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Abstract
The problem of inverting the total divergence operator is central to finding components of a given conservation law.
This might not be taxing for a low-order conservation law of a scalar partial differential equation, but integrable
systems have conservation laws of arbitrarily high order that must be found with the aid of computer algebra. Even
low-order conservation laws of complex systems can be hard to find and invert. This paper describes a new, efficient
approach to the inversion problem. Two main tools are developed: partial Euler operators and partial scalings. These
lead to a line integral formula for the inversion of a total derivative and a procedure for inverting a given total
divergence concisely.

1. Introduction

Around 20 years ago, Stephen Anco and George Bluman [2, 3] introduced a comprehensive practical
method for determining conservation laws of partial differential equations (PDEs) in Kovalevskaya form.
The method is based on finding adjoint symmetries and applying Helmholtz conditions.1 A key part
of the calculation is the inversion of the total divergence operator Div to obtain the components of
the conservation law. Usually, this can be done by using a homotopy operator, but the following three
problems may occur with the standard homotopy formula (which is given by Olver in [8]).

1. The homotopy formula uses definite integrals. This works well if the divergence is a differential
polynomial; by contrast, rational polynomials commonly have a singularity at one limit. Hickman
[7] and Poole & Hereman [9] suggest avoiding these by working in terms of indefinite integrals,
an approach that we use throughout this paper. Alternatively, one can move the singularity by
modifying the dependent variable (see Anco & Bluman [3] and Poole & Hereman [9]).

2. Scaling is fundamental to the homotopy approach to inversion. For instance, varying the scaling
parameter in the standard homotopy formula moves contributions from variables along a ray to the
origin. However, scaling does not change rational polynomials that are homogeneous of degree
zero, so the standard inversion process does not work for such terms. Deconinck & Nivala [5]
discussed this problem in some detail (for one independent variable only) and suggested possible
workarounds, but commented, ‘We are unaware of a homotopy method that algorithmically avoids
all problems like the ones demonstrated . . .’. Poole & Hereman [9] proposed an approach that

1The deep theoretical foundation for this approach is discussed in Olver [8]. For a recent review of the method and its exten-
sion beyond equations in Kovalevskaya form, see Anco [1]. In particular, the method may be used for equations in extended
Kovalevskaya form (see Popovych & Bihlo [10]).
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works well for problems with one independent variable, but noted the difficulties of extending
this to multiple independent variables (in a way that can be programmed).

3. The standard homotopy operator applies to a star-shaped domain and integrates along rays to
the origin, changing all Cartesian coordinates at once. This gives an inefficient inversion, in the
sense that the number of terms is generally very much greater than necessary; the homotopy for-
mula creates superfluous elements of ker(Div). For polynomial divergences, Poole & Hereman
[9] removed curls by parametrizing all terms given by the homotopy formula and optimizing the
resulting linear system. This approach is very effective, because (except where there are cancella-
tions) the homotopy formula tends to include every possible term that can appear in an inversion.
However, it is unclear whether this approach can be generalized to non-polynomial divergences.
Moreover, the removal of curl terms takes extra processing time and does not allow for the pos-
sibility that new terms might appear in the most concise inversion of the divergence. If inversion
could be done with respect to one independent variable at a time, this might prevent the occurrence
of superfluous curls from the outset.

Example 1.1. To illustrate the inefficiency of homotopy operators on star-shaped domains, consider the
following divergence in R

3:

C(x, y, z) = 2xy cos z.

The homotopy operator based on a star-shaped domain gives C = div(xφ, yφ, zφ), where

φ =
∫ 1

0

λ2C(λx, λy, λz) dλ

= 2xy
{(

z−1 − 12z−3 + 24z−5
)

sin z + (
4z−2 − 24z−4

)
cos z

}
.

By comparison, for a given divergence C(x, y, z) that has no singularities on the coordinate axes, using
a homotopy formula that integrates one variable at a time gives C = div(F, G, H), where

F =
∫ x

0

C(λ, y, z) dλ, G =
∫ y

0

C(0, λ, z) dλ, H =
∫ z

0

C(0, 0, λ) dλ.

This recovers the concise form (F, G, H) = (x2y cos z, 0, 0). However, the use of the lower limit makes
the formula over-elaborate (and unsuitable for treating singularities). Indefinite integration is far more
straightforward:

C = ∂F

∂x
, where F =

∫
C(x, y, z) dx = x2y cos z.

So the homotopy formula for star-shaped domains gives 14 more terms than the simple form above; the
superfluous terms amount to

curl
(
4xy2

{(
3z−2 − 6z−4

)
sin z − (

z−1 − 6z−3
)

cos z
}

, x2y sin z, xyφ/2
)

.

The current paper extends the efficient one-variable-at-a-time approach to total derivatives. Indefinite
integration is used, as advocated by Hickman [7] for standard homotopy operators; it avoids the com-
plications resulting from singularities. From the computational viewpoint, the biggest advantage of
integration with respect to just one independent variable is that the major computer algebra systems
have efficient procedures for computing antiderivatives.

The keys to inverting a total divergence one variable at a time are ‘partial Euler operators’ (see
Section 3). These enable the inversion of a total derivative Dx to be written as an indefinite line inte-
gral. Section 4 introduces a new iterative method for inverting a given total divergence; typically, this
does not produce superfluous terms and very few iterations are needed. Furthermore, it can cope with
components that are unchanged by the relevant scaling operator.

The methods in this paper are systematic, leading to procedures that are intended to be suitable for
implementation in computer algebra systems.
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2. Standard differential and homotopy operators

Here is a brief summary of the standard operators that are relevant to total divergences; for further
details, see Olver [8]. The independent variables x = (x1, . . . , xp) are local Cartesian coordinates, and
the dependent variables u = (u1, . . . , uq) may be real- or complex-valued. The Einstein summation con-
vention is used to explain the main ideas and state general results. In examples, commonly used notation
is used where this aids clarity. All functions are assumed to be locally smooth, to allow the key ideas to
be presented simply.

Derivatives of each uα are written as uα
J , where J = (j1, . . . , jp) is a multi-index; each ji denotes the

number of derivatives with respect to xi, so uα
0 = uα. The variables xi and uα

J can be regarded as jet space
coordinates. The total derivative with respect to xi,

Di = ∂

∂xi
+ uα

J+1i

∂

∂uα
J

, where J + 1i = (j1, . . . , ji−1, ji + 1, ji+1, . . . , jp),

treats each uα
J as a function of x. To keep the notation concise, write

DJ = Dj1

1 Dj2

2 · · · Djp

p ;

note that uα
J = DJ(uα). Let [u] represent u and finitely many of its derivatives; more generally, square

brackets around an expression denote the expression and as many of its total derivatives as are needed.
A total divergence is an expression of the form

C = Div(F) := DiF
i(x, [u]).

(If all Fi depend on x only, C is an ordinary divergence.) A conservation law of a given system of
partial differential equations (PDEs), A�(x, [u]) = 0, � = 1, . . . , L, is a total divergence that is zero on
all solutions of the system; each Fi is a finite sum of terms. By using elementary algebraic operations (in
particular, expanding logarithms of products and products of sums), the number of linearly independent
terms may be maximized. When the number of linearly independent terms is maximal for each i, we call
the result the fully expanded form of F.

When p > 1, the p-tuple of components, F, is determined by C up to a transformation of the form

Fi �−→ Fi + Dj

{
f ij(x, [u])

}
, where f ji = −f ij. (2.1)

(If p = 3, such a transformation adds a total curl to F.) The total number of terms in F is the sum
of the number of terms in all of the fully expanded components Fi. If this cannot be lowered by any
transformation (2.1), we call F minimal. Commonly, there is more than one minimal F, any of which
puts the inversion of Div in as concise a form as possible. If p = 1, the sole component F1 (also denoted
F) is determined up to an arbitrary constant, so the number of non-constant terms is fixed.

