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Torsion properties of modified diagonal
classes on triple products of modular
curves
David T.-B. G. Lilienfeldt

Abstract. Consider three normalized cuspidal eigenforms of weight 2 and prime level p. Under the
assumption that the global root number of the associated triple product L-function is+1, we prove that
the complex Abel–Jacobi image of the modified diagonal cycle of Gross–Kudla–Schoen on the triple
product of the modular curve X0(p) is torsion in the corresponding Hecke isotypic component of the
Griffiths intermediate Jacobian. The same result holds with the complex Abel–Jacobi map replaced
by its étale counterpart. As an application, we deduce torsion properties of Chow–Heegner points
associated with modified diagonal cycles on elliptic curves of prime conductor with split multiplicative
reduction. The approach also works in the case of composite square-free level.

1 Introduction

The study of diagonal cycles on triple products of Shimura curves has its origins in
the work of Gross, Kudla, and Schoen [11, 12]. They introduced a null-homologous
modification of the diagonal embedding of the curve in its triple product, referred to
as the modified diagonal cycle, or more commonly today as the Gross–Kudla–Schoen
cycle. Given three cuspidal newforms of weight 2 and square-free level N such that
the sign of the functional equation of the associated triple product L-function is −1,
Gross and Kudla [11] conjectured that the central value at s = 2 of the derivative of
this L-function is given by a complex period times the Beilinson–Bloch height of the
corresponding Hecke isotypic component of the modified diagonal cycle on the triple
product of an indefinite Shimura curve determined by the local triple product root
numbers. A proof of this conjecture was announced in work of Yuan et al. [28], but
has yet to be published. The Shimura curve in question is the modular curve X0(N)
precisely when the local triple product root numbers are +1 at all finite places.

1.1 Main results

In this article, we exhibit certain torsion properties of modified diagonal classes1 on
the triple product of the modular curve X ∶= X0(p) defined over Q and of prime
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Torsion properties of modified diagonal classes 69

level p. The results hold more generally for composite square-free level N (see Section
1.4). Since the prime level case already contains all relevant ingredients of the proof,
we have chosen to focus on this case.

The modified diagonal cycle depends on a base point e in X(Q). It will be
denoted by ΔGKS(e) and viewed as an element of the Chow group CH2(X3)0(Q)
of null-homologous codimension 2 algebraic cycles on X3 overQmodulo rational
equivalence (see Section 1.7 for our slightly unconventional definition of Chow groups
as functors). Let f1 , f2, and f3 be three normalized cuspidal eigenforms of weight 2 and
level �0(p), and denote by F ∶= f1 ⊗ f2 ⊗ f3 their triple product. We place ourselves
in the setting where the global root number W(F) of the triple product L-function
L(F , s) associated with F is +1. This assumption forces L(F , s) to vanish to even order
at its centre s = 2. Comparing with the more classical situation of Heegner points
studied in the seminal work of Gross and Zagier [13], it seems reasonable to expect
that the “F-isotypic Hecke component” ΔF

GKS(e) (see Remark 3.2) of the modified
diagonal cycle, with e ∈ X(Q), is trivial in the Chow group CH2(X3)0(Q) ⊗Z KF
of cycles defined over Q with coefficients in the Hecke field of F, in line with the
predictions of the Beilinson–Bloch conjectures [4]. While it appears difficult to prove
a torsion statement directly in the Chow group, we can prove the corresponding result
for the image of ΔF

GKS(e) under the complex Abel–Jacobi map

AJX3 ∶ CH2(X3
C)0(C)�→J2(X3

C),(1.1)

whose target is the Griffiths intermediate Jacobian of X3
C viewed as a complex

manifold.

Theorem 1.1 Let f1 , f2, and f3 be three normalized eigenforms of weight 2 and level
�0(p), denote by F = f1 ⊗ f2 ⊗ f3 their triple product, and suppose that the global
root number of L(F , s) is +1. Then AJX3(ΔF

GKS(e)) is trivial in J2(X3
C) ⊗Z KF , for all

e in X(Q).

The kernel of the complex Abel–Jacobi map (restricted to cycles defined overQ) is
conjectured to be torsion [16, Conjecture 9.12]. Conditional on this conjecture, The-
orem 1.1 implies that ΔF

GKS(e) is trivial in CH2(X3)0(Q) ⊗Z KF . The same statement
as in Theorem 1.1 holds with the complex Abel–Jacobi map replaced by its �-adic étale
counterpart [4]

AJet
X3 ∶ CH2(X3)0(Q)�→H1(Q, H3

et(X3
Q

,Q�(2))),

with � a rational prime (see Remark 4.4).
In the special case p = 37, using numerical results due to Stein [5, Appendix], we

deduce the following, where ξ∞ denotes the cusp of X at infinity.

Theorem 1.2 Let f and g be the normalized eigenforms of weight 2 and level
�0(37) corresponding to the elliptic curves with Cremona labels 37b and 37a, and
let F ∶= g ⊗ g ⊗ f . Then AJX0(37)3(8ΔF

GKS(ξ∞)) is a nontrivial 6-torsion element of
J2(X0(37)3

C).
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70 D.T.B.G. Lilienfeldt

1.2 Application to Chow–Heegner points

Chow–Heegner points were introduced by Bertolini et al. [2] as a generalization
of the construction of Heegner points. The idea is to produce rational points on
elliptic curves by pushing forward algebraic cycles on higher dimensional varieties
using suitable correspondences, or generalized modular parametrizations, as they are
referred to in [2].

Let f be a normalized cuspidal eigenform of weight 2 and level �0(p)with rational
Fourier coefficients. Denote by E f the optimal elliptic curve over Q of conductor p
associated with f by Eichler and Shimura [27]. Using an auxiliary normalized cuspidal
eigenform g of weight 2 and level �0(p), it is possible to construct a correspondence
Π f

g ∈ CH2(X3 × E f )(Q), which gives rise via push-forward to a generalized modular
parametrization, that is, a natural transformation

Π f
g ,∗ ∶ CH2(X3)0�→CH1(E f )0 = E f .

The Chow–Heegner point associated with the modified diagonal cycle based at a point
e ∈ X(Q) is then defined as

P f
g (e) ∶= Π f

g ,∗(ΔGKS(e)) ∈ E f (Q).

Darmon et al. [7] have studied such points, in the broader context of Shimura
curves over totally real fields, notably by computing their images under the complex
Abel–Jacobi map in terms of iterated integrals. Methods have been developed by
Darmon et al. [5] to numerically calculate such points in the case of modular curves.

Let F ∶= g ⊗ g ⊗ f . We exhibit a correspondence mapping ΔF
GKS(e) to P f

g (e).
When the global root number W(F) is −1, Darmon et al. [7] have studied the
nontorsion properties of P f

g (ξ∞), building on [28]. In the complementary situation
when W(F) = +1, we use Theorem 1.1 and functoriality of Abel–Jacobi maps with
respect to correspondences to deduce the following:

Theorem 1.3 Let f and g be as above, and let F = g ⊗ g ⊗ f . If W(F) = +1, then the
Chow–Heegner point P f

g (e) is torsion in E f (Q), for all e ∈ X(Q).

Theorem 1.3 with e = ξ∞ recovers a result of Daub [8, Theorem 3.3.8] by a different
method in the case of prime level. Similar arguments should work for f not rational.

