we suppose that B is aQ-divisor for simplicity. In fact, the canonical bundle formula
satisfies certain functorial properties as follows. By [35, Remark 7.7] or [14, 3.4], there are b-divisors
B and M of Z such that
◦ B𝑍 = 𝐵𝑍 , M𝑍 = 𝑀𝑍 , and
◦ for any birational contraction 𝑔 : 𝑍 ′ → 𝑍 , let 𝑋 ′ be a resolution of the main component of 𝑋 ×𝑍 𝑍 ′

with induced morphisms 𝑔′ : 𝑋 ′ → 𝑋 and 𝜋′ : 𝑋 ′ → 𝑍 ′. Let 𝐾𝑋 ′ + 𝐵′ be the crepant pull back of
𝐾𝑋 + 𝐵—that is, 𝐾𝑋 ′ + 𝐵′ = 𝑔′∗ (𝐾𝑋 + 𝐵)—then B𝑍 ′ (respectively, M𝑍 ′) is the discriminant part
(respectively, the moduli part) of the canonical bundle formula of 𝐾𝑋 ′ + 𝐵′ on 𝑍 ′ defined by
equations (2.1) and (2.2):

𝑋 ′

𝜋′

��

𝑔′ �� 𝑋

𝜋
��

𝑍 ′
𝑔

�� 𝑍.

The effective adjunction conjecture ([35, Conjecture 7.13]) predicts that M is b-semi-ample. It was
confirmed in the case of relative dimension 1.
Theorem 2.14 ([35, Theorem 8.1]). Keep the notation in this subsection. Assume that B is a Q-divisor.
If dim 𝑋 − dim 𝑍 = 1 and the geometric generic fibre of 𝜋 is a rational curve, then M is b-semi-ample.
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Remark 2.15. Note that [35, Theorem 8.1] holds for an lc-trivial fibration 𝜋 : (𝑋, 𝐵) → 𝑍 under two
additional assumptions:

1. B is effective over the generic point of Z [35, Assumption 7.1], and
2. there exists a Q-divisor Θ on X such that 𝐾𝑋 + Θ ∼Q,𝑍 0 and (𝑋,Θ) is klt over the generic point of

Z [35, Assumption 7.11].

Here, (i) is automatically satisfied by Remark 2.13. Also, (ii) is automatically satisfied by the following.
Since the generic fibre 𝑋𝜂 of 𝜋 is a rational curve, we can find an effective Q-divisor 𝐷𝜂 on 𝑋𝜂 such
that 𝐾𝑋𝜂 + 𝐷𝜂 ∼Q 0 and (𝑋𝜂 , 𝐷𝜂) is klt. Denote D to be the closure of 𝐷𝜂 on X; then 𝐾𝑋 + 𝐷 ∼Q 𝐸 ,
where E is vertical over Z. Then we just take Θ = 𝐷 − 𝐸 .

2.5. Contractions of Fano type

Definition 2.16 ([35]). Let 𝜋 : 𝑋 → 𝑍 be a contraction between normal varieties. We say that X is of
Fano type over Z if one of the following equivalent conditions holds:

1. there exists a klt pair (𝑋, 𝐵) such that −(𝐾𝑋 + 𝐵) is ample over Z;
2. there exists a klt pair (𝑋, 𝐵′) such that −(𝐾𝑋 + 𝐵′) is nef and big over Z;
3. there exists a klt pair (𝑋, 𝐵′′) such that 𝐾𝑋 + 𝐵′′ ≡𝑍 0 and 𝐵′′ is big over Z.

When Z is a point, we just say that X is of Fano type.

2.6. Formal surface germs

Let P be a smooth closed point on a surface X. By the Cohen structure theorem, Ô𝑋,𝑃 � ÔC2 ,𝑜 =
C[[𝑥, 𝑦]]. Denote by 𝑋𝑃 the completion of X along P. We will use 𝑋 instead of 𝑋𝑃 if P is clear from
the context.

We call 𝐶 a Cartier divisor on 𝑋 if 𝐶 is defined by (𝑔 = 0) for some 𝑔 ∈ Ô𝑋,𝑃 . We call 𝐵 an
R-divisor (respectively, a Q-divisor) on 𝑋 if 𝐵 =

∑
𝑖 𝑏𝑖𝐵𝑖 for some Cartier divisors 𝐵𝑖 on 𝑋 and 𝑏𝑖 ∈ R

(respectively 𝑏𝑖 ∈ Q).
Since the resolution of singularities is known for complete local rings ([39]), the definition of

singularities of pairs and log canonical thresholds can be extended to the formal case (see [26] and
[12]).

Definition 2.17. Let (𝑋 � 𝑃, 𝐵 =
∑

𝑖 𝑏𝑖𝐵𝑖) be an lc pair where 𝑃 ∈ 𝑋 is a smooth formal surface germ
and 𝐵𝑖 is defined by ( 𝑓𝑖 = 0) for some 𝑓𝑖 ∈ Ô𝑋,𝑥 . Let 𝐶 =

∑
𝑖 𝑐𝑖𝐶𝑖 ≠ 0 be an effective R-divisor, where

𝐶𝑖 is defined by (𝑔𝑖 = 0) for some 𝑔𝑖 ∈ Ô𝑋,𝑥 . Let 𝜙 : 𝑌 → (𝑋, 𝐵 + 𝐶) be a log resolution ([39]); then

lct(𝑋 � 𝑃, 𝐵; 𝐶) := min
𝐸

1 + mult𝐸 𝐾𝑌 /𝑋 −
∑

𝑖 𝑏𝑖 mult𝐸 ( 𝑓𝑖)∑
𝑖 𝑐𝑖 mult𝐸 (𝑔𝑖)

, (2.3)

where the minimum runs over all prime divisors E in Supp(𝜙∗𝐶) such that 𝑃 ∈ 𝜙(𝐸). The definition
does not depend on the choice of log resolutions. Here, mult𝐸 means the vanishing order of a function
along E or the coefficient of E in a divisor.

Remark 2.18. Let (𝑋 � 𝑃, 𝐵) be a germ of an lc surface pair such that 𝑃 ∈ 𝑋 is smooth, and let C
be an effective R-divisor near P. Consider 𝑋 (respectively 𝐵′, 𝐶 ′), the completion of X (respectively
𝐵, 𝐶) along P. Since a log resolution of (𝑋 � 𝑃, 𝐵 + 𝐶) also gives a log resolution of (𝑋, 𝐵′ + 𝐶 ′),
lct(𝑋 � 𝑃, 𝐵′; 𝐶 ′) = lct(𝑋 � 𝑃, 𝐵; 𝐶). In other words, in order to study the log canonical threshold of
a smooth surface germ (𝑋 � 𝑃, 𝐵), it is equivalent to study that of the corresponding smooth formal
surface germ (𝑋 � 𝑃, 𝐵′).

Recall that log canonical thresholds satisfy convexity with respect to the coefficients.

https://doi.org/10.1017/fms.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.32


10 Jingjun Han et al.

Lemma 2.19 (compare [16, Lemma 3.8]). Let 𝑃 ∈ 𝑋 be a smooth surface germ or a smooth formal
surface germ. Let (𝑋 � 𝑃, 𝐵𝑖) be an lc pair for 1 ≤ 𝑖 ≤ 𝑚, 𝐶 ≠ 0 an effective R-divisor on 𝑋 and 𝜆𝑖

non-negative real numbers such that
∑𝑚

𝑖=1 𝜆𝑖 = 1. Then

lct(𝑋 � 𝑃,
𝑚∑
𝑖=1

𝜆𝑖𝐵𝑖; 𝐶) ≥

𝑚∑
𝑖=1

𝜆𝑖 lct(𝑋 � 𝑃, 𝐵𝑖; 𝐶).

3. Log canonical thresholds on a smooth surface germ

In this section, we study the lower bounds of log canonical thresholds on a smooth surface germ. The
main goal of this section is to prove Theorem 1.11.

Recall the following result on computing log canonical thresholds of hypersurfaces.

Proposition 3.1 ([29, Proposition 2.1]). Let 𝐵 be a Cartier divisor in a neighbourhood of 𝑜 ∈ Ĉ𝑛

defined by ( 𝑓 = 0), where 𝑓 ∈ C[[𝑥1, . . . , 𝑥𝑛]]. Assign rational weights 𝑤(𝑥𝑖) to the variables, and let
𝑤( 𝑓 ) be the weighted multiplicity of f. Let

𝑓𝑤 := {sum of monomial terms appearing in 𝑓 whose 𝑤-weight are equal to 𝑤( 𝑓 )}

denote the weighted homogeneous leading term of f. Take 𝑏 =
∑𝑛

𝑖=1 𝑤 (𝑥𝑖)

𝑤 ( 𝑓 ) . If (Ĉ𝑛, 𝑏 · ( 𝑓𝑤 = 0)) is lc
outside o, then lct(Ĉ𝑛 � 𝑜; 𝐵) = 𝑏.

To warm up, the following proposition is an application of Proposition 3.1.

Proposition 3.2. Let 𝐵 be a Cartier divisor in a neighbourhood of 𝑜 ∈ Ĉ2 defined by ( 𝑓 = 0), where
𝑓 = 𝑥𝑛 (𝑥𝑚1 + 𝑦𝑚2 )𝑘 for some positive integers k, n, 𝑚1, 𝑚2. Then

lct(Ĉ2 � 𝑜; 𝐵) = min
{

𝑚1 + 𝑚2
𝑘𝑚1𝑚2 + 𝑛𝑚2

,
1
𝑛

,
1
𝑘

}
.

Proof. Consider 𝐶1 defined by (𝑥 = 0) and 𝐶2 defined by (𝑥𝑚1 + 𝑦𝑚2 = 0); then (𝐶1 · 𝐶2)𝑜 = 𝑚2.
Consider the weight 𝑤 = (𝑚2, 𝑚1); then 𝑓𝑤 = 𝑓 and 𝑏 = 𝑚1+𝑚2

𝑘𝑚1𝑚2+𝑛𝑚2
as in Proposition 3.1.