The formal adjoint of a differential operator (with total derivatives), D, is the unique differential
operator D† such that

f Dg − (D†f )g

is a total divergence for all functions f (x, [u]) and g(x, [u]). In particular,

(DJ)
† = (−D)J := (−1)|J|DJ, where |J| = j1 + · · · + jp. (2.2)

Thus, the (standard) Euler–Lagrange operator corresponding to variations in uα is

Euα = (−D)J
∂

∂uα
J

.

Total divergences satisfy a useful identity: a function C(x, [u]) is a total divergence if and only if

Euα (C) = 0, α = 1, . . . , q. (2.3)

Given a Lagrangian function L(x, [u]), the Euler–Lagrange equations are Euα (L) = 0. Given a set
of Euler–Lagrange equations that are polynomial in the variables (x, [u]), the function L given by the
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homotopy formula

L(x, [u]) =
∫ 1

0

uα {Euα (L)}∣∣
[u�→λu]

dλ (2.4)

differs from L by a total divergence. (The same applies to many, but not all, non-polynomial Euler–
Lagrange equations.)

When p = 1, the equation P(x, [u]) = DxF is invertible (at least, for polynomial P) by the following
standard homotopy formula:

F(x, [u]) =
∫ 1

0

∞∑
i=1

Di−1
x

(
uα

{∑
k≥i

(
k

i

)
(−Dx)

k−i ∂P(x, [u])

∂(Dk
xu

α)

} ∣∣∣∣∣
[u�→λu]

)
dλ +

∫ 1

0

xP(λx, [0]) dλ. (2.5)

The operator acting on P in the braces above is the higher Euler operator of order i for p = 1. When p ≥ 2,
the standard homotopy formula is similar, but somewhat more complex (see Olver [8] for details); it is
based on higher Euler operators and integration along rays in a totally star-shaped domain. The following
example illustrates that even for quite simple divergences, this formula commonly yields inversions with
many superfluous terms.

Example 2.1. The Benjamin–Bona–Mahony (BBM) equation, ut − uux − uxxt = 0, has a conservation
law

C = DxF + DtG = (u2 + 2uxt)(ut − uux − uxxt). (2.6)

The standard homotopy formula gives

F = −1

3
uuxxtt + 2

3
uxuxtt − 1

3
utuxxt − 1

3
u2

xt −
1

2
uutt + 1

2
u2

t − 2

3
u2uxt + 2

3
uuxut − 1

4
u4,

G = 1

3
uuxxxt − 1

3
uxuxxt − 2

3
uxxuxt + 1

2
uuxt + 1

2
uxut − 1

3
u2uxx − 2

3
uu2

x + 1

3
u3,

a total of 17 terms. By contrast, careful integration by inspection yields

C = Dx

(
u2

t − u2
xt − u2uxt − 1

4
u4

)
+ Dt

(
1

3
u3

)
, (2.7)

which is minimal, having only five terms in the components.

The homotopy formulae above can be applied or adapted to some, but not all, classes of non-
polynomial Lagrangians and divergences.

3. Partial Euler operators and partial scalings

This section introduces some ideas and results that underpin integration with respect to one independent
variable at a time. The independent variable over which one integrates is distinguished; this is denoted
by x. For instance, if x = x1, replace the derivative index J by (I, j), where j = j1 and I = (j2, . . . , jp). So
the dependent variables and their derivatives are denoted

uα

I, j = D j
xu

α

I , where uα

I = uα

I,0.

In examples, however, we write each uα
I more simply (as u, vy, uyt, and so on), using, j for D j

x.
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3.1 Partial Euler operators

The partial Euler operator with respect to x and uα
I is obtained by varying each uα

I independently, treating
x as the sole independent variable:

Ex
uα

I
= (−Dx)

j ∂

∂uα
I,j

. (3.1)

Consequently, the standard Euler operator with respect to uα amounts to

Euα = (−D)IEx
uα

I
. (3.2)

Similarly, the partial Euler operator with respect to x and uα
I,k is

Ex
uα

I,k
= (−Dx)

j ∂

∂uα
I,j+k

. (3.3)

Note that

Ex
uα

I,k
= ∂

∂uα
I,k

−DxEx
uα

I,k+1
. (3.4)

The following identities are easily verified; here, f (x, [u]) is an arbitrary function.

Ex
uα

I
(Dxf ) = 0, (3.5)

Ex
uα

I,k
(Dxf ) = ∂f

∂uα
I,k−1

, k ≥ 1, (3.6)

Ex
uα

I,k
(Dif ) = Di

(
Ex

uα
I,k

(f )
)

+ Ex
uα

I−1i ,k
(f ), xi �= x, (3.7)

where the last term in (3.7) is zero if ji = 0.

3.2 Inversion of Dx

The identities (3.5), (3.6) and (3.7) are central to the inversion of total divergences, including the
following inversion of P = DxF as an indefinite line integral.

Lemma 3.1. If P(x, [u]) = DxF, then, up to an (irrelevant) arbitrary function of all independent
variables other than x,

F(x, [u]) =
∫ (

P −
∑
k≥1

uα

I,k Ex
uα

I,k
(P)

)
dx +

∑
k≥0

Ex
uα

I,k+1
(P) duα

I,k . (3.8)

Proof. By the identity (3.6),

F(x, [u]) =
∫

∂F

∂x
dx +

∑
k≥0

Ex
uα

I,k+1
(DxF) duα

I,k .

Moreover,

P = ∂F

∂x
+
∑
k≥1

uα

I,k

∂F

∂uα
I,k−1

= ∂F

∂x
+
∑
k≥1

uα

I,k Ex
uα

I,k
(DxF) .

Substituting P for DxF completes the proof.

Example 3.1. Locally, away from its singularities, the function

P = uxxvy − uxvxy

v2
y

+ uvx − uxv

v(u + v)
+ 1

x
(3.9)
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belongs to im(Dx), but cannot be inverted using the standard homotopy formula. Substituting

Ex
u,1

(P) = ∂P

∂ux

− Dx

∂P

∂uxx

= − 1

u + v
, Ex

u,2
(P) = ∂P

∂uxx

= 1

vy

,

Ex
v,1

(P) = ∂P

∂vx

= u

v(u + v)
, Ex

vy,1
(P) = ∂P

∂vxy

= −ux

v2
y

,

into (3.8) yields the inversion:

F =
∫

dx

x
− du

u + v
+ dux

vy

+ u dv

v(u + v)
− ux dvy

v2
y

= ln

∣∣∣∣ xv

u + v

∣∣∣∣+ ux

vy

. (3.10)

3.3 Integration by parts

From here on, we will restrict attention to total divergences C whose fully expanded form has no terms
that depend on x only. Such terms can be inverted easily by evaluating an indefinite integral, as explained
in the Introduction. Henceforth, all indefinite integrals denote antiderivatives with the minimal number
of terms in their fully expanded form. Any arbitrary constants and functions that would increase the
number of terms are set to zero. This restriction facilitates the search for minimal inversions.

The indefinite line integral formula (3.8) is closely related to integration by parts. To see this, we
introduce a positive ranking on the variables uα

J ; this is a total order � that is subject to two conditions:

(i) uα ≺ uα

J , J �= 0, (ii) uβ

I ≺ uα

J =⇒ DKuβ

I ≺ DKuα

J .