1.3 Strategy of the proof

The key ingredient in the proof of Theorem 1.1 is the Atkin–Lehner involution wp
of X. The global root number of W(F) is the product of the global root numbers
of f1 , f2, and f3, which are each equal to the negative of their wp-eigenvalue. As a
consequence, the assumption that W(F) equals +1 translates into information about
the action of wp ×wp ×wp on F, and consequently on AJX3(ΔF

GKS(e)), as the latter
lies in the F-isotypic Hecke component of the intermediate Jacobian by functoriality
of the Abel–Jacobi map with respect to correspondences. The work of Mazur [22]
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provides necessary information about the rational points X(Q) and the action of wp
on them.

1.4 Composite square-free level

The arguments of this paper carry over to the more general setting where the level N
is composite, but square-free. This is the situation initially considered in the work of
Gross and Kudla [11]. It becomes necessary to replace eigenforms by newforms.

Let f1 , f2 , f3 be three normalized newforms of weight 2 and level �0(N), and let
F ∶= f1 ⊗ f2 ⊗ f3. The level being square-free guarantees that the local root numbers
Wp(F) for p ∣ N are the products of the local root numbers at p of f1 , f2, and f3, which
are each the negative of their wp-eigenvalue. The Atkin–Lehner correspondences wp ,
p ∣ N , commute with the good Hecke correspondences Tn (i.e., with (n, N) = 1), and
this is sufficient for our purposes (see Remark 2.1). Assume that there exists p ∣ N
for which Wp(F) = −1. Using multiplicity one for newforms, this assumption can
be parlayed into information about the torsion properties of the images of modified
diagonal cycles under Abel–Jacobi maps, as long as one has sufficient understanding
of the action of the Atkin–Lehner involution wp on the rational points of X0(N). The
only rational points on composite level modular curves X0(N) of genus ≥ 2 are the
rational cusps [18]. It is known that the subgroup of the Jacobian J0(N) generated by
the cusps is torsion by the Manin–Drinfeld theorem [20]. It follows that Theorem 1.1
remains true for normalized newforms f1 , f2 , f3 of composite square-free level under
the assumption Wp(F) = −1 for some p ∣ N .

The proof of Theorem 1.3 adapts verbatim to the setting of composite square-free
level, provided that the eigenforms are newforms and Wp(F) = −1 for some p ∣ N .
This recovers [8, Theorem 3.3.8] by a different approach.

Examining Stein’s Table 2 in [5, Appendix], we obtain results similar to Theorem
1.2, e.g., in the following cases:
• N = 57: f corresponds to the elliptic curve with Cremona label 57c, and g corre-

sponds to the curves with labels 57a or 57b.
• N = 58: f corresponds to the elliptic curve with Cremona label 58b, and g corre-

sponds to the curve with label 58a.

1.5 Related work

The approach taken in this paper is explicit and elementary, exploiting the connection
between triple product root numbers and eigenvalues of Atkin–Lehner involutions.
A more powerful approach is considered in the work of Yuan et al. [28], using
Prasad’s dichotomy for the existence of trilinear forms on automorphic representa-
tions. Forthcoming work of Qiu and Zhang [24] further develops this approach and
gives applications.

1.6 Outline

Background on cusp forms of weight 2 is recalled in Section 2. Section 3 recalls facts
about the triple product L-function and states the Beilinson–Bloch conjecture in this
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72 D.T.B.G. Lilienfeldt

setting. Section 4 constitutes the proof of Theorem 1.1. The application to Chow–
Heegner points is given in Section 5. Theorem 1.2 is proved in Section 6.

1.7 Notational conventions

Fix a complex embedding Q↪ C, as well as p-adic embeddings Q↪ Cp for each
rational prime p. In this way, all finite extensions of Q are viewed simultaneously as
subfields of C and Cp . For a field extension F of Q, the subscript F on a group (resp.
Q-algebra) will denote the tensor product with F over Z (resp. Q). For any field K, we
fix an algebraic closure K̄. By a variety X over K, we shall mean an integral separated
scheme of finite type over K. A subvariety is an integral separated closed subscheme.
If F is a field extension of K, XF will denote the base change of X to Spec(F). An
algebraic cycle of codimension r on X is a finite Z-linear combination of subvarieties
of XK̄ of codimension r. The Chow group of codimension r algebraic cycles modulo
K̄-rational equivalence will be denoted CHr(X). It will be viewed as a functor from
the category of field extension of K contained in K̄ to the category of abelian groups
given by the rule

K̄/F/K ↦ CHr(X)(F) ∶= {[Z] ∈ CHr(X)∶ σ(Z) ∼rat Z ,∀σ ∈ AutF(K̄)}.

This convention is borrowed from [7] and differs from the more classical notation of
[10]. Given two varieties X and Y over K, we write Corrr(X , Y) ∶= CHdim X+r(X × Y).

2 Cusp forms

Let p > 3 be a rational prime. Let Y ∶= Y0(p) be the modular curve over Q for
the congruence subgroup �0(p) ⊂ SL2(Z) consisting of matrices which are upper-
triangular modulo p. It admits a canonical proper desingularization Y0(p) ↪ X0(p),
obtained over the complex numbers by adjoining the cusps. The curve X ∶= X0(p) is
a geometrically connected, smooth, and proper curve over Q. It is the coarse moduli
scheme representing pairs (E , H) consisting of a generalized elliptic curve E over
a Q-scheme S, together with a cyclic subgroup scheme H of order p. It admits a
uniformization by the extended Poincaré upper half-plane

H∗�→X(C), τ ↦ (C/Z⊕ τZ, ⟨1/p +Z⊕ τZ⟩),(2.1)

which identifies X(C) with the quotient �0(p)/H∗. There are two cusps ξ∞ and ξ0
on X, which correspond via (2.1) to the points i∞ and 0 of H∗. The genus gX of X is
given by the formula

gX =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌊ p+1
12 ⌋ − 1, if p ≡ 1(mod 12),

⌊ p+1
12 ⌋, otherwise.

(2.2)

The space S2(�0(N)) of weight 2 cusp forms of level �0(p) is naturally identified
with the space of global sections of the sheaf of regular differential 1-forms on X via
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the isomorphism

S2(�0(p)) ∼�→H0(XC , Ω1
X), f ↦ ω f ∶= 2πi f (τ)dτ.(2.3)

In particular, the dimension of S2(�0(p)) is equal to gX .

2.1 Hecke operators

The curve X is equipped with the usual collection of Hecke correspondences, which
act on cohomology and give rise to operators on S2(�0(p)) via (2.3). These corre-
spondences and their induced operators are denoted by Up and Tn , for integers n ≥ 1
coprime to p. Their precise definition can be found in [1, (3.1)].

The curve X also comes equipped with the Atkin–Lehner involution wp . It is
defined, following the moduli description, by mapping a p-isogeny ϕ ∶ E�→E′ of
elliptic curves to its dual isogeny ϕ∨ ∶ E′�→E. In terms of covering spaces, using
(2.1), it is given by τ ↦ − 1

pτ , where τ ∈H. This involution is defined over Q and thus
maps Q-rational points of X to Q-rational points. It induces, via (2.3), an operator on
S2(�0(p)), which we also denote by wp .

The operators Tm , with (m, p) = 1, on S2(�0(p)) commute with the operators
Tn , Up and wp [1, Lemma 17]. Let T ∶= T(p) denote the Q-algebra generated by the
operators Tn , with (n, p) = 1. The space of cusp forms S2(�0(p)) admits a basis of
eigenforms for T [1, Theorem 2].