If 𝑏 ≤ min{ 1
𝑛 , 1

𝑘 }, then (Ĉ2, 𝑏 · ( 𝑓𝑤 = 0)) is lc outside o, and hence lct(Ĉ2 � 𝑜; 𝐵) = 𝑏 by Proposition
3.1. If 𝑏 > 1

𝑛 , then 𝑛 > 𝑘𝑚2. Then [27, Corollary 5.57] implies that (Ĉ2 � 𝑜, 𝐶1 +
𝑘
𝑛𝐶2) is lc. If 𝑏 > 1

𝑘 ,
then either 𝑚1 = 1 or 𝑚2 = 1. In either case, 𝐶2 is smooth and 𝑘 > 𝑛𝑚2. Then [27, Corollary 5.57]
implies that (Ĉ2 � 𝑜, 𝑛

𝑘𝐶1 + 𝐶2) is lc. �

Definition 3.3 (compare [29, Definition 2.10]). Let 𝐵 = ( 𝑓 = 0) be an irreducible curve in a neigh-
bourhood of 𝑜 ∈ Ĉ2. If B is smooth, then we set 𝑚 = 1 and 𝑛 = ∞. Otherwise, the Puiseux expansion of
B (under suitable local parameters 𝑥, 𝑦) is expressed as 𝑥 = 𝑡𝑚, 𝑦 =

∑∞
𝑖=𝑛 𝛼𝑖𝑡

𝑖 for some local parameter
t, where 𝑚, 𝑛 ∈ Z≥2, 𝑚 < 𝑛, and m does not divide n. Here, (𝑚, 𝑛) is called the first pair of Puiseux
exponents of f. Note that 𝑚 = mult𝑜 𝑓 is the multiplicity of f at 𝑜 ∈ Ĉ2.

Example 3.4. If 𝑛 > 𝑚 > 1 and 𝑚, 𝑛 are coprime, then the first pair of Puiseux exponents of 𝑓 = 𝑥𝑚+ 𝑦𝑛

is just (𝑚, 𝑛).

The close relation between the first pair of Puiseux exponents and log canonical thresholds can be
illustrated by the following result.

Theorem 3.5 ([29, Theorem 1.3]). Let 𝐵 be a Cartier divisor in a neighbourhood of 𝑜 ∈ Ĉ2 defined by
( 𝑓 = 0), where 𝑓 ∈ C[[𝑥, 𝑦]]. Write 𝑓 =

∏𝑟
𝑗=1 𝑓

𝛼𝑗

𝑗 , where each 𝑓 𝑗 is irreducible. Write 𝐵 =
∑

𝑗 𝛼 𝑗𝐵 𝑗 ,
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where 𝐵 𝑗 is defined by ( 𝑓 𝑗 = 0). Then lct(Ĉ2 � 𝑜; 𝐵) depends only on the first pairs of Puiseux exponents
of 𝑓 𝑗 , (𝐵𝑖 · 𝐵 𝑗 )𝑜, and 𝛼 𝑗 .

Following the ideas in [29, Theorem 1.2], we have the following.

Proposition 3.6. Let 𝐵 be a Cartier divisor in a neighbourhood of 𝑜 ∈ Ĉ2 defined by ( 𝑓 = 0), where
𝑓 ∈ C[[𝑥, 𝑦]]. Suppose that f is irreducible. Let mult𝑜 𝑓 = 𝑚, and let (𝑚, 𝑛) be the first pair of Puiseux
exponents of f. Let 𝐶 ≠ 𝐵 be a smooth curve passing through o and (𝐵 ·𝐶)𝑜 = 𝐼 . Then for every positive
real numbers 𝑠, 𝑡,

lct(Ĉ2 � 𝑜; 𝑠𝐵 + 𝑡𝐶) = min
{

𝑚 + 𝑛

𝑠𝑚𝑛 + 𝑡 𝐼
,

𝑚 + 𝐼

(𝑠𝑚 + 𝑡)𝐼
,

1
𝑠

,
1
𝑡

}
.

Remark 3.7. 1. By convention, if (𝑚, 𝑛) = (1,∞), we set 1+∞
𝑠 ·∞+𝑡 𝐼 := 1

𝑠 .
2. In the case that 𝑠 = 𝑡 = 1, Proposition 3.6 is a special case of [29, Theorem 1.2]. We also remark

that Proposition 3.6 might be indicated by more general results in [15], but the formulation there is
complicated, and we give a simple proof in this special case for the reader’s convenience.

3. Recall that under the setting of Proposition 3.6, by [29, Proof of Theorem 1.2, Case 2, Page 711–712],

𝐼 ∈
{
𝑚, 2𝑚, . . . ,

⌊ 𝑛

𝑚

⌋
𝑚, 𝑛

}
.

Proof. Set

𝑐 := min
{

𝑚 + 𝑛

𝑠𝑚𝑛 + 𝑡 𝐼
,

𝑚 + 𝐼

(𝑠𝑚 + 𝑡)𝐼
,

1
𝑠

,
1
𝑡

}
.

As being lc is a closed condition on coefficients, we may assume that 𝑠, 𝑡 ∈ Q. Possibly replacing 𝑠, 𝑡 by
a multiple, we may assume that 𝑠, 𝑡 are integers.

If 𝑚 = 1, then by Theorem 3.5, we may assume that 𝑠𝐵+ 𝑡𝐶 is defined by (𝑥𝑠 (𝑥 + 𝑦𝐼 )𝑡 = 0). Then the
proposition follows from Proposition 3.2. In the following, we may assume that 𝑚 > 1, and in particular,
B is singular at o.

Suppose that 1
𝑠 ≤ 𝑚+𝑛

𝑠𝑚𝑛+𝑡 𝐼 ; then we have 𝑚 = 1 (recall that 𝑛 > 1), which is absurd.
Suppose that 1

𝑡 ≤ 𝑚+𝐼
(𝑠𝑚+𝑡) 𝐼 ; then 𝑠𝐼 ≤ 𝑡. Then [27, Corollary 5.57] implies that (Ĉ2 � 𝑜, 𝑠

𝑡 𝐵 + 𝐶) is
lc. Since 𝑛 ≥ 𝐼 ≥ 𝑚, we have 𝑚+𝑛

𝑠𝑚𝑛+𝑡 𝐼 ≥ 1
𝑡 , and hence 1

𝑡 = 𝑐.
So from now on, we may assume that

1
𝑠

>
𝑚 + 𝑛

𝑠𝑚𝑛 + 𝑡 𝐼
and

1
𝑡

>
𝑚 + 𝐼

(𝑠𝑚 + 𝑡)𝐼
, (3.1)

in particular,

𝑐 = min
{

𝑚 + 𝑛

𝑠𝑚𝑛 + 𝑡 𝐼
,

𝑚 + 𝐼

(𝑠𝑚 + 𝑡)𝐼

}
.

If 𝐼 = 𝑛, then by Theorem 3.5, we may assume that 𝑠𝐵 + 𝑡𝐶 is defined by ((𝑥𝑚 + 𝑦𝑛)𝑠𝑥𝑡 = 0). Then
by Proposition 3.2,

lct(Ĉ2 � 𝑜; 𝑠𝐵 + 𝑡𝐶) = min
{

𝑚 + 𝑛

𝑠𝑚𝑛 + 𝑡𝑛
,

1
𝑠

,
1
𝑡

}
= 𝑐.

If 𝐼 = 𝑝𝑚 for some 1 ≤ 𝑝 ≤ � 𝑛
𝑚 �, then by Theorem 3.5, we may assume that 𝑠𝐵 + 𝑡𝐶 is defined by

(ℎ = 0), where ℎ = (𝑥𝑚 + 𝑦𝑛)𝑠 (𝑥 + 𝑦𝑝)𝑡 .
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If 𝑡 𝑝 ≤ 𝑠𝑚, consider the weight 𝑤 = (𝑛, 𝑚); then ℎ𝑤 = 𝑦𝑝𝑡 (𝑥𝑚 + 𝑦𝑛)𝑠 and 𝑏 = 𝑚+𝑛
𝑠𝑚𝑛+𝑡 𝐼 , as defined

in Proposition 3.1. Moreover, (Ĉ2, 𝑏ℎ𝑤 ) is lc outside o as 𝑏 ≤ 1
𝑝𝑡 by 𝑡 𝑝 ≤ 𝑠𝑚 and 𝑏 < 1

𝑠 by equation
(3.1). Hence, by Proposition 3.1,

lct(Ĉ2 � 𝑜; 𝑠𝐵 + 𝑡𝐶) =
𝑚 + 𝑛

𝑠𝑚𝑛 + 𝑡 𝐼
= 𝑐.

If 𝑡 𝑝 > 𝑠𝑚, consider the weight 𝑤′ = (𝑝, 1); then ℎ𝑤′ = 𝑥𝑚𝑠 (𝑥 + 𝑦𝑝)𝑡 and 𝑏′ = 1+𝑝
(𝑠𝑚+𝑡) 𝑝 = 𝑚+𝐼

(𝑠𝑚+𝑡) 𝐼 ,

as defined in Proposition 3.1. Moreover, (Ĉ2, 𝑏′ℎ𝑤′ ) is lc outside o as 𝑏′ < 1
𝑚𝑠 by 𝑡 𝑝 > 𝑠𝑚 and 𝑏′ < 1

𝑡
by equation (3.1). Hence, by Proposition 3.1,

lct(Ĉ2 � 𝑜; 𝑠𝐵 + 𝑡𝐶) =
𝑚 + 𝐼

(𝑠𝑚 + 𝑡)𝐼
= 𝑐. �

Corollary 3.8. Let 𝐵 be a Cartier divisor in a neighbourhood of 𝑜 ∈ Ĉ2 defined by ( 𝑓 = 0), where
𝑓 ∈ C[[𝑥, 𝑦]]. Suppose that f is irreducible, mult𝑜 𝑓 = 𝑚, and let (𝑚, 𝑛) be the first pair of Puiseux
exponents of f. Let 𝐶 ≠ 𝐵 be a smooth curve passing through o, and (𝐵 · 𝐶)𝑜 = 𝐼 . Let 𝜆 be a positive
real number. Suppose that one of the following conditions holds:

1. 𝜆𝑚 ≤ 1;
2. 𝑛 = 𝐼 and 𝜆 ≤ min{1, 1

𝑚 + 1
𝐼 }; or

3. 𝐼 ≠ 𝑚 and 𝜆𝐼 ≤ 2.