The leading part of a differential function is the sum of terms in the function that depend on the
highest-ranked uα

J , and the rank of the function is the rank of its leading part (see Rust et al. [12] for
details and references). Let f (x, [u]) denote the leading part of the fully expanded form of F and let
U,k denote the highest-ranked uα

I,k; then the highest-ranked part of P = DxF is U,k+1∂f /∂U,k. Then (3.8)
includes the contribution∫

Ex
U,k+1

(P) dU,k =
∫

∂f

∂U,k

dU,k = f + lower-ranked terms.

Integration by parts gives the same result. Subtracting f from F and iterating shows that evaluating the
line integral (3.8) is equivalent to integrating by parts from the highest-ranked terms downwards.

Integration by parts is useful for splitting a differential expression P(x, [u]), with P(x, [0]) = 0, into
DxF and a remainder, R, whose x-derivatives are of the lowest-possible order. The splitting is achieved
by the following procedure.

Procedure A. Integration by parts

Step 0. Choose a positive ranking in which uα
I,0 ≺ Dxuβ for all α, I and β. (We call such rankings

x-dominant.) Initialize by setting F := 0 and R := 0.
Step 1. Identify the highest-ranked uα

I,k in P; denote this by U,k. If k = 0, add P to R and stop.
Otherwise, determine the leading part, g, of P.

Step 2. Determine the sum hU,k of all terms in the fully expanded form of g that are of the form γ U,k,
where γ is ranked no higher than U,k−1, and let

H =
∫

h dU,k−1 .

Step 3. Update F, R and P, as follows:

F := F + H, R := R + g − hU,k, P := P − g + hU,k−DxH.

If P �= 0, return to Step 1. Otherwise output F and R, then stop.
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The reason for choosing an x-dominant ranking is to ensure that the derivative order with respect to
x outweighs all other ranking criteria. Consequently, the minimally ranked remainder cannot contain
x-derivatives of unnecessarily high order.

Example 3.2. To produce a concise inversion of a conservation law of the Harry Dym equation (see
Example 4.1 below), it is necessary to split

P = −8

3
u2u,4 − 16

3
uu,1u,3 − 4uu2

,2 + 4u2
,1u,2 − u−1u4

,1 .

Procedure A gives the splitting

P = Dx

{
−8

3
u2u,3 + 4

3
u3

,1

}
− 4uu2

,2 − u−1u4
,1 .

Example 3.3. The ranking criterion in Step 2 of Procedure A ensures that there are no infinite loops.
It is not enough that terms are linear in the highest-ranked x-derivative, as shown by the following
splitting of

P = v,3

uy

+ u,2

vy

For the positive x-dominant ranking defined by v ≺ u ≺ vy, Procedure A yields

P = Dx

{
v,2

uy

+ u,1

vy

}
+ v,2uy,1

u2
y

+ u,1vy,1

v2
y

.

Both terms in the remainder are linear in their highest-ranked x-derivatives, which are v,2 and vy,1,
respectively. However, further integration by parts would return P to a form with a higher-ranked
remainder.

3.4 Partial scalings

To investigate partial Euler operators further, it is helpful to use a variant of the homotopy approach.
The partial scaling (by a positive real parameter, λ) of a function f (x, [u]) with respect to x and uα

I is the
mapping

σ x
uα

I
: (f ; λ) �→ f

∣∣
{uα

I,j �→λuα
I,j , j≥0}.

Again, each uα
I is treated as a distinct dependent variable. Note the identity

σ x
uα

I
Dx = Dxσ

x
uα

I
. (3.11)

Definition 3.1. The partial scaling σ x
uα

I
is a good scaling for a given differential function f (x, [u]) if

σ x
uα

I
(f ; λ) =

∫
d

dλ

(
σ x

uα
I
(f ; λ)

)
dλ, (3.12)

for all λ in some neighborhood of 1.

By definition, the partial scaling σ x
uα

I
fails to be a good scaling for f if and only if there are terms that

are independent of λ in the fully expanded form of σ x
uα

I
(f ; λ). The simplest cause of this is that the fully

expanded form of f has terms that are independent of uα
I and its x-derivatives. However, this is not the

only cause, as the following example illustrates.

Example 3.4. The scalings σ y
u and σ y

v are not good scalings for

C = ux(2u + vy) − vx(uy + 2vyy) + ux

u2
+ vyy

vy

+ 2uy

u
ln |u|, (3.13)
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because (in fully expanded form),

σ y
u (C; λ) = λ(2uux − vxuy) + ux

λ2u2
+ 2uy

u
ln (λ) +

{
uxvy − 2vxvyy + vyy

vy

+ 2uy

u
ln |u|

}
, (3.14)

σ y
v (C; λ) = λ(uxvy − 2vxvyy) +

{
2uux − vxuy + ux

u2
+ vyy

vy

+ 2uy

u
ln |u|

}
. (3.15)

The terms in braces are independent of λ; in (3.14) (resp. (3.15)), some of these depend on u (resp. v)
and/or its y-derivatives. Part of the scaled logarithmic term is independent of λ, though part survives
differentiation. Note that σ y

u is a good scaling for the term ux/u2; the singularity at u = 0 is not an
obstacle.

Lemma 3.2. The partial scaling σ x
uα

I
is a good scaling for f (x, [u]) if and only if

f = lim
λ→1

∫
d

dλ

(
σ x

uα
I
(f ; λ)

)
dλ. (3.16)

Proof. If σ x
uα

I
is a good scaling, (3.16) is a consequence of f = σ x

uα
I
(f ; 1) and local smoothness.

Conversely, suppose that (3.16) holds and let μ be a positive real parameter that is independent of λ.
Then for μ sufficiently close to 1,

σ x
uα

I
(f ; μ) = lim

λ→1

∫
d

dλ

(
σ x

uα
I
(f ; λμ)

)
dλ = lim

λ→μ

∫
d

dλ

(
σ x

uα
I
(f ; λ)

)
dλ =

∫
d

dμ

(
σ x

uα
I
(f ; μ)

)
dμ.

Therefore, σ x
uα

I
is a good scaling.

The use of the limit in (3.16) is needed to deal with any values of uα
I,k for which the integral is an

indeterminate form. For other values, simple substitution of λ = 1 gives the limit.

Given a partial scaling σ x
uα

I
and a differential function f (x, [u]), let

π x
uα

I
(f ) = lim

λ→1

∫
d

dλ

(
σ x

uα
I
(f ; λ)

)
dλ. (3.17)

For μ sufficiently close to 1 (using f̂ as shorthand for π x
uα

I
(f )),

σ x
uα

I
(̂f ; μ) =

∫
d

dμ

(
σ x

uα
I
(f ; μ)

)
dμ =

∫
d

dμ

{∫
d

dμ

(
σ x

uα
I
(f ; μ)

)
dμ

}
dμ =

∫
d

dμ

(
σ x

uα
I
(̂f ; μ)

)
dμ;

the first equality comes from the proof of Lemma 3.2. Therefore, σ x
uα

I
is a good scaling for π x

uα
I
(f ).

Moreover, there are no terms in the fully expanded form of the remainder, f − π x
uα

I
(f ), for which σ x

uα
I

is a good scaling, because
d

dμ

(
σ x

uα
I
(f ; μ)

)
− d

dμ

(
σ x

uα
I
(̂f ; μ)

)
= 0.

So π x
uα

I
is the projection that maps a given function onto the component which has σ x

uα
I

as a good scaling.

Definition 3.2. The partial scaling σ x
uα

I
is a poor scaling for a given differential function f (x, [u]) if

f − π x
uα

I
(f ) depends on any uα

I,k .

For instance, both σ y
u and σ y

v are poor scalings for (3.13), as explained in Example 3.4. Section 4.3
addresses the problem of inverting divergences such as (3.13) that have poor scalings. First, we develop
the inversion process for general divergences. The following results are fundamental.