Let f = ∑n≥1 an( f )qn ∈ S2(�0(p)) be a normalized eigenform, in the sense that
a1( f ) = 1. Because the level is prime, there are no oldforms. As a consequence, we have
the equality of operators Up = −wp . In particular, the operators Up and wp commute.
Note that this is only the case for general composite level when restricting to newforms
[1, Lemma 17]. It follows that wp( f ) = −ap( f ) f . In particular, we have ap( f ) ∈ {±1}.

The normalized eigenform f determines a surjective homomorphism λ f ∶ T�→K f
of algebras by sending Tn to an( f ). Here, K f is the totally real finite extension of Q
generated by the Fourier coefficients an( f ) of f.

Let S2(�0(p)) f denote the f -isotypic component of S2(�0(p)) consisting of cusp
forms f ′ in S2(�0(p)) such that T( f ′) = λ f (T) f ′, for all T ∈ T. By the theorem of
multiplicity one [1, Lemma 20 and 21] of Atkin and Lehner for newforms, the space
S2(�0(p)) f is one-dimensional over C. We have the spectral decomposition

S2(�0(p)) =⊕
h

S2(�0(p))h ,

where the sum is taken over all normalized eigenforms h ∈ S2(�0(p)). Since the dual
space S2(�0(p))∨ is a free TC-module of rank one by multiplicity one, we similarly
obtain a decomposition

TC =⊕
h
TC,h ,

where TC,h denotes the algebra of Hecke operators Tn , with (n, p) = 1, acting on
S2(�0(p))h , which is again a C-vector space of dimension one.

Let [ f ] denote the Gal(Q/Q) orbit of f. Form the complex vector space
⊕g∈[ f ] S2(�0(p))g of dimension d f ∶= [K f ∶ Q], and consider the Q-subspace
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74 D.T.B.G. Lilienfeldt

S2(�0(p))[ f ] of forms with rational coefficients. This Q-vector space is stable under
the action of TQ, and we let TQ,[ f ] denote the Q-algebra generated by the Hecke
operators acting on S2(�0(p))[ f ]. We then have the decomposition

T =⊕
[h]

TQ,[h] ≃⊕
[h]

Kh ,(2.4)

where the sum is taken over all Gal(Q/Q) conjugacy classes of normalized eigenforms
in S2(�0(p)).

Let EndQ(J) denote the ring of endomorphisms defined over Q of the Jacobian
variety J ∶= Pic0

X/Q of X, and let End0
Q(J) ∶= EndQ(J) ⊗Q. As p is prime, we have

End0
Q(J) = T [25, Corollary 3.3]. To summarize, we have the decomposition

End0
Q(J) = T ≃⊕

[h]
Kh .(2.5)

It will be useful to remark that there is a natural ring isomorphism

End0
Q(J) ≃ (CH1(X2)(Q)Q)/(pr∗1 CH1(X)(Q)Q + pr∗2 CH1(X)(Q)Q),(2.6)

by [3, Theorem 11.5.1]. See Section 1.7 for our conventions about Chow groups.

Remark 2.1 The exposition is simplified by the assumption that the level is prime,
which implies that there are no oldforms. We refer to [6, Section 1.6] for the decom-
position (2.4) in the more general setting of composite level N. In this case, the algebra
End0

Q(J) is a product of matrix algebras. It contains T as its center and the full Hecke
algebra as a maximal commutative subalgebra. Moreover, End0

Q(J) is generated as a
Q-algebra by T, together with certain degeneracy operators [17, Theorem 1].

2.2 Hecke projectors

Let f = ∑n≥1 an( f )qn ∈ S2(�0(p)) be a normalized eigenform. Let V ∶= S2(�0(p))∨
be the C-dual of S2(�0(p)). The complex points of the Jacobian JC are

JC(C) = H0(XC , Ω1
X)∨/ Im H1(XC(C),Z),

where Λ ∶= Im H1(XC(C),Z) is viewed as a lattice via integration of differential
forms. By (2.3), we thus have an identification JC(C) = V/Λ as a gX-dimensional
complex torus, where we recall that gX is the genus of X. Let Vf be the subspace of
V on which T acts via the homomorphism λ f ∶ T�→K f , and let pr f ∶ V�→Vf be the
orthogonal projection with respect to the Petersson scalar product. The projector pr f
naturally belongs to TK f = T⊗Q K f , and by (2.5) and (2.6) we may view pr f as an
idempotent element

[t f ] ∈ (CH1(X2)(Q)K f )/(pr∗1 CH1(X)(Q)K f + pr∗2 CH1(X)(Q)K f ),(2.7)

where t f denotes some lift of pr f to CH1(X2)(Q)K f . The correspondence t f is
some choice of K f -linear combination of Hecke correspondences which induces the
projection on cohomology onto the f -isotypic component.
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If we let V[ f ] ∶= ⊕g∈[ f ] Vg and pr[ f ] ∶= ∑g∈[ f ] prg , then pr[ f ] is the orthogonal
projection V�→V[ f ] with respect to the Petersson scalar product. Note that pr[ f ] nat-
urally belongs to the Hecke algebra T, and corresponds under (2.5) to the idempotent
element e[ f ] in ⊕[h] Kh which has 1 as [ f ]-coordinate and 0 as [h]-coordinate for
[h] ≠ [ f ]. By (2.6), we may view pr[ f ] as an idempotent element

[t[ f ]] ∈ (CH1(X2)(Q)Q)/(pr∗1 CH1(X)(Q)Q + pr∗2 CH1(X)(Q)Q),(2.8)

where t[ f ] denotes some lift of pr[ f ] to CH1(X2)(Q)Q.
Let I f be the ideal ker(λ f ) ∩TZ of the integral Hecke algebra TZ (the Z-algebra

generated by the Hecke operators Tn , with (n, p) = 1). The image I f (J) is a subabelian
variety which is stable under TZ and defined over Q. The abelian variety associated
with the Galois orbit [ f ] by Eichler and Shimura [27] is defined as the quotient
A[ f ] ∶= J/I f (J). Let m[ f ] ∈ N be the denominator of pr[ f ] ∈ T, i.e., the smallest
positive integer such that π[ f ] ∶= m[ f ] pr[ f ] belongs to TZ. Then A[ f ] is isomorphic
over C to the complex torus V[ f ]/π[ f ](Λ), and the map π[ f ] ∶ V/Λ�→V[ f ]/π[ f ](Λ)
corresponds to the natural quotient map π[ f ] ∶ J�→A[ f ] of abelian varieties over Q
with kernel I f (J) [6, Lemma 1.46].

3 Triple products

Let f1 = ∑n≥1 an( f1)qn , f2 = ∑n≥1 an( f2)qn , and f3 = ∑n≥1 an( f3)qn be three nor-
malized cuspidal eigenforms of weight 2 and level �0(p), and let F ∶= f1 ⊗ f2 ⊗ f3 be
the associated cusp form of weight (2, 2, 2) for �0(p)3. Let KF = K f1 ⋅ K f2 ⋅ K f3 denote
the compositum of the Hecke fields of the forms f1 , f2 , and f3.