Then (Ĉ2 � 𝑜, 𝜆𝐵) is lc and

lct(Ĉ2 � 𝑜, 𝜆𝐵; 𝐶) ≥ min
{
1, 1 +

𝑚

𝐼
− 𝜆𝑚

}
.

Proof. First we remark that if (c) holds, then (a) holds. In fact, suppose that 𝜆𝐼 ≤ 2 and 𝜆𝑚 > 1; then
𝐼 < 2𝑚. Then by Remark 3.7(3), 𝐼 = 𝑚, so we get a contradiction by assumption (c). So in the following,
we only assume that (a) or (b) holds.

Here, note that under condition (a), 𝜆 ≤ min{1, 1
𝑚 + 1

𝐼 } automatically holds. So we always have
𝜆 ≤ min{1, 1

𝐼 + 1
𝑚 }.

Set 𝑡 := min{1, 1 + 𝑚
𝐼 − 𝜆𝑚} ≥ 0. The statement is equivalent to lct(Ĉ2 � 𝑜; 𝜆𝐵 + 𝑡𝐶) ≥ 1. By

Proposition 3.6, this is equivalent to showing that

1. 𝑚+𝑛
𝜆𝑚𝑛+𝑡 𝐼 ≥ 1,

2. 𝑚 + 𝐼 ≥ (𝜆𝑚 + 𝑡)𝐼,
3. 1 ≥ 𝜆, and
4. 1 ≥ 𝑡.

Here, (2) and (4) follow from the definition of t, and (3) follows from 𝜆 ≤ min{1, 1
𝐼 + 1

𝑚 }. It is enough
to show (1).

If 𝑚 = 1, then 𝑛 = ∞, so (1) is equivalent to 𝜆 = 𝜆𝑚 ≤ 1 under the convention in Lemma 3.7(1),
which is already proved in (3).

In the following, we assume that 𝑚 ≥ 2. It suffices to prove that

𝑚 + 𝑛 ≥ 𝜆𝑚𝑛 +
(
1 +

𝑚

𝐼
− 𝜆𝑚

)
𝐼,

which is equivalent to (𝑛 − 𝐼) (1 − 𝜆𝑚) ≥ 0. Recall that 𝑛 ≥ 𝐼, so (1) holds if either 𝑛 = 𝐼 or 𝜆𝑚 ≤ 1
holds. This proves the conclusion for (a) and (b). �

Remark 3.9. In applications, we only use Corollary 3.8 when condition (a) holds. The advantage of
this corollary is that we can get rid of n in the first pair of Puiseux exponents of f, and the log canonical
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threshold can be estimated by only m and I. In practice, n is usually hard to control, while m and I can
be controlled easily by geometric conditions.

The following example shows that both Theorem 1.11 and Corollary 3.8 are optimal.

Example 3.10. Consider two coprime positive integers m and I such that 𝑚 < 𝐼. Take a positive real
number 𝜆 such that 𝜆𝑚 ≤ 1 ≤ 𝜆𝐼. Consider (C2, 𝜆𝐵), where 𝐵 = (𝑥𝑚 + 𝑦𝐼 = 0) and 𝐶 = (𝑥 = 0).
Then mult𝑜 𝜆𝐵 = 𝜆𝑚, (𝜆𝐵 · 𝐶)𝑜 = 𝜆𝐼. A direct computation by Proposition 3.6 shows that (C2 �

𝑜, 𝜆𝐵+ (1+ 𝑚
𝐼 −𝜆𝑚)𝐶) is lc but (C2 � 𝑜, 𝜆𝐵+ (1+ 𝑚

𝐼 −𝜆𝑚+ 𝜖)𝐶) is not lc for any 𝜖 > 0. So in this case,

lct(C2 � 𝑜, 𝜆𝐵; 𝐶) = 1 +
𝑚

𝐼
− 𝜆𝑚.

Now we may show Theorem 1.11, which could be regarded as an R-divisor version of Corollary 3.8.

Proof of Theorem 1.11. Possibly approximatingR-coefficients withQ-coefficients, we may assume that
B is a Q-divisor. Recall that (𝐵 · 𝐶)𝑃 = 𝐼 and mult𝑃 𝐵 = 𝑚.

If 𝐼 ≤ 1, then (𝑋 � 𝑃, 𝐵 + 𝐶) is lc by [27, Corollary 5.57]. Hence we may assume that 𝐼 > 1.
We may replace 𝑃 ∈ 𝑋 by the formal neighbourhood 𝑋 of 𝑃 ∈ 𝑋 , which is isomorphic to the formal

neighbourhood 𝑜 ∈ Ĉ2. So from now on we may assume that 𝑃 ∈ 𝑋 is just 𝑜 ∈ Ĉ2. Write 𝐵 =
∑𝑛

𝑖=1 𝑏𝑖𝐵𝑖 ,
where 𝑏𝑖 ∈ (0, 1], and {𝐵𝑖}1≤𝑖≤𝑛 are distinct irreducible curves on Ĉ2 passing through o.

If 𝑛 = 1, then we are done by Corollary 3.8. So we may assume that 𝑛 ≥ 2.
Set 𝑠 := 1 + 𝑚

𝐼 − 𝑚. The goal is to show that (Ĉ2 � 𝑜, 𝐵 + 𝑠𝐶) is lc. Consider the log canonical
threshold polytope of the pair (Ĉ2 � 𝑜, 𝑠𝐶) with respect to the divisors 𝐵1, . . . , 𝐵𝑛,

𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, . . . , 𝐵𝑛) :=

{
(𝑡1, . . . , 𝑡𝑛) ∈ R

𝑛
≥0

����
(
Ĉ2 � 𝑜, 𝑠𝐶 +

𝑛∑
𝑖=1

𝑡𝑖𝐵𝑖

)
is lc

}
.

By Lemma 2.19, 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, . . . , 𝐵𝑛) is a compact convex polytope in R𝑛. It suffices to show
that the convex polytope

P :=

{
(𝑡1, . . . , 𝑡𝑛) ∈ R

𝑛
≥0

���� mult𝑜
𝑛∑
𝑖=1

𝑡𝑖𝐵𝑖 = 𝑚,
𝑛∑
𝑖=1

𝑡𝑖 (𝐵𝑖 · 𝐶)𝑜 = 𝐼

}

is contained in 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, . . . , 𝐵𝑛), here we remark that P ≠ ∅. By Lemma 3.11, all the vertices
of P are contained in

⋃
𝑖≠ 𝑗 𝐸𝑖, 𝑗 , where 𝐸𝑖, 𝑗 := {(𝑡1, · · · , 𝑡𝑛) | 𝑡𝑘 = 0 for 𝑘 ≠ 𝑖, 𝑗}. Hence it suffices to

show that

𝐸𝑖, 𝑗 ∩ P ⊆ 𝐸𝑖, 𝑗 ∩ 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, . . . , 𝐵𝑛) � 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵𝑖 , 𝐵 𝑗 )

for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.
Without loss of generality, we may just consider the case (𝑖, 𝑗) = (1, 2). It suffices to show that any

vertex point of 𝐸1,2 ∩ P is contained in 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, 𝐵2), where 𝐸1,2 is identified with R2. Set
mult𝑜 𝐵𝑖 = 𝑚𝑖 , (𝐵𝑖 ·𝐶)𝑜 = 𝐼𝑖 ≥ 1 for 𝑖 = 1, 2. Take (𝑐1, 𝑐2) to be a vertex point of 𝐸1,2 ∩P; then (𝑐1, 𝑐2)
satisfies the following equations:

𝑚1𝑐1 + 𝑚2𝑐2 = 𝑚, 𝐼1𝑐1 + 𝐼2𝑐2 = 𝐼 . (3.2)

Here, we recall that 𝑚1, 𝑚2, 𝐼1, 𝐼2 are positive integers, 𝑚1 ≤ 𝐼1, 𝑚2 ≤ 𝐼2 and 𝑚 ≤ 1 < 𝐼.
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( 𝑚
𝑚1 , 0)

(0, 𝑚
𝑚2 )

( 𝐼
𝐼1

, 0)o

(𝑐1 , 𝑐2 )

𝑃 (Ĉ2 , 𝑠𝐶; 𝐵1 , 𝐵2 )

When 𝑚 ≥
𝑚2
𝐼2

> 𝑚1
𝐼1

.

(0, 1
𝐼2

)

(0, 𝑚
𝑚2 )

( 𝐼
𝐼1

, 0) (𝜆1 , 0)o

(𝑐1 , 𝑐2 )

𝑃 (Ĉ2 , 𝑠𝐶; 𝐵1 , 𝐵2 )

When 𝑚2
𝐼2

> 𝑚.

Figure 1. Two cases.

Suppose that either 𝑐1 = 0 or 𝑐2 = 0; then (𝑐1, 𝑐2) ∈ 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, 𝐵2) follows directly from
Corollary 3.8.

Suppose that 𝑐1 > 0 and 𝑐2 > 0. Since (𝑐1, 𝑐2) is a vertex of 𝐸1,2 ∩ P, it is the unique solution of
equation (3.2). Thus 𝑚1

𝐼1
≠ 𝑚2

𝐼2
, and

min{
𝑚1
𝐼1

,
𝑚2
𝐼2

} <
𝑚1𝑐1 + 𝑚2𝑐2
𝐼1𝑐1 + 𝐼2𝑐2

=
𝑚

𝐼
< max{

𝑚1
𝐼1

,
𝑚2
𝐼2

}.

Without loss of generality, we may assume that 𝑚1
𝐼1

< 𝑚
𝐼 < 𝑚2

𝐼2
. See Figure 1.