Theorem 3.1. Let f (x, [u]) be a differential function.

1. If f = DxF, then f ∈ ker(Ex
uα

I
) for all α and I; moreover,

π x
uα

I
(F) = lim

λ→1

∫ ∑
j≥0

uα

I,j σ
x
uα

I

(
Ex

uα
I,j+1

(f ); λ
)

dλ. (3.18)
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2. If f ∈ ker(Ex
uα

I
), then π x

uα
I
(f ) ∈ im(Dx).

3. If g = Ex
uα

I
(f ), then, up to terms in im(Dx),

π x
uα

I
(f ) = lim

λ→1

∫
uα

I σ x
uα

I
(g; λ) dλ. (3.19)

Proof. All three statements are proved by expanding π x
uα

I
(f ):

π x
uα

I
(f ) = lim

λ→1

∫ ∑
j≥0

uα

I,j σ
x
uα

I

(
∂f

∂uα
I,j

; λ

)
dλ (3.20)

= lim
λ→1

∫
uα

I σ x
uα

I

(
Ex

uα
I
(f ); λ

)
dλ + Dxh. (3.21)

Here, h(x, [u]) is obtained by integrating by parts, using the identity (3.11).
If f = DxF, the identity (3.5) amounts to f ∈ ker(Ex

uα
I
). Replace f by F in (3.20) and use the identity

(3.6) to obtain (3.18). Statements 2 and 3 come directly from (3.21).

Note that (3.18) is a homotopy formula for (at least partially) inverting DxF, giving a third way to
do this. The line integral formula (3.8) carries out the full inversion in one step, but may take longer to
compute.

4. The inversion method for Div

This section introduces a procedure to invert Div, with a ranking heuristic (informed by experience) that
is intended to keep the calculation short and efficient. To motivate the procedure, it is helpful to examine
a simple example.

Example 4.1. Wolf et al. [14] introduced computer algebra algorithms that can handle general (non-
polynomial) conservation laws and used these to derive various rational conservation laws of the Harry
Dym equation. In the (unique) x-dominant positive ranking, the equation is A= 0, with

A= ut − u3u,3.

The highest-order conservation law derived in Wolf et al. [14] is C =QA, where

Q= −8uu,4 − 16u,1u,3 − 12u2
,2 + 12u−1u2

,1u,2 − 3u−2u4
,1 .

Note that σ x
u is a good scaling for C. The first step in inverting C = DxF + DtG is to apply the partial

Euler operator Ex
u, to annihilate the term DxF. There are only two independent variables, so the identity

(3.2) shortens the calculation to

Ex
u(C) = Dt(Ex

ut
(C)) = Dt(Q).

Applying (3.19), then using Procedure A to integrate by parts (see Example 3.2) gives

Q= Ex
u

{
−8

3
u2u,4 − 16

3
uu,1u,3 − 4uu2

,2 + 4u2
,1u,2 − u−1u4

,1

}
= Ex

u

{−4uu2
,2 − u−1u4

,1

}
.

Therefore,

C = Dt

(−4uu2
,2 − u−1u4

,1

)+ C̃,

where Ex
u(C̃) = 0. As σ x

u is a good scaling for

C̃ =QA+ 8uu,2ut,2 + 4u−1u3
,1ut,1 + {4u2

,2 − u−2u4
,1}ut ,
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the second part of Theorem 3.1 states that C̃ ∈ im(Dx); consequently,

G = −4uu2
,2 − u−1u4

,1 .

Either the line integral (3.8) or Procedure A completes the inversion, giving C̃ = DxF, where

F = 8uu,2ut,1 − {8uu,3 + 8u,1u,2 − 4u−1u3
,1}ut + 4u4u2

,3 + 4u3u3
,2 − 6u2u2

,1u2
,2 + 3uu4

,1u,2 − 1

2
u6

,1.

The fully expanded form of (F, G) is minimal, having 11 terms rather than the 12 terms in Wolf et al.
[14]. (Note: there is an equivalent conservation law, not in the form QA, that has only 10 terms.)

4.1 A single iteration

The basic method for inverting a given total divergence one independent variable at a time works simi-
larly to the example above. Suppose that after n iterations the inversion process has yielded components
Fi

n and that an expression of the form C = Dif i
n remains to be inverted. For the next iteration, let Ex

u be the
partial Euler operator that is applied to C. Here, u is one of the variables uα

I , which is chosen to ensure
that for each i such that xi �= x,

Ex
uDif

i
n = DiEx

uf
i
n. (4.1)

This requires care, in view of the identity (3.7). However, it is achievable by using the variables uα
I in

the order given by a ranking that is discussed in Section 4.2. This ranking is entirely determined by
user-defined rankings of the variables xj and uα.

Taking (3.5) into account leads to the identity

Ex
u(C) =

∑
xi �=x

Di(Ex
u(f

i
n)), (4.2)

which, with together with Theorem 3.1, is the basis of the inversion method. The method works without
modification provided that:

• there are no poor scalings for any terms in C;
• the fully expanded form of C has no terms that are linear in [u].

We begin by restricting attention to divergences for which these conditions hold, so that

Ex
u(C) =

∑
xi �=x

Di(Ex
u(π x

u f i
n)), (4.3)

where every term in Ex
u(π

x
u f i

n) depends on [u]. The modifications needed if either condition does not hold
are given in Sections 4.3 and 4.4.

The iteration of the inversion process runs as follows. Calculate Ex
u(C), which is a divergence DiPi

with no Dx term, by (4.3); it involves at most p − 1 (but commonly, very few) nonzero functions Pi.
Invert this divergence, treating x as a parameter. If it is possible to invert in more than one way, always
invert into the Pi for which xi is ranked as low as possible; the reason for this is given in the next para-
graph. If Ex

u(C) has nonlinear terms that involve derivatives with respect to more than one Di (excluding
Dx), this is accomplished by iterating the inversion process with as few independent variables as are
needed. Otherwise, Pi can be determined more quickly by using integration by parts (Procedure A, with
x replaced by the appropriate xi), and/or the method for linear terms (see Procedure B in Section 4.4).
Note that this shortcut can be used whenever there are only two independent variables.

At this stage, check that the fully expanded form of each Pi has no terms that are ranked lower than
u. If any term is ranked lower than u, stop the calculation and try a different ranking of the variables
xj and/or uα. This is essential because, to satisfy (4.1) and avoid infinite loops, the variables uα

I that are
chosen to be u in successive iterations must progress upwards through the ranking. Where there is a
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choice of inversion, the rank of each term in Pi is maximized by using the xi of minimum order; this
avoids unnecessary re-ranking.

Having found and checked Pi, use (3.21) to obtain

π x
u (f i

n) =
{

lim
λ→1

∫
u σ x

u

(
Pi; λ

)
dλ

}
+ Dxh

i, (4.4)

for arbitrary functions hi(x, [u]). Apply Procedure A to the function in braces and choose hi to make the
right-hand side of (4.4) equal the remainder from this procedure. This yields the representation of π x

u (f i
n)

that has the lowest-order derivatives (with respect to x) consistent with the inversion of DiPi; call this
representation f i. Commonly, such a lowest-order representation is needed to obtain a minimal inversion.

By Theorem 3.1, there exists φ such that

π x
u

⎛⎝C −
∑
xi �=x

Dif
i

⎞⎠= Dxφ, (4.5)

because (by construction) the expression in parentheses belongs to ker(Ex
u). Use the line integral formula

(3.8) or Procedure A to obtain φ, then set f i := φ for xi = x. Now update: set

C := C−Dif
i, Fi

n+1 := Fi
n + f i.