3.1 Triple product L-functions

For i ∈ {1, 2, 3} and a prime �, let λ i be the prime ideal of K f i above � determined by the
embeddings fixed in Section 1.7. Denote by K f i ,λ i the completion of K f i with respect
to λ i , and let V�( f i) ∶ Gal(Q/Q)�→GL2(K f i ,λ i ) be the two-dimensional �-adic Galois
representation associated to f i [6, Theorem 3.1]. We remark that given any choice
of correspondence t f i as in (2.7), the representation V�( f i) admits a description as
(t f i )∗H1

et(X
Q

,Q�) followed by the map induced by the projection K f i ⊗Q��→K f i ,λ i .
The triple product L-function L(F , s) = L( f1 , f2 , f3 , s) is the L-function associated

with the compatible family of eight-dimensional �-adic representations

V�(F) ∶= V�( f1) ⊗ V�( f2) ⊗ V�( f3).

It admits a description as an Euler product converging absolutely for R(s) > 5/2. The
Euler factors are given explicitly in [11, (1.7) and (1.8)].

Define the local L-factor at infinity following the general recipe of [9] by

L∞(F , s) = 24(2π)3−4s�(s − 1)3�(s).

The completed L-function Λ∗(F , s) ∶= (p5) s
2 L∞(F , s)L(F , s) admits an analytic con-

tinuation to the entire complex plane and satisfies the functional equation

Λ∗(F , s) = W(F) ⋅ Λ∗(F , 4 − s),(3.1)
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where W(F) ∈ {±1} is the global root number of F [11, Proposition 1.1]. The global
root number, as stated in [11, Section 1], is given by

W(F) = ap( f1)ap( f2)ap( f3).(3.2)

A detailed proof of this can for instance be found in [19, Proposition 4.5].

3.2 The Beilinson–Bloch conjecture

The center of symmetry of the functional equation (3.1) is the point s = 2 at which
L(F , s) has no pole. Moreover, L∞(F , s) has neither zero nor pole at s = 2, so the
center is a critical point, and we have

W(F) = (−1)ords=2 L(F ,s).(3.3)

For i ∈ {1, 2, 3}, let t f i be a choice of self-correspondence of X lifting the f i -Hecke
projector pr f i

(2.7). Define a self-correspondence of X3 by

tF ∶= t f1 ⊗ t f2 ⊗ t f3 = pr∗14(t f1) ⋅ pr∗25(t f2) ⋅ pr∗36(t f3) ∈ Corr0(X3 , X3)(Q)KF ,(3.4)

where pri j ∶ X6�→X2 denotes the natural projection to the ith and jth components.

Remark 3.1 The correspondence tF is some choice of KF -linear combination of
tensor products of Hecke correspondences projecting to the 1-dimensional F-isotypic
component of the (T⊗3 ⊗R)-module H0(X3 , Ω3

X3) ⊗R = H0(X , Ω1
X)⊗3 ⊗R.

The Beilinson–Bloch conjecture [4] predicts in this setting that

ords=2 L(F , s) = dimKF (tF)∗(CH2(X3)0(Q)KF ).(3.5)

In the case when W(F) = +1, Gross and Kudla proved a formula for the central
value L(F , 2), expressing it as a product of a complex period and an algebraic number
[11, Proposition 10.8]. This algebraic number admits an explicit description in terms
of the coefficients of the Jacquet–Langlands transfers of f1 , f2 , and f3 to the definite
quaternion algebra ramified at p and ∞.

In the case when W(F) = −1, the L-function L(F , s) vanishes to odd order at its
centre s = 2. By (3.5), we expect (tF)∗(CH2(X3)0(Q)KF ) to have dimension greater
or equal to 1. A natural element of CH2(X3)0(Q) to consider is the modified diagonal
cycle, also referred to as the Gross–Kudla–Schoen cycle, which we now define.

Let Δ denote the image of X under the diagonal embedding X�→X3, i.e.,

Δ = {(x , x , x) ∣ x ∈ X} ⊂ X3 .(3.6)

In order to get a null-homologous cycle, we apply a projector to Δ following [11, 12].

Definition 3.1 Let C be a smooth, projective, and geometrically connected curve
over a number field k, and let e be a point in X(k̄). For any nonempty subset T of
{1, 2, 3}, let T ′ denote the complementary set. Write pT ∶ C3�→C∣T ∣ for the natural
projection map and let qT(e) ∶ C∣T ∣�→C3 denote the inclusion obtained by filling in
the missing coordinates using the point e. Let PT(e) denote the graph of qT(e) ○ pT
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viewed as a codimension 3 cycle on the product C3 × C3. Define the Gross–Kudla–
Schoen projector

PGKS(e) ∶= ∑
T
(−1)∣T

′∣PT(e) ∈ CH3(C3 × C3)(k̄),

where the sum is taken over all subsets of {1, 2, 3}. This is an idempotent in the
ring of correspondences of C3 with the property that it annihilates the cohomology
groups H i(C3

C(C),Z), for i ∈ {4, 5, 6}, and maps H3(C3
C(C),Z) onto the Künneth

summand H1(CC(C),Z)⊗3 [12, Corollary 2.6].

Given a point e ∈ X(Q), the Gross–Kudla–Schoen cycle with base point e is

ΔGKS(e) ∶= PGKS(e)∗(Δ) ∈ CH2(X3)0(Q).(3.7)

Note that the cycle ΔGKS(e) is in fact null-homologous since PGKS(e) annihilates
H4(X3

C(C),Z), the target of the cycle class map. Define the “F-isotypic component”
of the Gross–Kudla–Schoen cycle by (tF)∗ΔGKS(e) ∈ CH2(X3)0(Q)KF .

Remark 3.2 Although tF is not unique, the difference tF − t′F of two such projectors
annihilates H0(X3

C , Ω3
X3). Conditional on the nondegeneracy of the Beilinson–Bloch

height pairing for X2, this implies that (tF)∗ΔGKS(e) = (t′F)∗ΔGKS(e). Uncondition-
ally, the Beilinson–Bloch height of (tF)∗ΔGKS(e) is independent of the choice of tF
[12, Proposition 8.3, Notes 8.5 and 8.6].

Gross and Kudla [11, Conjecture 13.2] conjectured the formula

L′(F , 2)
ΩF

= ⟨(tF)∗(ΔGKS(ξ∞)), (tF)∗(ΔGKS(ξ∞))⟩BB ,(3.8)

where ⟨ , ⟩BB ∶ CH2(X3)0(Q)R ×CH2(X3)0(Q)R�→R denotes the Beilinson–Bloch
height pairing [11, (13.9)], and ΩF ∶= ∥ω f1∥2 ⋅ ∥ω f2∥2 ⋅ ∥ω f3∥2/(4πp) is the complex
period of F with ∥ ⋅ ∥ denoting the Petersson norm. A proof of (3.8) due to Yuan et al.
was announced in [28].

4 Abel–Jacobi maps

Let f1 , f2 , f3 be three normalized eigenforms in S2(�0(p)), and let F = f1 ⊗ f2 ⊗ f3.
We work under the following assumption on the sign of the functional
equation (3.1).

Assumption 4.1 W(F) = +1.

Under Assumption 4.1, the L-function L(F , s) vanishes to even order at the central
critical point s = 2, by (3.3), and the Beilinson–Bloch conjecture (3.5) predicts that
the algebraic rank of the F-isotypic component of CH2(X3)0(Q) is even. Comparing
with the situation of Heegner points on modular curves studied in [13], it seems
reasonable to expect that the F-isotypic component of ΔGKS(e) is trivial, for all
e ∈ X(Q). While this appears to be difficult to show directly in the Chow group, we
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can prove the corresponding statement for the image of the cycle under the complex
Abel–Jacobi map

AJX3 ∶ CH2(X3
C)0(C)�→J2(X3

C) ∶=
(Fil2 H3

dR(X3
C))∨

Im H3(X3
C
(C),Z) ,(4.1)

whose target is the second Griffiths intermediate Jacobian of X3
C. This map is a higher

dimensional generalization of the familiar Abel–Jacobi isomorphism for curves. It is
defined by the integration formula

AJX3(Z)(α) ∶= ∫
∂−1(Z)

α, for all α ∈ Fil2 H3
dR(X3

C),

where ∂−1(Z) denotes any continuous 3-chain in X3
C(C) whose image under the

boundary map ∂ is Z.