If 𝑚 ≥ 𝑚2
𝐼2

> 𝑚1
𝐼1

, then we may write 𝑐1𝐵1 + 𝑐2𝐵2 = 𝜇1
𝑚
𝑚1

𝐵1 + 𝜇2
𝑚
𝑚2

𝐵2 for 𝜇1 = 𝑚1𝑐1
𝑚 and 𝜇2 = 𝑚2𝑐2

𝑚 .
Note that 𝜇1 + 𝜇2 = 1. By Corollary 3.8 and 𝑚 ≤ 1,

lct(Ĉ2 � 𝑜,
𝑚

𝑚𝑖
𝐵𝑖; 𝐶) ≥ min

{
1, 1 +

𝑚𝑖

𝐼𝑖
− 𝑚

}
= 1 +

𝑚𝑖

𝐼𝑖
− 𝑚

for 𝑖 = 1, 2. By Lemma 2.19 and the Cauchy–Schwarz inequality, we have

lct(Ĉ2 � 𝑜, 𝑐1𝐵1 + 𝑐2𝐵2; 𝐶) ≥ 𝜇1 lct(Ĉ2 � 𝑜,
𝑚

𝑚1
𝐵1; 𝐶) + 𝜇2 lct(Ĉ2 � 𝑜,

𝑚

𝑚2
𝐵2; 𝐶)

≥ 1 − 𝑚 + 𝜇1
𝑚1
𝐼1

+ 𝜇2
𝑚2
𝐼2

= 1 − 𝑚 +
𝑚2

1𝑐1

𝐼1𝑚
+

𝑚2
2𝑐2

𝐼2𝑚

≥ 1 − 𝑚 +
(𝑚1𝑐1 + 𝑚2𝑐2)

2

(𝐼1𝑐1 + 𝐼2𝑐2)𝑚
= 1 − 𝑚 +

𝑚

𝐼
= 𝑠.

Otherwise, 𝑚2
𝐼2

> 𝑚. We may write 𝑐1𝐵1 + 𝑐2𝐵2 = 𝜇′
1𝜆1𝐵1 + 𝜇′

2
1
𝐼2

𝐵2, where 𝜇′
2 = 𝐼2𝑐2, 𝜇′

1 = 1− 𝐼2𝑐2,
𝜆1 = 𝑐1

1−𝐼2𝑐2
. Note that 𝜇′

1 > 1 − 𝑚2𝑐2
𝑚 > 0, 𝜇′

1 + 𝜇′
2 = 1 and 𝜆1 ≤ 𝑐1

1−𝑚2𝑐2
𝑚

= 𝑚
𝑚1

≤ 1
𝑚1

. By Corollary 3.8,
we have

lct(Ĉ2 � 𝑜, 𝜆1𝐵1; 𝐶) ≥ min
{
1, 1 +

𝑚1
𝐼1

− 𝜆1𝑚1

}
and lct(Ĉ2 � 𝑜,

1
𝐼2

𝐵2; 𝐶) ≥ 1.
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By Lemma 2.19, we have

lct(Ĉ2 � 𝑜, 𝑐1𝐵1 + 𝑐2𝐵2; 𝐶) ≥ 𝜇′
1 lct(Ĉ2 � 𝑜, 𝜆1𝐵1; 𝐶) + 𝜇′

2 lct(Ĉ2 � 𝑜,
1
𝐼2

𝐵2; 𝐶)

≥ min
{
1, 1 + 𝜇′

1𝑚1 (
1
𝐼1

− 𝜆1)

}
= min

{
1, 1 +

𝑚1
𝐼1

(1 − 𝐼)

}
≥ min

{
1, 1 +

𝑚

𝐼
(1 − 𝐼)

}
= 𝑠.

Here, for the equality, we use the fact that

𝜇′
1 (

1
𝐼1

− 𝜆1) =
1 − 𝐼2𝑐2 − 𝐼1𝑐1

𝐼1
=

1 − 𝐼

𝐼1
.

In summary, we have showed that (𝑐1, 𝑐2) ∈ 𝑃(Ĉ2 � 𝑜, 𝑠𝐶; 𝐵1, 𝐵2), and the proof is completed. �

Lemma 3.11. Let 𝑏 𝑗 ≥ 0 and n 𝑗 ∈ R
𝑛
>0 for 𝑗 = 1, 2. Assume that 𝑛 ≥ 2; then

P := {t ∈ R𝑛≥0 | 〈nj, t〉 = 𝑏 𝑗 , 𝑗 = 1, 2}

is a convex polytope, and all the vertices of P belong to
⋃

1≤𝑖≠ 𝑗≤𝑛 𝐸𝑖, 𝑗 , where

𝐸𝑖, 𝑗 := {(𝑡1, · · · , 𝑡𝑛) ∈ R
𝑛 | 𝑡𝑘 = 0 for 𝑘 ≠ 𝑖, 𝑗}.

Proof. It is easy to check that P, if non-empty, is a convex polytope of dimension at least 𝑛 − 2. Note
that each vertex of P belongs to at least 𝑛 − 2 faces of P. Since P has at most n faces {(𝑡1, · · · , 𝑡𝑛) ∈
R𝑛 | 𝑡𝑖 = 0} ∩ P for 𝑖 = 1, 2, . . . , 𝑛, we conclude that each vertex of P belongs to

⋃
1≤𝑖< 𝑗≤𝑛 𝐸𝑖, 𝑗 . �

Corollary 3.12. Let (𝑋 � 𝑃, 𝐵) be a germ of surface pair such that X is smooth and mld(𝑋 � 𝑃, 𝐵) ≥ 1.
Let C be a smooth curve at P such that 𝐶 � Supp(𝐵) and (𝐵 · 𝐶)𝑃 ≤ 2. Then lct(𝑋 � 𝑃, 𝐵; 𝐶) ≥ 1

2 .

Proof. Note that mld(𝑋 � 𝑃, 𝐵) ≥ 1 implies that 𝑚 := mult𝑃 𝐵 ≤ 1 (compare [18, Lemma 3.15]). By
Theorem 1.11 and the fact that 𝐼 ≤ 2,

lct(𝑋 � 𝑃, 𝐵; 𝐶) ≥ min{1, 1 +
𝑚

𝐼
− 𝑚} ≥ 1 +

𝑚

2
− 𝑚 ≥

1
2

. �

4. Proofs of the main theorems

4.1. Proof of Theorem 1.10

In this subsection, we give the proof of Theorem 1.10. We first treat the case when dim 𝑋 = 2.

Proof of Theorem 1.10 when dim 𝑋 = 2. Observe that when dim 𝑋 = 2, Z is a curve and z is a closed
point. We split the proof into two steps.
Step 1. First we treat the case when X is smooth, 𝐵 ≥ 0.

In this case, we have mld(𝑋/𝑍 � 𝑧, 𝐵) = 1. As the geometric generic fibre of 𝜋 is a rational curve,
we may run a 𝐾𝑋 -MMP over Z and reach a minimal ruled surface 𝜋′ : 𝑋 ′ → 𝑍 . Denote by 𝜙 : 𝑋 → 𝑋 ′

the induced morphism and 𝐵′ = 𝜙∗𝐵. Since 𝐾𝑋 + 𝐵 ∼R,𝑍 0, by the negativity lemma [9, Lemma
3.6.2], 𝜙∗(𝐾𝑋 ′ + 𝐵′) = 𝐾𝑋 + 𝐵. Thus, 𝐾𝑋 ′ + 𝐵′ ∼R,𝑍 0, mld(𝑋 ′/𝑍 � 𝑧, 𝐵′) = mld(𝑋/𝑍 � 𝑧, 𝐵) and
lct(𝑋 ′/𝑍 � 𝑧, 𝐵′; 𝜋′∗𝑧) = lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧). Now 𝐹 := 𝜋′∗ (𝑧) � P1 and (𝐾𝑋 ′ + 𝐵′) · 𝐹 = 0. By
the adjunction formula, 𝐾𝑋 ′ · 𝐹 = −2. Hence (𝐵′ · 𝐹)𝑃 ≤ 2 for any closed point 𝑃 ∈ 𝐹. Recall that
mld(𝑋 ′/𝑍 � 𝑧, 𝐵′) = 1 implies that 𝐹 � Supp(𝐵′). By Corollary 3.12, lct(𝑋 ′ � 𝑃, 𝐵′; 𝐹) ≥ 1

2 for any
closed point 𝑃 ∈ 𝐹, which implies that lct(𝑋 ′/𝑍 � 𝑧, 𝐵′; 𝜋′∗𝑧) ≥ 1

2 . Hence lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) ≥ 1
2 .
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Step 2. We treat the general case.
Write mld(𝑋/𝑍 � 𝑧, 𝐵) = 1+ 𝜖 for some 𝜖 ≥ 0. Let 𝑓 : 𝑊 → 𝑋 be a log resolution of (𝑋, Supp(𝐵) +

𝜋∗𝑧). We may write 𝐾𝑊 + 𝐵𝑊 = 𝑓 ∗(𝐾𝑋 + 𝐵). Since mld(𝑋/𝑍 � 𝑧, 𝐵) = 1 + 𝜖 , for any curve
𝐶 ⊂ Supp( 𝑓 ∗𝜋∗𝑧), mult𝐶 𝐵𝑊 ≤ −𝜖 . We can take 𝑠 ≥ 0 such that for any curve 𝐶 ⊂ Supp( 𝑓 ∗𝜋∗𝑧),
mult𝐶 (𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) ≤ 0, and there exists a curve 𝐶0 ⊂ Supp( 𝑓 ∗𝜋∗𝑧) with mult𝐶0 (𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) = 0.
By Lemma 2.8, possibly shrinking Z near z, we may assume that (𝑋, 𝐵) is lc, so the coefficients
of 𝐵𝑊 are at most 1. Since 𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧 is a simple normal crossing divisor, by [11, Lemma 3.3],
mld(𝑊/𝑍 � 𝑧, 𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) = 1. Note that 𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧 is not necessarily effective, so we cannot
apply Step 1 directly.

We may write 𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧 = 𝐷 − 𝐺, where D and G are effective R-divisors with no common
components. Then

𝐾𝑊 + 𝐷 = 𝑓 ∗(𝐾𝑋 + 𝐵 + 𝑠𝜋∗𝑧) + 𝐺 ∼R,𝑍 𝐺.