4.2 Ranking and using the variables

Having described a single iteration, we now turn to the question of how to choose x and u effectively.
The starting point is to construct a derivative-dominant ranking of the variables uα

J . This is a positive
ranking that is determined by:

• a ranking of the independent variables, x1 ≺ x2 ≺ · · · ≺ xp;
• a ranking of the dependent variables, u1 ≺ u2 ≺ · · · ≺ uq.

(Later in this section, we give a heuristic for ranking the dependent and independent variables
effectively.) The derivative-dominant ranking (denoted up) is constructed iteratively, as follows.

u0 = u1 ≺ · · · ≺ uq,

u1 = u0 ≺ D1u0 ≺ D2
1u0 ≺ · · · ,

u2 = u1 ≺ D2u1 ≺ D2
2u1 ≺ · · · ,

...
...

up = up−1 ≺ Dpup−1 ≺ D2
pup−1 ≺ · · · .

In practice, very few uα
J are needed to carry out many inversions of interest, but it is essential that these

are used in the order given by their ranking, subject to a constraint on |I| that is explained below.
Given an independent variable, x, we call uα

I relevant if the updated C depends on uα
I,k for some k ≥ 0.

The first set of iterations uses x = x1. For the initial iteration, u is the lowest-ranked relevant uα. In the
following iteration, u is the next-lowest-ranked relevant uα and so on, up to and including uq. (From
(3.7), the condition (4.1) holds whenever u = uα, α = 1, . . . , q.) After these iterations, the updated C is
independent of u and its unmixed x-derivatives.

If the updated C has any remaining x-derivatives, these are mixed. Thus, as C has no linear terms, a
necessary condition for the inversion to be minimal is that every f i

n is independent of u and its unmixed
x-derivatives. Consequently, (4.1) holds for u = uα

I whenever |I| = 1, because

Ex
uα

I−1i
(f i

n) = 0, xi �= x.
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Therefore, the process can be continued using each relevant u = uα
I with |I| = 1 in the ranked order.

Iterating, the same argument is used with |I| = 2, 3, . . ., until C is independent of x-derivatives. Now set
x = x2 and iterate, treating x1 as a parameter. In principle, this can be continued up to x = xp; in practice,
only a very few iterations are usually needed to complete the inversion. The best rankings invert many
terms at each iteration. On the basis of some experience with conservation laws, the following heuristic
for ranking the variables xj and uα is recommended.

Ranking heuristic. Apply criteria for ranking independent variables, using the following order of
precedence.

1. Any independent variables that occur in the arguments of arbitrary functions of x should be ranked
as high as possible, if they multiply terms that are nonlinear in [u]. For instance, if nonlinear terms
in a divergence depend on an arbitrary function, f (t), set xp = t.

2. If independent variables occur explicitly in non-arbitrary functions, they should be ranked as
high as possible (subject to 1 above), with priority going to variables with the most complicated
functional dependence. For instance, if C is linear in xi and quadratic in xj, then xi ≺ xj (so i < j in
our ordering).

3. If an unmixed derivative of any uα with respect to xi is the argument of a function other than a
rational polynomial, rank xi as low as possible.

4. Set xi ≺ xj if the highest-order unmixed derivative (of any uα) with respect to xi is of higher order
than the highest-order unmixed derivative with respect to xj.

5. Set xi ≺ xj if there are more occurrences of unmixed xi-derivatives (in the fully expanded
divergence) than there are of unmixed xj-derivatives.

6. Apply criteria 3, 4, and 5 in order of precedence, replacing unmixed by ‘minimally mixed’ deriva-
tives. Minimally mixed means that there are as few derivatives as possible with respect to any other
variable(s).

The derivative indices J in a derivative-dominant ranking are ordered according to the ranking of
the independent variables. This can be used to rank the dependent variables; if there is more than one
dependent variable in C, use the following criteria in order.

1. Let uα ≺ uβ if C is linear in [uα] and nonlinear in [uβ].
2. Let uα ≺ uβ if the lowest-ranked derivative of uα that occurs in C is ranked lower than the lowest-

ranked derivative of uβ in C. (In conservation laws, the lowest-ranked derivative of uα is commonly
the undifferentiated uα, which corresponds to J = 0.)

3. Let uα ≺ uβ if the lowest-ranked derivative of uα in the fully expanded form of C occurs in more
terms than the corresponding derivative of uβ does.

These two sets of criteria are not exhaustive (allowing ties, which must be broken), but the aim that
underlies them is to carry as few terms as possible into successive iterations of the procedure. Partial
Euler operators with respect to unmixed derivatives are used in the earliest iterations; commonly, these
are sufficient to complete the inversion.

4.3 How to deal with poor scalings

To remove an earlier restriction on the inversion process, we now address the problem of poor scalings,
namely, that uα

I and its x-derivatives (denoted [uα
I ]x) may occur in terms that belong to C − π x

uα
I
(C). Such

terms (when fully expanded) are products of homogeneous rational polynomials in [uα
I ]x of degree zero

and logarithms of a single element of [uα
I ]x. We refer to these collectively as zero-degree terms.

To overcome this difficulty, we modify the approach used by Anco & Bluman [3] to treat singularities.
In our context, [uα

I ]x is replaced by [uα
I + Uα

I ]x, where Uα
I is regarded as a new dependent variable that
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is ranked higher than uα
I . This approach works equally well for logarithms, ensuring that π x

uα
I

is a good
scaling for all terms that depend on [uα

I ]x, so that its kernel consists only of terms that are independent
of these variables. At the end of the calculation, all members of [Uα

I ]x are set to zero. Note that there
is no need to replace uα

I in terms that are not zero-degree in [uα
I ]x, as total differentiation preserves the

degree of homogeneity.2

Example 4.2. To illustrate the inversion process for divergences that have zero-degree terms, we
complete Example 3.4 by inverting

C = DxF + DyG = ux(2u + vy) − vx(uy + 2vyy) + ux

u2
+ vyy

vy

+ 2uy

u
ln |u|;

this has no linear terms. The ranking heuristic gives y ≺ x and u ≺ v. The rest of the calculation goes as
follows.

1. C − π y
u (C) has just one zero-degree term (in [u]y), namely (2uy/u) ln |u|. Replace this term by

(2(uy + Uy)/(u + U)) ln |u + U|.
2. Calculate Ey

u(C) = 2ux + vxy − 2uxu−3 = Dx{2u + vy + u−2} = Dx{Ey
u(u2 + uvy − u−1)}. No term in

2u + vy + u−2 is ranked lower than u, as u is the lowest-ranked variable.
3. Then π y

u (C−Dx{u2 + uvy − u−1}) = Dy{−uvx + ( ln |u + U|)2}.
4. Now set U = 0 to yield the remainder C1 = C−Dx{u2 + uvy − u−1}−Dy{−uvx + ( ln |u|)2} at the

close of the first iteration. This amounts to C1 = −2vxvyy + vyy/vy.
5. The second iteration starts with C1 − π y

v (C1) = vyy/vy; as this term is zero-degree in [v]y, replace
it by (vyy + Vyy)/(vy + Vy).

6. Calculate Ey
v(C1) = −2vxyy = Dx{−2vyy} = Dx{Ey

v( − vvyy)} = Dx{Ey
v(v

2
y)}. Note that −2vyy is not

ranked lower than v.
7. Then π y

v (C1−Dx{v2
y}) = Dy{−2vxvy + ln |vy + Vy|}.