Definition 4.1 Given a point e in X(Q) and a choice of correspondence tF (3.4)
projecting to the F-isotypic component of H0(X3 , Ω3

X3) ⊗R, define the F-isotypic
component of the Abel–Jacobi image of the Gross–Kudla–Schoen cycle by

AJF
X3(ΔGKS(e)) ∶= AJX3((tF)∗(ΔGKS(e))) ∈ J2(X3

C)KF .

Remark 4.2 Definition 4.1 is independent of the choice of tF , as AJX3 is functorial
and any two such projectors act similarly on cohomology.

Henceforth, we fix a choice of projector tF = t f1 ⊗ t f2 ⊗ t f3 . The aim of this section
is to prove the main result:

Theorem 4.3 Let f1 , f2, and f3 be three normalized eigenforms in S2(�0(p)), denote
by F = f1 ⊗ f2 ⊗ f3 their triple product, and suppose that F satisfies Assumption 4.1.
Then AJF

X3(ΔGKS(e)) = 0 in J2(X3
C)KF , for all e ∈ X(Q).

Remark 4.4 Similar arguments to the ones presented in the proof of Theorem 4.3
below can be used to prove that the image of (tF)∗(ΔGKS(e)) under Bloch’s [4] �-adic
étale Abel–Jacobi map

AJet
X3 ∶ CH2(X3)0(Q)�→H1(Q, H3

et(X3
Q

,Q�(2)))(4.2)

is torsion, when the global root number is W(F) = +1. It is conjectured that for any
smooth proper variety over a number field, and for any prime �, the �-adic Abel–
Jacobi maps in any codimension are injective up to torsion [16, Conjecture 9.15].
Thus, conditional on this conjecture, (tF)∗(ΔGKS(e)) is trivial in the Chow group
CH2(X3)0(Q)KF .

The rest of this section constitutes the proof of Theorem 4.3. We distinguish
different situations depending on the genus gX of X, which we recall is given by the
formula (2.2). The curve X has genus zero exactly when p ∈ {2, 3, 5, 7, 13}. In this case,
the space of cusp forms S2(�0(p)) is trivial, and there is no triple product L-function
to consider in the first place. We have ΔGKS(e) = 0 in CH2(X3)0(Q), as the cycle class
map is injective in this case [12, Proposition 4.1].
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4.1 The genus one case

Suppose that gX = 1, i.e., p ∈ {11, 17, 19}. In this case, X is an elliptic curve over Q of
Mordell–Weil rank 0. For all e ∈ X(Q), we have 6ΔGKS(e) = 0 in CH2(X3)0(Q) [12,
Corollary 4.7]. On the L-function side, f1 = f2 = f3 = f is the normalized eigenform
corresponding to the elliptic curve X. By [11, (11.8)] the triple product L-function
decomposes as

L(F , s) = L(Sym3 f , s)L( f , s − 1)2 .

Note that W(F) = ap( f )3 = ap( f ) = W( f ) = +1 by (3.2) and the fact that the sign of
the functional equation of L( f , s) centered at s = 1 is equal to+1, since X has Mordell–
Weil rank 0. For each p ∈ {11, 17, 19}, we have L(F , 2) ≠ 0 [11, Tables 12.5–12.7]. In
other words, ords=2(L(F , s)) = 0. The fact that ΔGKS(e) is torsion in the Chow group
is therefore consistent with the Beilinson–Bloch conjecture (3.5).

4.2 The higher genus case

Suppose that gX ≥ 2. It will be convenient to sometimes view the Atkin–Lehner
involution wp of Section 2.1 as a correspondence by taking its graph. By slight abuse of
notation, we will write wp ∈ Corr0(X , X)(Q). The operator wp naturally belongs to
the Hecke algebra T by (2.5), and commutes with the Hecke operators. The modular
forms f j , with j ∈ {1, 2, 3}, are eigenforms for the operator wp with eigenvalues given
by −ap( f j) respectively (see Section 2.1).

Consider the involution up ∶= wp ×wp ×wp of X3. By taking its graph, it may be
viewed as a correspondence, and we write again up ∈ Corr0(X3 , X3)(Q), by slight
abuse of notation. Note that, as correspondences, we have

up = wp ⊗wp ⊗wp ∶= pr∗14(wp) ⋅ pr∗25(wp) ⋅ pr∗36(wp) ∈ Corr0(X3 , X3)(Q).

The map up induces an involution on cohomology via pull-back, hence an involution
on the space of cusp forms of weight (2, 2, 2) for �0(p)3. By (3.2), we see that

u∗p(F) = −W(F) ⋅ F .(4.3)

Lemma 4.5 We have (up)∗(ΔGKS(e)) = ΔGKS(wp(e)), for any e ∈ X(Q).

Proof The induced map (up)∗ ∶ CH2(X3)�→CH2(X3) on Chow groups simply
maps a cycle to its image under up . We have up(Δ) = Δ, since up is an automor-
phism of X3. However, up(PT(e)∗(Δ)) = PT(wp(e))∗(Δ) for any proper subset
T of {1, 2, 3}. ∎

Proposition 4.6 Let f1 , f2, and f3 be three normalized eigenforms in S2(�0(p)),
denote by F = f1 ⊗ f2 ⊗ f3 their triple product, and suppose that F satisfies Assumption
4.1. For any point e ∈ X(Q), we have AJF

X3(ΔGKS(e)) = −AJF
X3(ΔGKS(wp(e))).
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Proof By functoriality of Abel–Jacobi maps with respect to correspondences, we
have

AJX3((up)∗(tF)∗(ΔGKS(e))) = (u∗p)∨AJF
X3(ΔGKS(e)).(4.4)

For i ∈ {1, 2, 3}, wp commutes with t f i as self-correspondences of X up to vertical and
horizontal divisors, by (2.5) and (2.6). This implies that

up ○ tF = (wp ○ t f1) ⊗ (wp ○ t f2) ⊗ (wp ○ t f3)
= (t′f1

○wp) ⊗ (t′f2
○wp) ⊗ (t′f3

○wp) = t′F ○ up ,

where t′F = t′f1
⊗ t′f2

⊗ t′f3
is possibly another F-isotypic projector. In particular, using

Lemma 4.5, we obtain

(up)∗(tF)∗(ΔGKS(e)) = (t′F)∗(up)∗(ΔGKS(e)) = (t′F)∗(ΔGKS(wp(e))).

The left hand side of (4.4) is thus equal to AJF
X3(ΔGKS(wp(e))) by Remark 4.2.

On the other hand, AJF
X3(ΔGKS(e)) lies in (t∗F)∨(J2(X3

C)) by functoriality of the
complex Abel–Jacobi map with respect to correspondences, that is, in the F-isotypic
Hecke component of the intermediate Jacobian. The triple product Hecke algebraT⊗3

acts via correspondences on the latter by multiplication by the Hecke eigenvalues of
F. For any α ∈ Fil2 H3

dR(X3
C), we have the equality

(u∗p)∨AJF
X3(ΔGKS(e))(α) = AJX3(ΔGKS(e))(u∗p(t∗F(α))).