By Remark 2.13, B is effective on the generic fibre of 𝜋, so Supp(𝐺) does not dominate Z. Possibly shrink-
ing Z near z, we may assume that Supp(𝐺) ⊂ Supp( 𝑓 ∗𝜋∗𝑧). By the construction, 𝐶0 ⊂ Supp( 𝑓 ∗𝜋∗𝑧)
but 𝐶0 ⊄ Supp(𝐺). Note that (𝑊, 𝐷) is lc as the coefficients of D are at most 1.

If E is a curve on W that is contracted over Z with (𝐾𝑊 + 𝐷) · 𝐸 < 0, then 𝐺 · 𝐸 < 0, and hence
𝐸 ⊂ Supp(𝐺). Then 𝐸 ⊄ Supp(𝐷) and 𝐾𝑊 · 𝐸 < 0. This implies that any (𝐾𝑊 + 𝐷)-MMP over Z is
also a 𝐾𝑊 -MMP over Z, and it only contracts curves in Supp(𝐺).

We may run a (𝐾𝑊 + 𝐷)-MMP over Z and reach a minimal model Y with induced maps 𝑔 : 𝑊 → 𝑌
and ℎ : 𝑌 → 𝑍 such that 𝐾𝑌 + 𝐷𝑌 ∼R,𝑍 𝐺𝑌 is nef over Z, where 𝐷𝑌 and 𝐺𝑌 are the strict transforms
of D and G on Y, respectively.

As this MMP is also a 𝐾𝑊 -MMP, Y is a smooth surface. Recall that 𝐶0 � Supp(𝐺), so 𝐶0 is not
contracted by this MMP and Supp(𝐺𝑌 ) � Supp(ℎ∗𝑧). Hence 𝐺𝑌 = 0 as 𝐺𝑌 is nef over Z. Since
𝐾𝑌 + 𝐷𝑌 = 𝑔∗(𝐾𝑊 + 𝐷 − 𝐺) ∼R,𝑍 0, by the negativity lemma [9, Lemma 3.6.2],

𝑔∗(𝐾𝑌 + 𝐷𝑌 ) = 𝐾𝑊 + 𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧 = 𝑓 ∗(𝐾𝑋 + 𝐵 + 𝑠𝜋∗𝑧) ∼R,𝑍 0.

Thus, mld(𝑌/𝑍 � 𝑧, 𝐷𝑌 ) = mld(𝑊/𝑍 � 𝑧, 𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) = 1, and

lct(𝑌/𝑍 � 𝑧, 𝐷𝑌 ; ℎ∗𝑧) = lct(𝑋/𝑍 � 𝑧, 𝐵 + 𝑠𝜋∗𝑧; 𝜋∗𝑧) = lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) − 𝑠.

Since X and Y are isomorphic over the generic point of Z, the geometric generic fibre of h is again a
rational curve. So (𝑌, 𝐷𝑌 ) satisfies the setting in Step 1. By Step 1, we get lct(𝑌/𝑍 � 𝑧, 𝐷𝑌 ; ℎ∗𝑧) ≥ 1

2 .
To conclude the proof, we need to give a lower bound for s. As Y is smooth, Y dominates a P1-

bundle over Z. So there exists a curve 𝐶1 on Y such that 𝐶1 ⊂ Supp(ℎ∗𝑧) and mult𝐶1 ℎ∗𝑧 = 1. Denote
𝐶 ′

1 to be the strict transform of 𝐶1 on W; then 𝐶 ′
1 ⊂ Supp( 𝑓 ∗𝜋∗𝑧) and mult𝐶′

1
𝑓 ∗𝜋∗𝑧 = 1. Note that

mult𝐶′
1
(𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) = mult𝐶1 (𝐷𝑌 ) ≥ 0. On the other hand, mult𝐶′

1
(𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) ≤ 0 by the

definition of s. So mult𝐶′
1
(𝐵𝑊 + 𝑠 𝑓 ∗𝜋∗𝑧) = 0. As mult𝐶′

1
𝐵𝑊 ≤ −𝜖 , we have 𝑠 ≥ 𝜖 . Hence

lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) = lct(𝑌/𝑍 � 𝑧, 𝐷𝑌 ; ℎ∗𝑧) + 𝑠 ≥
1
2
+ 𝜖 = mld(𝑋/𝑍 � 𝑧, 𝐵) −

1
2

.

This concludes the proof. �

Next we give the proof of Theorem 1.10 by induction on dimensions.

Proof of Theorem 1.10. We prove the theorem by induction on the dimension of X. We have proved the
case when dim 𝑋 = 2. Suppose that Theorem 1.10 holds when dim 𝑋 = 𝑛 for some integer 𝑛 ≥ 2; we
will show that the theorem holds when dim 𝑋 = 𝑛 + 1.

As the statement is local around 𝑧 ∈ 𝑍 , we are free to shrink Z. Possibly shrinking Z near z, we may
assume that 𝑧 is a Cartier divisor on Z. Set 𝑡 := lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧). Possibly shrinking Z near z, we
may assume that (𝑋, 𝐵 + 𝑡𝜋∗𝑧) is lc.
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Pick a general hyperplane section 𝐻 ⊂ 𝑍 intersecting 𝑧. Possibly shrinking Z near z, we may assume
that 𝐻 ∩ 𝑧 is irreducible. Let 𝑧𝐻 be the generic point of 𝐻 ∩ 𝑧 and 𝐺 := 𝜋∗𝐻; then by Bertini’s theorem,
the restriction 𝜋𝐺 = 𝜋 |𝐺 : 𝐺 → 𝐻 is a contraction between normal varieties such that 𝐾𝐺 +𝐵 |𝐺 ∼R,𝐻 0.
Since H is general, by [27, Lemma 5.17(2)], we may assume that

◦ the geometric generic fibre of 𝜋𝐺 is a rational curve, and
◦ (𝑋, 𝐵 + 𝐺 + 𝑡𝜋∗𝑧) is lc.

Let 𝜙 : 𝑌 → 𝑋 be a log resolution of (𝑋, Supp 𝐵 + 𝜋∗𝑧), we may write

𝐾𝑌 + 𝜙−1
∗ 𝐵 +

∑
𝑖

(1 − 𝑎𝑖)𝐸𝑖 = 𝜙∗(𝐾𝑋 + 𝐵),

where 𝐸𝑖 are 𝜙-exceptional prime divisors. Possibly shrinking Z near z, we may further assume that
𝑧 ∈ 𝜋 ◦ 𝜙(𝐸𝑖) for each i. By taking H general enough, we may assume that

◦ 𝜙∗𝐺 = 𝜙−1
∗ 𝐺, and

◦ 𝜙 is a log resolution of (𝑋, Supp 𝐵 + 𝜋∗𝑧 + 𝐺).

Since 𝜙−1
∗ 𝐺 = 𝜙∗𝐺 = 𝜙∗𝜋∗𝐻, we have 𝜋 ◦ 𝜙(𝐸𝑖 ∩ 𝜙−1

∗ 𝐺) = (𝜋 ◦ 𝜙(𝐸𝑖)) ∩ 𝐻 for each i.
Since

𝐾𝑌 + 𝜙−1
∗ 𝐵 + 𝜙−1

∗ 𝐺 +
∑
𝑖

(1 − 𝑎𝑖)𝐸𝑖 = 𝜙∗(𝐾𝑋 + 𝐵 + 𝐺),

by the adjunction formula [27, Proposition 5.73],

𝐾𝜙−1
∗ 𝐺 + 𝜙−1

∗ 𝐵 |𝜙−1
∗ 𝐺 +

∑
𝑖

(1 − 𝑎𝑖)𝐸𝑖 |𝜙−1
∗ 𝐺 = 𝜙∗(𝐾𝐺 + 𝐵 |𝐺),

which implies that the induced morphism 𝜙−1
∗ (𝐺) → 𝐺 is a log resolution of (𝐺, 𝐵 |𝐺 + 𝜋∗

𝐺𝑧𝐻 ). Since
z and 𝑧𝐻 are codimension 1 points of Z and H, respectively, we have

mld(𝐺/𝐻 � 𝑧𝐻 , 𝐵 |𝐺) = min{𝑎𝑖 | 𝜋 ◦ 𝜙(𝐸𝑖 ∩ 𝜙−1
∗ 𝐺) = 𝑧𝐻 }

= min{𝑎𝑖 | 𝜋 ◦ 𝜙(𝐸𝑖) = 𝑧} = mld(𝑋/𝑍 � 𝑧, 𝐵).

Here, the formula computing minimal log discrepancies is by [11, Lemma 3.5], which says that one can
compute the minimal log discrepancy of an lc sub-pair on a log resolution. Similarly, we have

𝐾𝑌 + 𝜙−1
∗ 𝐵 + 𝜙−1

∗ 𝐺 + 𝑡𝜙−1
∗ 𝜋∗𝑧 +

∑
𝑖

(1 − 𝑎′
𝑖)𝐸𝑖 = 𝜙∗(𝐾𝑋 + 𝐵 + 𝐺 + 𝑡𝜋∗𝑧),

𝐾𝜙−1
∗ 𝐺 + 𝜙−1

∗ 𝐵 |𝜙−1
∗ 𝐺 + 𝑡𝜙−1

∗ 𝜋∗𝑧 |𝜙−1
∗ 𝐺 +

∑
𝑖

(1 − 𝑎′
𝑖)𝐸𝑖 |𝜙−1

∗ 𝐺 = 𝜙∗(𝐾𝐺 + 𝐵 |𝐺 + 𝑡𝜋∗
𝐺𝑧𝐻 ).