8. Now set V = 0 to yield the remainder C2 = C1−Dx{v2
y}−Dy{−2vxvy + ln |vy|} = 0 at the close of

the second iteration. The inversion process stops, having yielded the output

F = u2 + uvy − u−1 + v2
y , G = −uvx + ( ln |u|)2 − 2vxvy + ln |vy|.

Note that the homotopy formula (3.18) for inverting DxF can be adjusted in the same way, whenever σ x
uα

I
is a poor scaling for Ex

uα
I,j+1

(DxF).

4.4 Linear divergences

The inversion process runs into a difficulty when a given divergence has terms that are linear in [u], with
mixed derivatives. Then it is possible to invert in more than one way, some of which may not produce
a minimal result. To address this, it is helpful to invert using a different process. Suppose that C is a
linear divergence (in fully expanded form). Instead of using the derivative-dominant ranking, integrate
by parts, working down the total order |J| of the derivatives uα

J . For a given total order, we will invert
the mixed derivatives first, though this is not essential.

Starting with the highest-order derivatives, one could integrate each term f (x)uα
J in C by parts with

respect to any xi such that ji ≥ 1, yielding the remainder−Di(f )uα
J−1i

. If DJ is a mixed derivative, we seek
to choose Di in a way that keeps the result concise. Here are some simple criteria that are commonly
effective, listed in order of precedence.

2An alternative approach (see Hickman [7]) uses a locally invertible change of variables, uα = exp vα , to change the degree of
homogeneity from zero. This approach works equally well, but requires a little more processing time.

https://doi.org/10.1017/S0956792523000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000037


European Journal of Applied Mathematics 1059

1. f is independent of xi.
2. C includes the term Di(f )uα

J−1i
.

3. f is linear in xi.

These criteria can be used as an initial pass to invert C at least partially, leaving a remainder to be inverted
that may have far fewer terms than C does.

Integrating the remainder by parts is straightforward if each uα
J is an unmixed derivative. If J denotes

a mixed derivative, integrate with respect to each xi such that ji ≥ 1 in turn, multiplying each result by a
parameter (with the parameters summing to 1). Iterate until either the remainder has a factor that is zero
for some choice of parameters or there is no remainder. The final stage is to choose the parameters so as
to minimize the number of terms in the final expression. Although this produces a minimal inversion,
it comes at the cost of extra computational time spent doing all possible inversions followed by the
parameter optimization.

Example 4.3. Consider the linear divergence

C =
(

1

6
f ′(t)y3 + f (t)xy

)
(uxt − uyy),

where f is an arbitrary function. The first of the simple criteria above yields

C = Dx

{
1

6
f ′y3ut

}
+ fxyuxt −

(
1

6
f ′y3 + fxy

)
uyy;

The second criterion is not helpful at this stage, but the third criterion gives

C = Dx

{(
1

6
f ′y3 + fxy

)
ut

}
− fyut −

(
1

6
f ′y3 + fxy

)
uyy.

The remainder has no mixed derivatives; integrating it by parts produces the minimal inversion

C = Dx

{(
1

6
f ′y3 + fxy

)
ut

}
+ Dy

{(
1

2
f ′y2 + fx

)
u −

(
1

6
f ′y3 + fxy

)
uy

}
+ Dt{−fyu}. (4.6)

Example 4.4. To illustrate the parametric approach, consider

C = exp (t − x2)(tuxtt + 2x(t + 1)ut).

The simple criteria are irrelevant at present, so instead introduce parameters λl and consider all possible
inversions of the mixed derivative terms. Step-by-step, one obtains the following.

C = Dx

{
λ1 exp (t − x2)tutt

}+ Dt

{
(1 − λ1) exp (t − x2)tuxt

}
+ exp (t − x2){2λ1xtutt − (1 − λ1)(t + 1)uxt + 2x(t + 1)ut}

= Dx

{
exp (t − x2){λ1tutt − λ2(1 − λ1)(t + 1)ut}

}
+ Dt

{
exp (t − x2){(1 − λ1)tuxt + 2λ1xtut − (1 − λ2)(1 − λ1)(t + 1)ux}

}
+ (1 − λ2)(1 − λ1) exp (t − x2){2x(t + 1)ut + (t + 2)ux}.

As the remainder has a factor (1 − λ2)(1 − λ1), the inversion is complete if either parameter is set to 1.
The minimal (two-term) inversion has λ1 = 1, which gives C = DxF + DtG, where

F = t exp (t − x2)utt , G = 2xt exp (t − x2)ut .

For λ1 �= 1, λ2 = 1, the inversion has three terms if λ1 = 0, or five terms otherwise.
Note the importance of factorizing the remainder to stop the calculation once a possible parameter

choice occurs. If we had continued the calculation without setting either λi to 1, it would have stopped
at order zero, not one, giving an eleven-term inversion for general λi.

To summarize, one can invert a divergence that is linear in [u] by applying the following procedure.
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Procedure B. Iinversion of a linear total divergence

Step 0. Identify the maximum derivative order, N = |J|, of the variables uα
J that occur in C. Set

Fi := 0, i = 1 . . . , p.
Step 1. While C has at least one term of order N, do the following. Select any such term, f (x)uα

J , and
determine a variable xi over which to integrate. If desired, parametrize for mixed derivatives,
as described above. Set Fi := Fi + fuα

J−1i
for the chosen i (with the appropriate modification if

parameters are used), and update the remainder by setting C := C − f (x)uα
J−Di(f )uα

J−1i
. Once

C has no terms of order N, continue to Step 2.
Step 2. If C is nonzero and cannot be set to zero by any choice of parameters, set N := N − 1 and

return to Step 1; otherwise, set C to zero and carry out parameter optimization (if needed),
give the output Fi, i = 1, . . . , p, then stop.

4.5 Summary: a procedure for inverting Div

Having addressed potential modifications, we are now in a position to summarize the inversion process
for any total divergence C whose fully expanded form has no terms depending on x only.

Procedure C. Inversion of C = DiFi

Step 0. Let C� be the linear part of C. If C� = 0, set C0 := C and Fi
0 := 0, i = 1, . . . , p. Otherwise,

invert C� using the technique described in Procedure B above, to obtain functions Fi
0 that sat-

isfy C� = DiFi
0. Set C0 := C − C�. Choose a derivative-dominant ranking for C0 (either using

the ranking heuristic or otherwise). In the notation used earlier, set x := x1 and u to be the
lowest-ranked relevant uα; typically, u := u1. Set n := 0; here n + 1 is the iteration number.

Step 1. Calculate Cn − π x
u (Cn); if this includes terms depending on [u]x, replace [u]x in these terms

only by [u + U]x.
Step 2. Apply the process detailed in Section 4.1 (with Cn replacing C). Provided that the ranking

check is passed, this yields components f i, which may depend on [U]x. If the ranking check
is failed, choose a different ranking of xj and uα for the remainder of the inversion process
and return to Step 1, starting with the lowest-ranked x and (relevant) u and working upwards
at each iteration.

Step 3. Replace all elements of [U]x in f i by zero.
Step 4. Update: set Fi

n+1 := Fi
n + f i, Cn+1 := Cn−Dif i and n := n + 1. If Cn+1 = 0, output Fi = Fi

n+1

and stop. Otherwise, update u and x as detailed in Section 4.2 and return to Step 1.

Example 4.5. As an example with linear terms, the Khokhlov–Zabolotskaya equation,

uxt − uuxx − u2
x − uyy = 0,

has a conservation law (see Poole & Hereman [11]) that involves an arbitrary function, f (t):

C = DxF + DyG + DtH =
(

1

6
f ′y3 + fxy

)(
uxt − uuxx − u2

x − uyy

)
.