The operator up inT⊗3 acts via pull-back on the F-isotypic component (tF)∗H3
dR(X3

C)
as multiplication by −W(F) by (4.3). In particular, u∗p(t∗F(α)) = −W(F)t∗F(α). By
Assumption 4.1, the right hand side of (4.4) is thus −AJF

X3(ΔGKS(e)). ∎

Mazur proved, for gX ≥ 2 and p /∈ {37, 43, 67, 163}, that X(Q) = {ξ∞ , ξ0}, where
we recall that ξ∞ and ξ0 denote the two cusps of X [22, Theorem 1]. Moreover, the
modular curve X0(37) has two noncuspidal Q-rational points, while X0(p) has a
unique noncuspidal Q-rational point, for p ∈ {43, 67, 163}.

Corollary 4.7 Let f1 , f2, and f3 be three normalized eigenforms in S2(�0(p)), denote
by F = f1 ⊗ f2 ⊗ f3 their triple product, and suppose that F satisfies Assumption 4.1. If
p belongs to {43, 67, 163}, and e denotes the unique noncuspidal Q-rational point of X,
then AJF

X3(ΔGKS(e)) = 0.

Proof The involution wp maps Q-rational points to Q-rational points and per-
mutes the two cusps ξ∞ to ξ0. It therefore fixes the noncuspidal point e, and the result
follows from Proposition 4.6. ∎

Corollary 4.8 Let f1 , f2, and f3 be three normalized eigenforms in S2(�0(p)), denote
by F = f1 ⊗ f2 ⊗ f3 their triple product, and suppose that F satisfies Assumption 4.1. If
gX ≥ 2, then AJF

X3(ΔGKS(ξ∞)) = AJF
X3(ΔGKS(ξ0)) = 0.

Proof Gross and Schoen [12, Proposition 3.6] have constructed a correspondence
Ξ in Corr1(X , X3)(Q) with the property that the natural transformation induced by
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push-forward

Ξ∗ ∶ CH1(X) = Pic(X)�→CH2(X3)(4.5)

sends the rational equivalence class of a divisor ∑m(e)e to ∑m(e)ΔGKS(e).
In particular, the cycle ΔGKS(ξ∞) − ΔGKS(ξ0) in CH2(X3)0(Q) depends only
on the class of the degree zero divisor (ξ∞) − (ξ0) in CH1(X)0(Q) = J(Q).
By Manin–Drinfeld [20], the divisor (ξ∞) − (ξ0) is torsion in the Jacobian J.
It follows that ΔGKS(ξ∞) − ΔGKS(ξ0) is torsion in CH2(X3)0(Q), and in par-
ticular AJF

X3(ΔGKS(ξ∞)) −AJF
X3(ΔGKS(ξ0)) = 0 in J2(X3

C)KF . The involution wp
permutes the cusps ξ∞ and ξ0. By Proposition 4.6, we thus have the equality
AJF

X3(ΔGKS(ξ∞)) = −AJF
X3(ΔGKS(ξ0)), and the proof is complete. ∎

4.3 The case p = 37

To complete the proof of Theorem 4.3, the only remaining case is the one where p = 37
and the chosen base point is a noncuspidal Q-rational point. The curve X0(37) has
been extensively studied by Mazur and Swinnerton-Dyer [23, Section 5]. It has genus
2 and is therefore hyperelliptic. Its hyperelliptic involution will be denoted by S. In
particular, for all points e in X0(37)(Q), we have 6ΔGKS(e) = 0 in the Griffiths group
Gr2(X0(37)3) of null-homologous algebraic cycles modulo algebraic equivalence [12,
Corollary 4.9]. The involution S is distinct from the Atkin–Lehner involution w37, as
the quotient X0(37)/w37 has genus 1. Since S commutes with every automorphism
of X0(37) [23, p. 27], it commutes in particular with w37, and we can define another
involution T = S ○w37 = w37 ○ S. Let γ0 = T(ξ0) and γ∞ = T(ξ∞) be the images of
the two cusps by T. By [23, Proposition 2], we have

X0(37)(Q) = {ξ0 , ξ∞ , γ0 , γ∞} and w37(γ0) = γ∞.(4.6)

We now complete the proof of Theorem 4.3.

Corollary 4.9 Let f1 , f2, and f3 be three normalized eigenforms in S2(�0(37)), denote
by F = f1 ⊗ f2 ⊗ f3 their triple product, and suppose that F satisfies Assumption 4.1.
Then

AJF
X0(37)3(ΔGKS(γ0)) = AJF

X0(37)3(ΔGKS(γ∞)) = 0.

Proof By (4.6), the Atkin–Lehner involution w37 interchanges γ0 and γ∞. By
Proposition 4.6, we have AJF

X0(37)3(ΔGKS(γ0)) = −AJF
X0(37)3(ΔGKS(γ∞)). The ele-

ment

2 AJF
X0(37)3(ΔGKS(γ0)) = AJX0(37)3((tF)∗(ΔGKS(γ0) − ΔGKS(γ∞)))

in J2(X0(37)3
C)KF depends only on the class of (γ0) − (γ∞) in J0(37)(Q) by the

existence of (4.5). But this class is the image of the class of (ξ0) − (ξ∞) by the
involution of J0(37) obtained from T by push-forward. The latter class is torsion by
the Manin–Drinfeld theorem [20]. ∎
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5 Chow–Heegner points

Let f be a normalized eigenform in S2(�0(p)) with rational coefficients, and let E f
be the optimal elliptic curve quotient of J associated with f by the Eichler–Shimura
construction [27]. Following Section 2.2, denote by π f ∶ J�→E f the natural quotient
map with connected kernel. It is induced by the element

[m f t f ] ∈ CH1(X2)(Q)/(pr∗1 CH1(X)(Q) + pr∗2 CH1(X)(Q)),

where m f ∈ N denotes the denominator of pr f ∈ T.

Remark 5.1 To the best of the author’s knowledge, it is unknown whether there are
finitely or infinitely many elliptic curves over Q of prime conductor. It is a result of
Setzer [26, Theorem 2] that, given a prime p distinct from 2, 3, and 17, there is an
elliptic curve of conductor p over Q with a rational 2-torsion point if and only if
p = u2 + 64 for some rational integer u. A conjecture of Hardy and Littlewood [14,
Conjecture F] implies that there are infinitely many values of u such that u2 + 64
is prime. Thus, conditional on this conjecture of Hardy and Littlewood, there are
infinitely many primes p which occur as the conductor of an elliptic curve over Q.
This is explained in detail in the preprint [15].

Let g be an auxiliary normalized eigenform in S2(�0(p)). Following the notations
of Section 2.2, recall that pr[g] ∈ T denotes the [g]-isotypic Hecke projector. Define
the [g]-isotypic component End0

Q(J)[g] ∶= pr[g] ⋅End0
Q(J) and let CH1(X2)[g]Q

be the group of cycles mapping to End0
Q(J)[g] under (2.6) modulo vertical and

horizontal divisors. Let t[g] be an element of CH1(X2)[g]Q mapping to pr[g].
For any correspondence Z ∈ CH1(X2)(Q), define

ΠZ ∶= pr∗12(Z) ⋅ pr∗34(Δ) ∈ CH2(X4)(Q),

where Δ ∈ CH1(X2)(Q) is the diagonal cycle. It induces a push-forward map

ΠZ ,∗ ∶ CH2(X3)0(L)�→CH1(X)0(L) = J(L)

for any field extension L of Q. For e ∈ X(Q), define the point

PZ(e) ∶= ΠZ ,∗(ΔGKS(e)) ∈ J(Q).