As (𝑋, 𝐵 + 𝐺 + 𝑡𝜋∗𝑧) is lc, so is (𝐺, 𝐵 |𝐺 + 𝑡𝜋∗
𝐺𝑧𝐻 ). On the other hand, by the definition of t, there

exists an index i such that 𝑎′
𝑖 = 0 and 𝐸𝑖 ⊆ Supp(𝜙∗𝜋∗𝑧). In particular, 𝜋 ◦ 𝜙(𝐸𝑖) = 𝑧. Then by the

construction, 𝐸𝑖∩𝜙−1
∗ 𝐺 ≠ ∅, which gives a non-klt place of (𝐺, 𝐵 |𝐺 + 𝑡𝜋∗

𝐺𝑧𝐻 ) whose image on H is 𝑧𝐻 .
Thus 𝑡 = lct(𝐺/𝐻 � 𝑧𝐻 , 𝐵 |𝐺 ; 𝜋∗

𝐺𝑧𝐻 ). As (𝐺/𝐻 � 𝑧𝐻 , 𝐵 |𝐺) satisfies the conditions of Theorem 1.10,

lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) = lct(𝐺/𝐻 � 𝑧𝐻 , 𝐵 |𝐺 ; 𝜋∗
𝐺𝑧𝐻 )

≥ mld(𝐺/𝐻 � 𝑧𝐻 , 𝐵 |𝐺) −
1
2
= mld(𝑋/𝑍 � 𝑧, 𝐵) −

1
2

by the induction hypothesis.
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For the last statement, note that lct(𝑋/𝑍 � 𝑧, 𝐵; 𝜋∗𝑧) ≥ 1
2 implies that the coefficients of 𝐵+ 1

2 𝜋∗𝑧 are
at most 1 over a neighbourhood of 𝑧 ∈ 𝑍 . So if B is effective, then the multiplicity of each irreducible
component of 𝜋∗𝑧 is bounded from above by 2. �

The following example shows that the bounds in Theorems 1.7 and 1.10 are optimal.

Example 4.1. Consider 𝐶 � P1. Consider 𝑌 = 𝐶 × P1 and the natural projection 𝜋 : 𝑌 → 𝐶. Let D be
a smooth curve on Y of type (1, 2). Note that there exists a closed point 𝑝 ∈ 𝐶 such that D intersects
𝜋−1 (𝑝) at a single closed point with intersection multiplicity 2. Set 𝐹 = 𝜋−1 (𝑝). Then for any real
number 𝑠 ≥ 0, we consider the sub-pair (𝑌, 𝐷 − 𝑠𝐹). We can get a log resolution of (𝑌, 𝐷 − 𝑠𝐹) by
blowing up twice as follows. Let 𝑌1 → 𝑌 be the blow-up at 𝐹∩𝐷. Denote by 𝐹1, 𝐷1 the strict transforms
of 𝐹, 𝐷 on 𝑌1, respectively, and 𝐸1 the exceptional divisor. Then 𝐹1, 𝐷1, 𝐸1 intersect at one point. Let
𝑌2 → 𝑌1 be the blow-up at 𝐹1 ∩ 𝐷1 ∩ 𝐸1, denote by 𝐹2, 𝐷2, 𝐸2 the strict transforms of 𝐹1, 𝐷1, 𝐸1 on
𝑌2, respectively, and 𝐺2 the exceptional divisor on 𝑌2. Then 𝑌2 is a log resolution of (𝑌, 𝐷 − 𝑠𝐹). Let
𝜋 : 𝑌2 → 𝐶 and 𝑓 : 𝑌2 → 𝑌 be the induced maps. Then we have

𝐾𝑌2 + 𝐷2 − 𝑠𝐹2 − 𝑠𝐸2 − 2𝑠𝐺2 = 𝑓 ∗(𝐾𝑌 + 𝐷 − 𝑠𝐹) ∼R,𝐶 0,

and

𝜋∗𝑝 = 𝑓 ∗𝐹 = 𝐹2 + 𝐸2 + 2𝐺2.

Set 𝐵2 = 𝐷2 − 𝑠𝐹2 − 𝑠𝐸2 − 2𝑠𝐺2. Then (𝑌2/𝐶 � 𝑝, 𝐵2) satisfies the conditions of Theorem 1.10. It
is easy to compute that mld(𝑌2/𝐶 � 𝑝, 𝐵2) = 1 + 𝑠 and lct(𝑌2/𝐶 � 𝑝, 𝐵2; 𝜋∗𝑝) = 1

2 + 𝑠. We also have
mult𝐺2 𝜋∗𝑝 = 2. This shows that Theorem 1.10 is optimal.

In this case, if we consider the canonical bundle formula for (𝑌2, 𝐵2) over C, then the discriminant
part is 𝐵𝐶 = ( 1

2 − 𝑠)𝑝, and hence for any 𝑀𝐶 ≥ 0 on C,

mld(𝐶 � 𝑝, 𝐵𝐶 + 𝑀𝐶 ) ≤ mld(𝐶 � 𝑝, 𝐵𝐶 ) =
1
2
+ 𝑠.

This shows that Theorem 1.7 is optimal.

The next example shows that Theorem 1.10 does not hold when B is not effective on the generic fibre.

Example 4.2. Consider 𝐶 � P1. Consider the pair (𝐶 × P1, 𝐵 := 𝐵1 − 𝐵2) and the natural projection
𝜋 : 𝐶 × P1 → 𝐶, where 𝐵1 is a curve on 𝐶 × P1 of type (2, 3) with a cusp 𝑞 ∈ 𝐵1, and 𝐵2 is the section
of 𝜋 containing q. Set 𝑝 = 𝜋(𝑞) and 𝐷 = 𝜋−1(𝑝) = 𝜋∗𝑝. We can take 𝐵1, 𝐵2 such that 𝐵1, 𝐵2 and D are
locally defined by (𝑥2 + 𝑦3 = 0), (𝑦 = 0) and (𝑥 = 0), respectively, for some local coordinates 𝑥, 𝑦 near
𝑞 ∈ 𝐶 × P1. Then lct(𝐶 × P1/𝐶 � 𝑝, 𝐵; 𝐷) = 1

3 < 1
2 . More generally, if B is not effective on the generic

fibre, then there is no uniform lower bound for lct(𝐶 × P1/𝐶 � 𝑝, 𝐵; 𝐷) as in Theorem 1.10.

4.2. Proofs of Theorems 1.4 and 1.7

We first reduce Theorem 1.7 to the case when B is a Q-divisor.

Lemma 4.3. Assume that Theorem 1.7 holds when B is a Q-divisor; then Theorem 1.7 holds.

Proof. Fix the choice of the Weil divisor 𝐾𝑋 . We may write

𝐾𝑋 + 𝐵 =
𝑚∑
𝑖=1

𝑑𝑖𝐷𝑖 ,

where 𝐷𝑖 are Cartier divisors on X and 𝑑1, . . . , 𝑑𝑚 are Q-linearly independent real numbers. By [17,
Lemma 5.3], 𝐷𝑖 is R-Cartier and 𝐷𝑖 ∼R,𝑍 0 for any 1 ≤ 𝑖 ≤ 𝑚.
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For a point t = (𝑡1, . . . , 𝑡𝑚) ∈ R
𝑚, we set

𝐵(t) =
𝑚∑
𝑖=1

𝑡𝑖𝐷𝑖 − 𝐾𝑋 .

Then for any t ∈ R𝑚, 𝐾𝑋 + 𝐵(t) ∼R,𝑍 0. Set d = (𝑑1, . . . , 𝑑𝑚).
Let 𝑓 : 𝑌 → 𝑋 be a log resolution of (𝑋, 𝐵+

∑𝑚
𝑖=1 𝐷𝑖) such that Supp( 𝑓 −1𝜋−1(𝑧)) is a simple normal

crossing divisor. Write 𝐾𝑌 + 𝐵𝑌 (t) = 𝑓 ∗(𝐾𝑋 + 𝐵(t)).
Possibly shrinking Z near z, we may assume that (𝑋, 𝐵) is lc. Note that (𝑋, 𝐵(t)) is lc if and only if

the coefficients of 𝐵𝑌 (t) are at most 1. Note that mld(𝑋/𝑍 � 𝑧, 𝐵(t)) ≥ 1 if and only if for any prime
divisor E on Y with 𝑓 (𝐸) = 𝑧, mult𝐸 𝐵𝑌 (t) ≤ 0 (compare [11, Lemma 3.3]). So the subset

P1 := {t ∈ R𝑚 | (𝑋, 𝐵(t)) is lc, mld(𝑋/𝑍 � 𝑧, 𝐵(t)) ≥ 1}

is determined by finitely many linear functions in t with coefficients in Q. In other words, P1 is a non-
compact rational polytope containing d. Note that mld(𝑋/𝑍 � 𝑧, 𝐵(t)) can be computed on Y as the
minimum of finitely many linear functions in t with coefficients in Q. Possibly replacing P1 with a
smaller rational polytope containing d, we may assume that mld(𝑋/𝑍 � 𝑧, 𝐵(t)) is linear on P1 and P1
is bounded.

By Remark 2.13, B is effective on the generic fibre of 𝜋. It is easy to see that

P2 := {t ∈ R𝑚 | 𝐵(t) is effective on the generic fibre of 𝜋}

is a rational polytope.
By the construction, P := P1 ∩ P2 is a bounded rational polytope containing d. If t ∈ P, then

𝜋 : (𝑋, 𝐵(t)) → 𝑍 is an lc-trivial fibration satisfying the assumptions of Theorem 1.7. So we can
consider the canonical bundle formula

𝐾𝑋 + 𝐵(t) = 𝜋∗(𝐾𝑍 + 𝐵(t)𝑍 + 𝑀 (t)𝑍 ).

By the convexity of log canonical thresholds, the irreducible components of Supp(𝐵(t)𝑍 ) belong to a
finite set {𝑃1, 𝑃2, . . . , 𝑃𝑘 } for any t ∈ P, here {𝑃1, 𝑃2, . . . , 𝑃𝑘 } is the set of prime divisors on Z in⋃

t′ Supp(𝐵(t′)𝑍 ), where the union runs over all vertex points t′ ∈ P. Denote the generic point of 𝑃 𝑗 by
𝑧 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 . Note that for any 1 ≤ 𝑗 ≤ 𝑘 , lct(𝑋/𝑍 � 𝑧 𝑗 , 𝐵(t); 𝜋∗𝑃 𝑗 ) is computed on a log resolution
as the minimum of finitely many linear functions in t with coefficients in Q. So possibly replacing P
with a smaller rational polytope containing d, we may assume that lct(𝑋/𝑍 � 𝑧 𝑗 , 𝐵(t); 𝜋∗𝑃 𝑗 ) is linear
in t for any 1 ≤ 𝑗 ≤ 𝑘 .