The linear part C� of C is inverted by Procedure B, as shown in Example 4.3. From (4.6), Step 0 in
Procedure C gives

F0 =
(

1

6
f ′y3 + fxy

)
ut , G0 =

(
1

2
f ′y2 + fx

)
u −

(
1

6
f ′y3 + fxy

)
uy , H0 = −fyu.

The remainder C − C� is

C0 = −
(

1

6
f ′y3 + fxy

)(
uuxx + u2

x

)
.
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With the derivative-dominant ranking x ≺ y ≺ t, only one iteration is needed to complete the inversion,
because Ex

u(C0) = 0. Then

π x
u (C0) = Dx

{
1

2
fyu2 −

(
1

6
f ′y3 + fxy

)
uux

}
,

and as C0 = π x
u (C0), the calculation stops after updating, giving the output

F =
(

1

6
f ′y3 + fxy

)
(ut − uux) + 1

2
fyu2, G =

(
1

2
f ′y2 + fx

)
u −

(
1

6
f ′y3 + fxy

)
uy, H = −fyu.

This corresponds to the minimal result in Poole & Hereman [11].

Example 4.6. In every example so far, all iterations have used u = uα, but not uα
I for |I| �= 0. The BBM

equation from Example 2.1 illustrates the way that the process continues unhindered once the current
C is independent of all elements of [uα]x. The conservation law (2.6) is

C = DxF + DtG = (u2 + 2uxt)(ut − uux − uxxt);

it has no linear part or zero-degree terms. The ranking heuristic gives x ≺ t. The first iteration using Ex
u

is similar to what we have seen so far, giving the following updates:

C1 = 2uxt(ut − uxxt), F1 = −1

4
u4 − u2uxt, G1 = 1

3
u3.

At this stage, C1 is independent of [u]x and equals π x
ut

(C1). In the second iteration, the ranking requires
us to apply Ex

ut
. This annihilates C1; consequently, C1 is a total derivative with respect to x. Inverting this

gives the final (minimal) result,

F = −1

4
u4 − u2uxt − u2

xt + u2
t , G = 1

3
u3,

which was obtained by inspection in Example 2.1.

The Appendix lists inversions of various other divergences; in each case, the inversion produced by
Procedure C and the ranking heuristic is minimal and takes very few iterations to complete.

4.6 Splitting a divergence using discrete symmetries

A given divergence may have discrete symmetries between various terms in its fully expanded form. If
the divergence has very many terms that are connected by a particular discrete symmetry group, it can
be worth splitting these into disjoint divergences that are mapped to one another by the group elements.
Then it is only necessary to invert one of these divergences, using the symmetries to create inversions
of the others without the need for much extra computation. However, to use Procedure C, it is necessary
to check that all split terms are grouped into divergences; this check is done by using the criterion (2.3).

Polynomial divergences can first be split by degree, yielding divergences that are homogeneous in
[u]. Such splitting does not add significantly to the computation time, nor does it need to be checked
using (2.3), which holds automatically. Splitting by degree can make it easy to identify terms that are
linked by discrete symmetries, as illustrated by the following example.

Example 4.7. In Cartesian coordinates (x, y), the steady non-dimensionalized von Kármán equations
for a plate subject to a prescribed axisymmetric load function, p(x2 + y2), are A� = 0, � = 1, 2, where

A1 = uxxxx + 2uxxyy + uyyyy − uxxvyy + 2uxyvxy − uyyvxx − p,

A2 = vxxxx + 2vxxyy + vyyyy + uxxuyy − u2
xy .

Here u is the displacement and v is the Airy stress. This is a system of Euler–Lagrange equations.
By Noether’s Theorem, the one-parameter Lie group of rotational symmetries yields the following
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conservation law (see Djondjorov and Vassilev [6]):

C = (yvx − xvy)A2 − (yux − xuy)A1 .

This conservation law has linear, quadratic and cubic terms, so C can be inverted by summing the
inversions of each of the following divergences:

C� = (yux − xuy)p,

Cq = (yvx − xvy)(vxxxx + 2vxxyy + vyyyy) − (yux − xuy)(uxxxx + 2uxxyy + uyyyy),

Cc = (yvx − xvy)(uxxuyy − u2
xy) + (yux − xuy)(uxxvyy − 2uxyvxy + uyyvxx).

The quadratic terms have an obvious discrete symmetry, �1 : (x, y, u, v) �→ (−x, y, v, u), which gives a
splitting into two parts, each of which is a divergence:

Cq = Cq + �1(Cq),

where

Cq = (yvx − xvy)(vxxxx + 2vxxyy + vyyyy).

Consequently, we can invert Cq by inverting Cq and applying the symmetry �1.
Note that Cq has a discrete symmetry, �2 : (x, y, v) �→ (y, −x, v), which gives

Cq = g + �2(g), where g = (yvx − xvy)(vxxxx + vxxyy).

Checking (2.3) shows that this is not a valid splitting into divergences, because

Ev(g) = −2vxxxy − 2vxyyy �= 0.

If necessary, split divergences can be inverted using different rankings. However, in this simple
example, a single ranking works for all (nonlinear) parts. One tie-break is needed: let x ≺ y. The rank-
ing heuristic gives v ≺ u for the cubic terms; the variables [u] are not relevant in the inversion of Cq.
Procedure C gives the following minimal inversions,

C� = Dx(yup) + Dy(−xup),

Cq = Dx{Fq(x, y, [v])} + Dy{Gq(x, y, [v])},
Cc = DxFc + DyGc ,

where

Fq(x, y, [v]) = y

{
vxvxxx − 1

2
v2

xx + 2vxvxyy + v2
xy + vvyyyy − 1

2
v2

yy

}
+ x

{−vyvxxx + vxxvxy − 2vyvxyy

}+ vyvxx ,

Gq(x, y, [v]) = y
{−2vxxvxy − vvxyyy + vyvxyy

}+ x

{
−1

2
v2

xx + v2
xy − vyvyyy + 1

2
v2

yy

}
+ vvxyy ,

Fc = y

(
uxuyyvx + 1

2
u2

xvyy

)
+ x

(
uyuxyvy + 1

2
u2

yvxy

)
− 1

2
u2

yvy ,

Gc = − y

(
uxuxyvx + 1

2
u2

xvxy

)
− x

(
uyuxxvy + 1

2
u2

yvxx

)
+ 1

2
u2

xvx .

Applying �1 to Cq gives the following minimal inversion for C:

C = Dx

{
yup + Fq(x, y, [v]) − Fq(x, y, [u]) + Fc

}+ Dy

{−xup + Gq(x, y, [v]) − Gq(x, y, [u]) + Gc

}
.

Note that the tie-break x ≺ y causes the inversion to break the symmetry �2 that is apparent in Cq. As
it turns out, this symmetry can be restored without increasing the overall number of terms, by adding
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components of a trivial conservation law (which are of the form (2.1)). It is an open question whether
such preservation of symmetry and minimality is achievable in general.

In Djondjorov & Vassilev [6], the inversion of C for the special case p = 0 has 62 terms, which are
grouped according to their physical meaning. By contrast, the minimal inversion above has just 46 (resp.
48) terms when p is zero (resp. nonzero), a considerable saving. Moreover, by exploiting the symmetry
�1, only 28 (resp. 30) of these terms are determined using Procedure C. However, in seeking an efficient
inversion, we have ignored the physics. It would be interesting to understand the extent to which the use
of a minimal inversion obscures the underlying physics.

5. Concluding remarks

Partial Euler operators and partial scalings make it possible to invert divergences with respect to one
independent variable at a time, a byproduct being that some contributions to other components are
determined at each iteration step. Although each iteration involves a fair amount of computation, very
few iterations are needed for many systems of interest.