Remark 5.2 The association of a point in J to a self-correspondence is well-defined
modulo vertical and horizontal divisors [8, Ex. 3.1.7]. Associate to Z ∈ CH1(X2)(Q)Q
a point PZ(e) ∶= PmZ(e) ⊗ 1/m ∈ J(Q)Q, where m ∈ N such that mZ ∈ CH1(X2)(Q).

By composing correspondences, we can define

ΠZ ,t f ∶= (m f t f ) ○ ΠZ = pr∗12(Z) ⋅ pr∗34(m f t f ) ∈ Corr−1(X3 , X)(Q).(5.1)

This induces, in the terminology of [2], a generalized modular parametrization

Π f
Z ∶= ΠZ ,t f ,∗ = π f ○ ΠZ ,∗ ∶ CH2(X3)0(L)�→E f (L),
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independent of the choice of t f . Given e ∈ X(Q), we define the Chow–Heegner point

P f
Z(e) ∶= Π f

Z(ΔGKS(e)) = π f (PZ(e)) ∈ E f (Q).

By Remark 5.2, we can define the Chow–Heegner point associated with f and [g]
by

P f
[g](e) ∶= P f

t[g]
(e) ∈ E f (Q)Q .

Concretely, we have

P f
[g](e) = π f (Πm[g] t[g] ,∗(ΔGKS(e))) ⊗ 1/m[g] ∈ E f (Q)Q ,

where m[g] is the denominator of pr[g].
Building on the work of Yuan et al. [28], Darmon et al. proved the following in [7]:

Theorem 5.3 Assume that g ≠ f , W( f ) = −1, and W(Sym2 g ⊗ f ) = +1. The sub-
space

⟨P f
T(ξ∞) ∶ T ∈ CH1(X2)[g]Q⟩ ⊂ E f (Q)Q

is nonzero if and only if

ords=1 L( f , s) = 1 and ords=2 L(Sym2(gσ) ⊗ f , s) = 0, ∀ σ ∶ Kg ↪ C.

Proof This is a particular case of [7, Theorem 3.7]. ∎

Remark 5.4 The triple product L-function attached to (g , g , f ) decomposes as

L(g , g , f , s) = L( f , s − 1)L(Sym2 g ⊗ f , s),

and therefore the assumptions of Theorem 5.3 imply in particular that
W(g , g , f ) = −1.

Remark 5.5 When g equals f, (t⊗3
f )∗(ΔGKS(e)) is the Gross–Kudla–Schoen cycle

in CH2(E3
f )0(Q) based at π f (e), which is torsion by [12, Corollary 4.7]. The resulting

Chow–Heegner point is then trivial by (5.2), whence the assumption in Theorem 5.3.

In the complementary setting where W(g , g , f ) = +1, we now prove the following:

Theorem 5.6 If E f admits split multiplicative reduction at p, then P f
[g](e) is trivial

in E f (Q)Q, for all e ∈ X(Q). Equivalently, m2
[g]P

f
[g](e) is torsion in E f (Q), for all

e in X(Q).

Proof Following Section 2.2, we have t[g] = ∑h∈[g] th , and thus

t[g] ⊗ t[g] ⊗ t f = ∑
h1 ,h2∈[g]

th1 ⊗ th2 ⊗ t f .
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By (3.2), for any h1 , h2 ∈ [g], the global root number of the triple product L-function
L(h1 , h2 , f , s) is given by W(h1 , h2 , f ) = ap(h1)ap(h2)ap( f ). The pth Fourier coef-
ficient of a normalized cuspidal eigenform is the negative of the wp-eigenvalue of
the form, hence it belongs to {±1}. In particular, since this coefficient belongs to Q,
it is fixed by the action of Gal(Q/Q), and thus ap(g) = ap(h1) = ap(h2) ∈ {±1}. It
follows that W(h1 , h2 , f ) = ap( f ) = ap(E f ). We have ap(E f ) = 1, since E f admits
split multiplicative reduction at p, and the triple (h1 , h2 , f ) satisfies Assumption
4.1. By Theorem 4.3, for any e ∈ X(Q), AJX3((th1 ⊗ th2 ⊗ t f )∗(ΔGKS(e))) is trivial
in the intermediate Jacobian. Thus, AJX3((t[g] ⊗ t[g] ⊗ t f )∗(ΔGKS(e))) is trivial in
J2(X3

C)Q, or equivalently, AJX3((m[g]t[g] ⊗ m[g]t[g] ⊗ m f t f )∗(ΔGKS(e))) is torsion
in J2(X3

C).
Define the cycle Π ∶= pr∗12(Δ) ⋅ pr∗34(Δ) ∈ CH2(X4)(Q). Viewing

m[g]t[g] ⊗ m[g]t[g] ⊗ m f t f in Corr0(X3 , X3)(Q) and Π in Corr−1(X3 , X)(Q), we
compute

Π ○ (m[g]t[g] ⊗ m[g]t[g] ⊗ m f t f ) = pr∗12(m[g]t[g] ○ m[g]t[g]) ⋅ pr∗34(m f t f )
= m[g]Πm[g] t′

[g] ,t f ,

as elements of Corr−1(X3 , X)(Q), where t′[g] is possibly another [g]-projector arising
from the fact that t[g] is an idempotent element of the ring of self-correspondences
modulo vertical and horizontal divisors. We deduce the equality of points in
E f (Q)Q

Π∗(m[g]t[g] ⊗ m[g]t[g] ⊗ m f t f )∗(ΔGKS(e)) ⊗ 1/m2
[g] = P f

[g](e).(5.2)

By functoriality of Abel–Jacobi maps with respect to correspondences, the diagram

(5.3)
CH2(X3

C)0(C) J2(X3
C)

E f (C) J1(E f ,C)

AJX3

Π∗ (Π∗)∨

∼

AJE f

commutes. Here, J1(E f ,C) = H0(E f (C), Ω1
E f
)∨/ Im H1(E f (C),Z) is the Jacobian of

E f , and AJE f is the classical Abel–Jacobi isomorphism for the elliptic curve E f given
by

AJE f (P)(α) ∶= ∫
P

O
α, for all α ∈ H0(E f (C), Ω1

E f
),

where O is the origin of E f . By (5.2) and (5.3), we have the equality in J1(E f ,C)

AJE f (m2
[g]P

f
[g](e)) = (Π∗)∨AJX3((m[g]t[g] ⊗ m[g]t[g] ⊗ m f t f )∗(ΔGKS(e))).

(5.4)

The result follows from the facts that AJX3((m[g]t[g] ⊗ m[g]t[g] ⊗ m f t f )∗(ΔGKS(e)))
is torsion and AJE f is an isomorphism. ∎
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Remark 5.7 Theorem 5.6 with e = ξ∞ is a special case of [8, Theorem 3.3.8]. In his
thesis [8], Daub proved more generally for composite level N that if the local root
number Wp(g , g , f ) = −1 for some p ∣ N , then the resulting Chow–Heegner points
based at ξ∞ are torsion. His proof relies on an identification of these points with Zhang
points [29]. As explained in the introduction (Section 1.4), our method works for
composite level N.