Now we can take t1, . . . , t𝑙 ∈ P ∩ Q𝑚 and positive real numbers 𝑠1, . . . , 𝑠𝑙 such that
∑𝑙

𝑖=1 𝑠𝑖 = 1 and∑𝑙
𝑖=1 𝑠𝑖t𝑖 = d. By the construction,

𝐵𝑍 =
𝑘∑
𝑗=1

(1 − lct(𝑋/𝑍 � 𝑧 𝑗 , 𝐵; 𝜋∗𝑃 𝑗 ))𝑃 𝑗

=
𝑘∑
𝑗=1

𝑙∑
𝑖=1

𝑠𝑖 (1 − lct(𝑋/𝑍 � 𝑧 𝑗 , 𝐵(t𝑖); 𝜋∗𝑃 𝑗 ))𝑃 𝑗 =
𝑙∑

𝑖=1
𝑠𝑖𝐵(t𝑖)𝑍 .

By assumption, Theorem 1.7 holds for (𝑋/𝑍 � 𝑧, 𝐵(t𝑖)) for each i: that is, we can choose 𝑀 (t𝑖)𝑍 ≥ 0
such that

mld(𝑍 � 𝑧, 𝐵(t𝑖)𝑍 + 𝑀 (t𝑖)𝑍 ) ≥ mld(𝑋/𝑍 � 𝑧, 𝐵(t𝑖)) −
1
2

.
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Then setting 𝑀𝑍 :=
∑𝑙

𝑖=1 𝑠𝑖𝑀 (t𝑖)𝑍 ≥ 0, we have

mld(𝑍 � 𝑧, 𝐵𝑍 + 𝑀𝑍 ) ≥

𝑙∑
𝑖=1

𝑠𝑖mld(𝑍 � 𝑧, 𝐵(t𝑖)𝑍 + 𝑀 (t𝑖)𝑍 )

≥

𝑙∑
𝑖=1

𝑠𝑖mld(𝑋/𝑍 � 𝑧, 𝐵(t𝑖)) −
1
2
= mld(𝑋/𝑍 � 𝑧, 𝐵) −

1
2

.

Here, for the first inequality, we use the convexity of minimal log discrepancies, and for the last equality,
we use the linearity of mld(𝑋/𝑍 � 𝑧, 𝐵(t)) on P. �

Proof of Theorem 1.7. By Lemma 4.3, we may assume that B is aQ-divisor. As we described in Section
2.4, there are b-divisors B and M such that

◦ B𝑍 = 𝐵𝑍 , M𝑍 = 𝑀𝑍 , and
◦ for any birational contraction 𝑔 : 𝑍 ′ → 𝑍 , let 𝑋 ′ be a resolution of the main component of 𝑋 ×𝑍 𝑍 ′

with induced morphisms 𝑔′ : 𝑋 ′ → 𝑋 and 𝜋′ : 𝑋 ′ → 𝑍 ′. Write 𝐾𝑋 ′ + 𝐵′ = 𝑔′∗ (𝐾𝑋 + 𝐵); then B𝑍 ′

(respectively, M𝑍 ′) is the discriminant part (respectively, the moduli part) of the canonical bundle
formula of 𝐾𝑋 ′ + 𝐵′ on 𝑍 ′.

We may write B =
∑

𝑑𝑃𝑃, where P is the birational component of B and 𝑑𝑃 the corresponding
coefficient.

Claim 4.4. For any birational component P of B whose center on Z is 𝑧, 𝑑𝑃 ≤ 3
2 − mld(𝑋/𝑍 � 𝑧, 𝐵).

We will proceed with the proof assuming Claim 4.4. The proof of Claim 4.4 will be given after the
proof.

By [35, Theorem 8.1] (see Remark 2.15), M is b-semi-ample. Then there exists a resolution 𝑔 : 𝑍 ′ →

𝑍 such that M𝑍 ′ is semi-ample, and B𝑍 ′ + Supp(𝑔−1 (𝑧)) is a simple normal crossing divisor. Thus we
may take a generalQ-divisor 𝐿𝑍 ′ ≥ 0 on 𝑍 ′ such that M𝑍 ′ ∼Q 𝐿𝑍 ′ , B𝑍 ′ +𝐿𝑍 ′ is simple normal crossing,
and for each prime divisor P on 𝑍 ′ whose center on Z is 𝑧, the coefficient of P in B𝑍 ′ + 𝐿𝑍 ′ is at most
3
2 − mld(𝑋/𝑍 � 𝑧, 𝐵). In this case, mld(𝑍 ′/𝑍 � 𝑧, B𝑍 ′ + 𝐿𝑍 ′ ) ≥ mld(𝑋/𝑍 � 𝑧, 𝐵) − 1

2 . Note that

𝐾𝑍 ′ + B𝑍 ′ + 𝐿𝑍 ′ ∼Q 𝐾𝑍 ′ + B𝑍 ′ + M𝑍 ′ = 𝑔∗(𝐾𝑍 + 𝐵𝑍 + M𝑍 ) ∼Q,𝑍 0,

hence by the negativity lemma [9, Lemma 3.6.2],

𝑔∗(𝐾𝑍 + 𝐵𝑍 + 𝑔∗𝐿𝑍 ′ ) = 𝑔∗𝑔∗(𝐾𝑍 ′ + B𝑍 ′ + 𝐿𝑍 ′ ) = 𝐾𝑍 ′ + B𝑍 ′ + 𝐿𝑍 ′ .

Thus 𝑀𝑍 ∼Q 𝑔∗𝐿𝑍 ′ ≥ 0 and mld(𝑍 � 𝑧, 𝐵𝑍 + 𝑔∗𝐿𝑍 ′ ) ≥ mld(𝑋/𝑍 � 𝑧, 𝐵) − 1
2 . �

Proof of Claim 4.4. Fix a birational component 𝑃0 of B whose center on Z is 𝑧:

(𝑋 ′, 𝐵′)

𝜋′

��

𝑔′ �� (𝑋, 𝐵)

𝜋
��

𝑍 ′
𝑔

�� 𝑍.

Take a resolution 𝑔 : 𝑍 ′ → 𝑍 such that 𝑃0 is a prime divisor on 𝑍 ′. Denote the generic point of 𝑃0 on
𝑍 ′ by 𝑧′ and hence 𝑃0 = 𝑧′. Let 𝑋 ′ be a resolution of the main component of 𝑋 ×𝑍 𝑍 ′ with induced
maps 𝑔′ : 𝑋 ′ → 𝑋 and 𝜋′ : 𝑋 ′ → 𝑍 ′. We may write 𝐾𝑋 ′ + 𝐵′ = 𝑔′∗ (𝐾𝑋 + 𝐵). Then

mld(𝑋 ′/𝑍 � 𝑧, 𝐵′) = mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 1.
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In particular, this implies that

mld(𝑋 ′/𝑍 ′ � 𝑧′, 𝐵′) ≥ mld(𝑋/𝑍 � 𝑧, 𝐵) ≥ 1.

By the construction, the geometric generic fibre of 𝜋′ is a rational curve. So (𝑋 ′/𝑍 ′ � 𝑧′, 𝐵′) satisfies
the assumptions of Theorem 1.10. By Theorem 1.10,

lct(𝑋 ′/𝑍 ′ � 𝑧′, 𝐵′; 𝜋′∗𝑧′) ≥ mld(𝑋 ′/𝑍 ′ � 𝑧′, 𝐵′) −
1
2

.

Hence by the definition of B,

𝑑𝑃0 = 1 − lct(𝑋 ′/𝑍 ′ � 𝑧′, 𝐵′; 𝜋′∗𝑧′)

≤
3
2
− mld(𝑋 ′/𝑍 ′ � 𝑧′, 𝐵′) ≤

3
2
− mld(𝑋/𝑍 � 𝑧, 𝐵). �

Proof of Corollary 1.8. Note that we cannot get Corollary 1.8 by directly applying Theorem 1.7 to all
codimension ≥ 1 points on Z, as the choice of 𝑀𝑍 depends on 𝑧 ∈ 𝑍 in Theorem 1.7. But we can follow
the same line as in Theorem 1.7 to prove Corollary 1.8.

By the same reduction in Lemma 4.3, we may assume that B is a Q-divisor. As we described in
Section 2.4, there are b-divisors B and M such that

◦ B𝑍 = 𝐵𝑍 , M𝑍 = 𝑀𝑍 , and
◦ for any birational contraction 𝑔 : 𝑍 ′ → 𝑍 , let 𝑋 ′ be a resolution of the main component of 𝑋 ×𝑍 𝑍 ′

with induced morphisms 𝑔′ : 𝑋 ′ → 𝑋 and 𝜋′ : 𝑋 ′ → 𝑍 ′. Write 𝐾𝑋 ′ + 𝐵′ = 𝑔′∗ (𝐾𝑋 + 𝐵); then B𝑍 ′

(respectively, M𝑍 ′) is the discriminant part (respectively, the moduli part) of the canonical bundle
formula of 𝐾𝑋 ′ + 𝐵′ on 𝑍 ′.

By [35, Theorem 8.1] (see Remark 2.15), M is b-semi-ample. Then there exists a resolution 𝑔 : 𝑍 ′ → 𝑍
such that M𝑍 ′ is semi-ample, and B𝑍 ′ + Supp(𝑔−1 (𝑧)) is a simple normal crossing divisor. By applying
Claim 4.4 to all codimension ≥ 1 points on Z, we get that the coefficients of B𝑍 ′ are at most 1

2 . Thus
we may take a general Q-divisor 𝐿𝑍 ′ ≥ 0 on 𝑍 ′ such that M𝑍 ′ ∼Q 𝐿𝑍 ′ , B𝑍 ′ + 𝐿𝑍 ′ is simple normal
crossing, and the coefficients of B𝑍 ′ + 𝐿𝑍 ′ are at most 1

2 . In this case, (𝑍 ′, B𝑍 ′ + 𝐿𝑍 ′ ) is 1
2 -lc. Note that

𝐾𝑍 ′ + B𝑍 ′ + 𝐿𝑍 ′ ∼Q 𝐾𝑍 ′ + B𝑍 ′ + M𝑍 ′ = 𝑔∗(𝐾𝑍 + 𝐵𝑍 + M𝑍 ) ∼Q,𝑍 0,

hence by the negativity lemma [9, Lemma 3.6.2],

𝑔∗(𝐾𝑍 + 𝐵𝑍 + 𝑔∗𝐿𝑍 ′ ) = 𝑔∗𝑔∗(𝐾𝑍 ′ + B𝑍 ′ + 𝐿𝑍 ′ ) = 𝐾𝑍 ′ + B𝑍 ′ + 𝐿𝑍 ′ .