Given the potential complexity of functions, it is unlikely that every divergence can be inverted,
even in principle, by Procedure C. The question of how to prove or disprove this is open. In practice,
products of mixed derivatives present the greatest challenge to concise inversion, although the option of
re-ranking part-way through the procedure enables a divide-and-conquer approach to be taken.

The focus of this work has been on inverting the total divergence operator Div. However, this imme-
diately applies to expressions that can be recast as total divergences. For instance, for p = 3, the total
curl F = Curl(G) can be inverted by writing

Fi = Div(Hijej) = DjH
ij, Hij := ε ijkGk = −Hji, (5.1)

where ε ijk is the Levi–Civita symbol, then inverting one component at a time and using the results at each
stage to simplify the remainder of the calculation. Once Hij is known, the identity Gl = 1

2
εijlHij recovers

G. Typically, a minimal inversion is achieved by using a different ranking for each Fi, in accordance
with the ranking heuristic. Here is a simple illustration of the general approach.

Example 5.1. In Cartesian coordinates, invert (Fx, Fy, Fz) = Curl(Gx, Gy, Gz), where

Fx = ux(uyy − uzz) + uyuxy − uzuxz ,

Fy = uy(uzz − uxx) + uzuyz − uxuxy ,

Fz = uz(uxx − uyy) + uxuxz − uyuyz .

Begin by using Procedure C with y ≺ z ≺ x. In two iterations, this gives

Fx = Dy(uxuy) + Dz(−uxuz).

With (x, y, z) replacing the indices (1, 2, 3) in (5.1), let

Hxy = uxuy = −Hyx, Hxz = uxuz = −Hzx.

Therefore

DzH
yz = Fy−DxH

yx = uyuzz + uzuyz .

One could invert this by a further iteration with the ranking z ≺ y, though it is inverted more quickly by
the line integral formula, which gives Hyz = uyuz. Finally,

Gx = uyuz, Gy = uxuz, Gz = uxuy.
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A Appendix
Procedure C has been tested on the following conservation laws. In every case, the procedure coupled
with the ranking heuristic yields a minimal inversion.

Kadomtsev–Petviashvili (KP) equation. There are two forms of the KP equation, depending on which
of ε = ±1 is chosen. In either case, it has a conservation law,

C = f (t)y
(
uxt + uuxx + u2

x + u4x + εuyy

)
= Dx{fy (ut + uux + uxxx)} + Dt{εf (yuu − u)} .

With the ranking x ≺ y ≺ t, the procedure requires three iterations to obtain this inversion.

Potential Burgers equation (see Wolf et al. [14]). The potential Burgers equation has a conservation
law for each f (x, t) such that ft + fxx = 0:

C = f exp (u/2)(ut − uxx − 1

2
u2) = Dx{exp (u/2)(2fx − fux)} + Dt{2 exp (u/2)f }.

The inversion requires one iteration with x ≺ t, exchanging ft and −fxx twice.

Zakharov–Kuznetzov equation (see Poole & Hereman [11]). The Zakharov–Kuznetzov equation is
A= 0, where
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A= ut + uux + uxxx + uxyy .

It has a conservation law

C = (u2 + 2(uxx + uyy))A

= Dx{(1

2
u2 + uxx + uyy)

2 + 2uxut} + Dy{2uyut} + Dt{1

3
u3 − u2

x − u2
y}.

The fully expanded form has just eleven terms, and the inversion requires two iterations.

Short-pulse equation (see Brunelli [4]). The short-pulse equation, A= 0, with

A= uxt − u − uu2
x − 1

2
u2uxx ,

has the following conservation law involving a square root:

C = ux(1 + u2
x)−1/2A

= Dx{−1

2
u2(1 + u2

x)1/2} + Dt{(1 + u2
x)1/2}.

With x ≺ t, this can be inverted in one iteration.

Nonlinear Schrödinger equation. Splitting the field into its real and imaginary parts gives the system
A1 = 0, A2 = 0, with

A1 = −vt + uxx + (u2 + v2)u, A2 = ut + vxx + (u2 + v2)v.

One of the conservation laws is

C = utA1 + vtA2

= Dx{2uxut + 2vxvt} + Dt

{
1

2

(
u2 + v2

)− u2
x − v2

x

}
.

With the ranking u ≺ v and x ≺ t, the procedure requires two iterations.

Itô equations (see Wolf [13]). The equations are A1 = 0, A2 = 0, with

A1 = ut − uxxx − 6uux − 2vvx , A2 = vt − 2uxv − 2uvx .

This system has a rational conservation law,

C = 2v−1A1 + v−4

(
vvxx − 3

2
v2

x − 2uv2

)
A2

= Dx

{
v−3

(
vxvt − 2uxxv

2 − 2uxvvx − uv2
x − 4u2v2 − 4v4

)}+ Dt

{
v−3

(
2uv2 − 1

2
v2

x

)}
.

With the ranking u ≺ v and x ≺ t, the procedure requires two iterations.

Navier–Stokes equations. The (constant-density) two-dimensional Navier–Stokes equations are
A� = 0, � = 1, 2, 3, where

A1 = ut + uux + vuy + px − ν(uxx + uyy), A2 = vt + uvx + vvy + py − ν(vxx + vyy), A3 = ux + vy .

This system has a family of conservation laws involving two arbitrary functions, f (t) and g(t), namely

C = fA1 + gA2 + (fu + gv − f ′x − g′y)A3

= Dx{fu2 + guv + fp − ν(fux + gvx) − (f ′x + g′y)u}
+ Dy{fuv + gv2 + gp − ν(fuy + gvy) − (f ′x + g′y)v} + Dt{fu + gv}.
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Procedure C consists of a linear inversion and two further iterations, using the ranking x ≺ y ≺ t. The
three-dimensional Navier–Stokes equations have a similar conservation law, which requires a linear
inversion and three further iterations.

Procedure C and the ranking heuristic have also been tested on some divergences not arising from
conservation laws, with high order or complexity. Again, the output in each case is a minimal inversion.

High-order derivatives. The divergence is

C = u5xu4y + u2x,2yu2x,3y

= Dx

{
u4xu4y − u3xux,4y + (u2x,2y)

2
}+ Dt

{
u3xu2x,3y − u3x,yu2x,2y

}
.

With the ranking x ≺ y, the procedure requires three iterations. The other ranking, y ≺ x, also produces
a minimal inversion after three iterations; it is higher order in x but lower order in y:

C = Dx

{
u4x,2yu2y − u3x,2yux,2y + (u2x,2y)

2
}+ Dt

{
u5xu3y − u5x,yu2y

}
.

High-order derivatives and explicit dependence. The divergence is

C = t(uyuxttt − uxuyttt)

= Dx

{−tuuyttt

}+ Dy{tuuxttt)} .

With the ranking x ≺ y ≺ t, the procedure requires one iteration. This illustrates the value of the second
criterion for ranking independent variables; if t is ranked lower than x and y, the procedure fails at the
first check.

Exponential dependence. The divergence is

C = (
uxxu

2
y − 2uyy

)
exp (ux)

= Dx

{
u2

y exp (ux)
}+ Dt

{−2uy exp (ux)
}

.

With the ranking x ≺ y, the procedure requires one iteration.

Trigonometric dependence. The divergence is

C = (
uxxuyyy − uxxyuxyy

)
cos (ux)

= Dx

{
uyyy sin (ux)

}+ Dt

{−uxyy sin (ux)
}

.

With the ranking x ≺ y, the procedure requires one iteration.

Cite this article: Hydon P. E. (2023). Partial Euler operators and the efficient inversion of Div. European Journal of Applied
Mathematics, 34, 1046–1066. https://doi.org/10.1017/S0956792523000037
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