6 Example of a nontrivial torsion element

Techniques were developed in [5] to numerically calculate Chow–Heegner points
associated with modified diagonal cycles. The algorithms are based on a formula for
the image of these cycles under the complex Abel–Jacobi map (4.1) proved in [7]. Most
of the examples calculated in [5] concern the situation where the elliptic curve E f has
algebraic rank equal to 1. In particular, the global root number of E f is −1, and this is
not the setting studied in the present paper. However, in the appendix of [5] by Stein,
some examples are computed for which the rank of E f is 0. In particular, we deduce
the following:

Theorem 6.1 Let f and g be the normalized eigenforms of weight 2 and level �0(37)
corresponding to the elliptic curves with Cremona labels 37b and 37a, and define
F ∶= g ⊗ g ⊗ f . Then AJX0(37)3((2tg ⊗ 2tg ⊗ 2t f )∗(ΔGKS(ξ∞))) is a nontrivial
6-torsion element of J2(X0(37)3

C).

Proof In [5, Appendix], it is verified numerically in this case that mg P f
g (ξ∞) is a

point of order 3 in E f (Q). By inspecting the first few Fourier coefficients of f and
g, we see that mg = m f = 2 (see [5, Section 5.1]). The point 4P f

g (ξ∞) ∈ E f (Q) has
order 3, and by (5.4) AJX0(37)3((2tg ⊗ 2tg ⊗ 2t f )∗(ΔGKS(ξ∞))) is thus nontrivial in
J2(X0(37)3

C).
The element 2 AJX0(37)3((2tg ⊗ 2tg ⊗ 2t f )∗(ΔGKS(ξ∞))) is equal by Proposition

4.6 to AJX0(37)3((2tg ⊗ 2tg ⊗ 2t f )∗(ΔGKS(ξ∞) − ΔGKS(ξ0))), and depends only on
the class of (ξ∞) − (ξ0) in J0(37)(Q) by existence of (4.5). The latter has order 3 [21,
Theorem 1]. ∎

Acknowledgment The author thanks H. Darmon, B. H. Gross, and A. Shnidman
for helpful comments, as well as C. Qiu and W. Zhang for answering questions related
to their work. The author was supported by the Institut des Sciences Mathématiques
at McGill University, and by an Emily Erskine Endowment Fund Postdoctoral Fel-
lowship at the Hebrew University. The author thanks the anonymous referee for their
valuable feedback and suggestions.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m). Math. Ann. 185(1970), 134–160.
[2] M. Bertolini, H. Darmon, and K. Prasanna, Chow–Heegner points on CM elliptic curves and values

of p-adic L-functions. Int. Math. Res. Not. IMRN 3(2014), 745–793.

https://doi.org/10.4153/S000843952200011X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952200011X


86 D.T.B.G. Lilienfeldt

[3] C. Birkenhake and H. Lange, Complex abelian varieties, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 302, Springer-Verlag, Berlin,
1992.

[4] S. Bloch, Algebraic cycles and values of L-functions. J. Reine Angew. Math. 350(1984), 94–108.
[5] H. Darmon, M. Daub, S. Lichtenstein, and V. Rotger, Algorithms for Chow-Heegner points via

iterated integrals. Math. Comp. 84(2015), no. 295, 2505–2547.
[6] H. Darmon, F. Diamond, and R. Taylor, Fermat’s last theorem. In Current developments in

mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 1–154.
[7] H. Darmon, V. Rotger, and I. Sols, Iterated integrals, diagonal cycles and rational points on elliptic

curves. In Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2012/2,
volume 2012/ of Publ. Math. Besançon Algèbre Théorie Nr., Presses Univ. Franche-Comté,
Besançon, 2012, pp. 19–46.

[8] M. W. Daub, Complex and p-adic Computations of Chow-Heegner Points. ProQuest LLC, Ann
Arbor, MI. Ph.D. Thesis, University of California, 2013.

[9] P. Deligne, Les constantes des équations fonctionnelles des fonctions L. In Modular functions of one
variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in
Math., 349, Springer, Berlin, Heidelberg, 1973, pp. 501–597.

[10] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in
Mathematics and Related Areas (3)], 2, Springer-Verlag, Berlin, 1984.

[11] B. H. Gross and S. S. Kudla, Heights and the central critical values of triple product L-functions.
Compositio Math. 81(1992), no. 2, 143–209.

[12] B. H. Gross and C. Schoen, The modified diagonal cycle on the triple product of a pointed curve.
Ann. Inst. Fourier (Grenoble) 45(1995), no. 3, 649–679.

[13] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84(1986), no.
2, 225–320.

[14] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a
number as a sum of primes. Acta Math. 44(1923), no. 1, 1–70.

[15] S. Howe and K. Joshi, Asymptotics of conductors of elliptic curves over Q. Preprint, 2015.
arXiv:1201.4566

[16] U. Jannsen, Mixed motives and algebraic K-theory, Lecture Notes in Mathematics, 1400,
Springer-Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen.

[17] E. Kani, Endomorphisms of Jacobians of modular curves. Arch. Math. (Basel) 91(2008), no. 3,
226–237.

[18] M. A. Kenku, On the modular curves X0(125), X1(25) and X1(49). J. London Math. Soc. (2)
23(1981), no. 3, 415–427.

[19] D. T.-B. G. Lilienfeldt, Algebraic cycles and Diophantine geometry: generalised Heegner cycles,
quadratic Chabauty and diagonal cycles. Ph.D. Thesis, McGill University, 2021.

[20] J. I. Manin, Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat.
36(1972), 19–66.

[21] B. Mazur, Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47(1978),
33–186, 1977. With an appendix by Mazur and M. Rapoport.

[22] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math.
44(1978), no. 2, 129–162.

[23] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25(1974), 1–61.
[24] C. Qiu and W. Zhang, Injectivity of the Abel–Jacobi map and Gross–Kudla–Schoen cycles. In

preparation.
[25] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields. Ann. of Math. (2)

101(1975), 555–562.
[26] B. Setzer, Elliptic curves of prime conductor. J. London Math. Soc. (2) 10(1975), 367–378.
[27] G. Shimura, Correspondances modulaires et les fonctions ζ de courbes algébriques. J. Math. Soc.

Japan 10(1958), 1–28.
[28] X. Yuan, S. Zhang, and W. Zhang, Triple product L-series and Gross–Kudla–Schoen cycles. Preprint,

2012. http://math.mit.edu/~wz2113/math/online/triple.pdf
[29] S. Zhang, Arithmetic of Shimura curves. Sci. China Math. 53(2010), no. 3, 573–592.

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
e-mail: davidterborchgram.lilienfeldt@mail.huji.ac.il

https://doi.org/10.4153/S000843952200011X Published online by Cambridge University Press

https://arxiv.org/abs/1201.4566
http://math.mit.edu/~wz2113/math/online/triple.pdf
mailto:davidterborchgram.lilienfeldt@mail.huji.ac.il
https://doi.org/10.4153/S000843952200011X

	1 Introduction
	1.1 Main results
	1.2 Application to Chow–Heegner points
	1.3 Strategy of the proof
	1.4 Composite square-free level
	1.5 Related work
	1.6 Outline
	1.7 Notational conventions

	2 Cusp forms
	2.1 Hecke operators
	2.2 Hecke projectors

	3 Triple products
	3.1 Triple product L-functions
	3.2 The Beilinson–Bloch conjecture

	4 Abel–Jacobi maps
	4.1 The genus one case
	4.2 The higher genus case
	4.3 The case p=37

	5 Chow–Heegner points
	6 Example of a nontrivial torsion element