Thus 𝑀𝑍 ∼Q 𝑔∗𝐿𝑍 ′ ≥ 0 and (𝑍, 𝐵𝑍 + 𝑔∗𝐿𝑍 ′ ) is 1
2 -lc. �

Proof of Theorem 1.4. As the statement is local, we may assume that Z is affine. Since −𝐾𝑋 is ample
over Z, there exists a positive integer N such that −𝑁𝐾𝑋 is very ample over Z. Let H be a general very
ample divisor on X such that 𝐻 ∼𝑍 −𝑁𝐾𝑋 , and take 𝐵 = 1

𝑁 𝐻. Then 𝐾𝑋 + 𝐵 ∼Q,𝑍 0, B has no vertical
irreducible component over Z, and (𝑋, 𝐵) is canonical. By Corollary 1.8, we can choose 𝑀𝑍 ≥ 0
representing the moduli part and 𝐵𝑍 the discriminant part of the canonical bundle formula of 𝐾𝑋 + 𝐵
on Z such that (𝑍, 𝐵𝑍 + 𝑀𝑍 ) is 1

2 -lc. Note that 𝐵 ≥ 0 implies that 𝐵𝑍 ≥ 0. Thus Z is 1
2 -lc. �

Finally, as an application of Corollary 1.8, we show the following weaker version of Iskovskikh’s
conjecture under a more general setting without using the classification of terminal singularities in
dimension 3 as in [30].

Corollary 4.5. Let 𝜋 : 𝑋 → 𝑍 be a contraction between normal varieties such that

1. dim 𝑋 − dim 𝑍 = 1,
2. there is no prime divisor D on X such that codim(𝜋(𝐷), 𝑍) ≥ 2,
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3. X is terminal,
4. 𝐾𝑍 is Q-Cartier, and
5. −𝐾𝑋 is ample over Z.

Then Z is 1
2 -klt.

Here, the assumption in (2) is a natural geometric condition: for example, it holds if all fibres of 𝜋
are 1-dimensional or if 𝜌(𝑋/𝑍) = 1.

Proof. As the statement is local, we may assume that Z is affine. By Theorem 1.4, Z is 1
2 -lc. Assume

to the contrary that Z is not 1
2 -klt; then there exists an exceptional prime divisor E over Z such that

𝑎(𝐸, 𝑍) = 1
2 . Denote by 𝑐𝑍 (𝐸) the center of E on Z.

By [9, Corollary 1.4.3], we can find a proper birational morphism 𝑔 : 𝑍 ′ → 𝑍 such that E is the
only g-exceptional divisor. Let 𝑋 ′ be a resolution of the main component of 𝑋 ×𝑍 𝑍 ′ with induced
morphisms 𝑔′ : 𝑋 ′ → 𝑋 and 𝜋′ : 𝑋 ′ → 𝑍 ′:

𝑋 ′

𝜋′

��

𝑔′ �� 𝑋

𝜋
��

𝑍 ′
𝑔

�� 𝑍.

We can write 𝐾𝑋 ′ + 𝐺 = 𝑔′∗𝐾𝑋 , 𝐾𝑍 ′ + 1
2 𝐸 = 𝑔∗𝐾𝑍 .

As −𝐾𝑋 is ample over Z, for any 𝑡 ∈ (0, 1) ∩Q, we can take an effective Q-divisor 𝐵𝑡 on X such that

◦ (𝑋, 𝐵𝑡 ) is canonical,
◦ 𝐵𝑡 has no vertical irreducible component over Z,
◦ 𝐾𝑋 + 𝐵𝑡 ∼Q,𝑍 0, and
◦ Supp(𝐵𝑡 ) ⊃ Supp(𝜋−1 (𝑐𝑍 (𝐸))), and the multiplicity of each irreducible component of

Supp(𝜋−1 (𝑐𝑍 (𝐸))) in 𝐵𝑡 is a non-constant linear function in t.

The construction is as follows. Take a sufficiently large N such that −𝑁𝐾𝑋 ∼𝑍 𝐻 is a very ample divisor
on X, and O𝑋 (𝐻) and O𝑋 (𝐻) ⊗ 𝐼Supp(𝜋−1 (𝑐𝑍 (𝐸))) are generated by global sections. Now take 𝐵1 to be
a general global section of O𝑋 (𝐻) and 𝐵2 a general global section of O𝑋 (𝐻) ⊗ 𝐼Supp(𝜋−1 (𝑐𝑍 (𝐸))) . Then
𝐵𝑡 = (1−𝑠𝑡)

𝑁 𝐵1 +
𝑠𝑡
𝑁 𝐵2 satisfies the requirements for sufficiently small positive rational number s. Here,

the assumption in (3) guarantees that (𝑋, 𝐵𝑡 ) is canonical, and the assumption in (2) guarantees that 𝐵𝑡

has no vertical irreducible component over Z as Supp(𝜋−1 (𝑐𝑍 (𝐸))) has codimension at least 2 in X.
Then by Corollary 1.8, for any 𝑡 ∈ (0, 1) ∩ Q, we can choose 𝑀 𝑡

𝑍 ≥ 0 representing the moduli part
of the canonical bundle formula of 𝐾𝑋 + 𝐵𝑡 on Z such that (𝑍, 𝐵𝑡

𝑍 + 𝑀 𝑡
𝑍 ) is 1

2 -lc, where 𝐵𝑡
𝑍 ≥ 0 is

the discriminant part. In particular, 𝑐𝑍 (𝐸) is not contained in Supp(𝐵𝑡
𝑍 + 𝑀 𝑡

𝑍 ), otherwise 𝑎(𝐸, 𝑍, 𝐵𝑡
𝑍 +

𝑀 𝑡
𝑍 ) < 𝑎(𝐸, 𝑍) = 1

2 , which is absurd. As we described in Section 2.4, there are b-divisors B𝑡 and M𝑡

such that

◦ B𝑡
𝑍 = 𝐵𝑡

𝑍 , M𝑡
𝑍 = 𝑀 𝑡

𝑍 ,
◦ 𝐾𝑋 ′ + 𝐺 + 𝑔′∗𝐵𝑡 = 𝜋′∗ (𝐾𝑍 ′ + B𝑡

𝑍 ′ + M𝑡
𝑍 ′ ),

◦ 𝐾𝑍 ′ + B𝑡
𝑍 ′ + M𝑡

𝑍 ′ = 𝑔∗(𝐾𝑍 + 𝐵𝑡
𝑍 + 𝑀 𝑡

𝑍 ) = 𝐾𝑍 ′ + 1
2 𝐸 + 𝑔∗(𝐵𝑡

𝑍 + 𝑀 𝑡
𝑍 ).

Recall that M𝑡 is b-semi-ample by [35, Theorem 8.1] (see Remark 2.15), so M𝑡
𝑍 ′ ≤ 𝑔∗𝑀 𝑡

𝑍 by the
negativity lemma [9, Lemma 3.6.2]. As 𝑐𝑍 (𝐸) is not contained in Supp(𝐵𝑡

𝑍 +𝑀 𝑡
𝑍 ), we get mult𝐸 M𝑡

𝑍 ′ =
0 and then mult𝐸 B𝑡

𝑍 ′ = 1
2 . The latter one implies that lct(𝑋 ′/𝑍 ′ � 𝜂𝐸 , 𝐺 + 𝑔′∗𝐵𝑡 ; 𝜋′∗𝐸) = 1

2 by
definition, where 𝜂𝐸 is the generic point of E. This is absurd, as by the construction of 𝐵𝑡 , lct(𝑋 ′/𝑍 ′ �

𝜂𝐸 , 𝐺 + 𝑔′∗𝐵𝑡 ; 𝜋′∗𝐸) is a non-constant function in t. �
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Remark 4.6. 1. By Example 1.3, the assumption in (3) of Corollary 4.5 cannot be replaced by ‘X is
canonical’.

2. We expect that the assumptions in (2) and (5) of Corollary 4.5 are all necessary. In fact, by the
terminalisation of Example 1.3, the assumptions in (2) and (5) cannot be removed at the same time.

Prokhorov provided us with the following example, which shows that Corollary 4.5 cannot be
improved if dim 𝑋 ≥ 4.

Example 4.7. Consider the following action of μ2𝑚+1 on P1
𝑥 × C

3
𝑢,𝑣,𝑤 :

(𝑥; 𝑢, 𝑣, 𝑤) ↦→ (𝜉𝑚𝑥; 𝜉𝑢, 𝜉𝑣, 𝜉𝑚𝑤),

where m is a positive integer and 𝜉 is a primitive (2𝑚 + 1)th root of unity. Let 𝑋 = (P1 × C3)/μ2𝑚+1,
𝑍 = C3/μ2𝑚+1 and 𝜋 : 𝑋 → 𝑍 the natural projection. Since μ2𝑚+1 acts freely in codimension 1,
−𝐾𝑋 is 𝜋-ample and 𝜌(𝑋/𝑍) = 1. Note that Z has an isolated cyclic quotient singularity of type

1
2𝑚+1 (1, 1, 𝑚) at the origin 𝑜 ∈ 𝑍 , and mld(𝑍 � 𝑜) = 𝑚+2

2𝑚+1 (see [4] for the computation of minimal log
discrepancies of toric varieties). On the other hand, X has two isolated cyclic quotient singularities of
types 1

2𝑚+1 (𝑚, 1, 1, 𝑚) and 1
2𝑚+1 (𝑚 + 1, 1, 1, 𝑚) that are terminal (see [36, (4.11) Theorem]).
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