STAR-CENTER POINTS OF UNIVALENT FUNCTIONS

NICOLAS K. ARTÉMIADIS

(Received 19 February 1990; revised 13 July 1990)

Abstract

Let \mathscr{S} be the class of normalized univalent functions in the unit disk. For $f \in \mathscr{S}$ let S_{f} be the set of all star center points of f. Let $\mathscr{S}_{0}=\left\{f \in \mathscr{S}: 0 \in S_{f}^{0}\right\}$ where S_{f}^{0} is the interior of S_{f}. The influence that the size of the set S_{f}^{0} has on the Taylor coefficients of a function $f \in \mathscr{S}_{0}$ is examined, and estimates of these coefficients depending only on S_{f}^{0}, as well as other results, are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 30 C 50.

1. Introduction

Let \mathscr{S} be the class of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic and univalent in the unit disk $D=\{z \in \mathbb{C}:|z|<1\}$. For $f \in \mathscr{S}$ the set $f(D)$ is a nonempty open connected proper subset of the complex plane \mathbb{C}. A point $w \in f(D)$ is called a star center point (s.c.p) of $f(D)$ if and only if

$$
t f(z)+(1-t) w \in f(D), \quad z \in D, 0 \leq t \leq 1
$$

For $f \in \mathscr{S}$, let S_{f} be the set of all s.c.p of $f(D)$. Also let \mathscr{S}_{0} be the subclass of \mathscr{S} having the property that if $f \in \mathscr{S}_{0}$ then $0 \in S_{f}^{0}$, where S_{f}^{0} is the interior of S_{f}.

In this paper we examine the influence that roughly the size of S_{f}^{0} has on the Taylor coefficients, a_{n}, of a function in \mathscr{S}_{0}.

In Theorem 1, we obtain estimates of $\left|a_{n}\right|$, depending on the size of S_{f}^{0} for $f \in \mathscr{S}_{0}$.

Theorem 2 provides additional information concerning the coefficient estimates obtained in Theorem 1. More precisely it is shown that if $f_{1}, f_{2} \in \mathscr{S}_{0}$ and $S_{f_{1}}^{0} \subset S_{f_{2}}^{0}$ then $B\left(f_{2}, n\right) \leq B\left(f_{1}, n\right), n=1,2, \ldots$, where $B\left(f_{1}, n\right)$, $B\left(f_{2}, n\right)$ are the estimates for the nth coefficients of f_{1} and f_{2} respectively. Finally we give examples of functions in \mathscr{S}_{0} and compare our results with those obtained in [1].

I would like to thank the referees for their helpful comments on the subject.

2. Preliminaries

In this section we prove three lemmas which will be used later.

Lemma 1. The set of all star center points of a function in \mathscr{S} is convex.

Proof. Let $g \in \mathscr{S}, z_{1}, z_{2} \in D$ such that $g\left(z_{1}\right), g\left(z_{2}\right)$ belong to S_{g}. We show that the segment $\left[g\left(z_{1}\right), g\left(z_{2}\right)\right]$ is contained in S_{g}. Suppose $\left[g\left(z_{1}\right), g\left(z_{2}\right)\right] \not \subset S_{g}$ and let $w \in\left(g\left(z_{1}\right), g\left(z_{2}\right)\right)$ be such that $w \notin S_{g}$. Since $g\left(z_{1}\right), g\left(z_{2}\right)$ are s.c.p of $g(D)$ we have $w \in g(D)$.

By the hypothesis on w there is $z_{0} \in D$ such that $\left[g\left(z_{0}\right), w\right] \not \subset g(D)$. Observe that if the points $g\left(z_{0}\right), g\left(z_{1}\right), g\left(z_{2}\right)$ are collinear then there is nothing to prove. Otherwise there is $w_{1} \in\left(g\left(z_{0}\right), w\right)$ such that $w_{1} \notin g(D)$. We have $\left[g\left(z_{1}\right), g\left(z_{0}\right)\right] \subset g(D)$ because $g\left(z_{1}\right) \in S_{g}$ and $g\left(z_{0}\right) \in g(D)$. Let w_{2} be the intersection of the segment $\left[g\left(z_{1}\right), g\left(z_{0}\right)\right]$ and the straight line determined by the points $g\left(z_{2}\right)$ and w_{1}. These two sets intersect because w_{1} is an interior point of the triangle $\left\{g\left(z_{0}\right), g\left(z_{1}\right), g\left(z_{2}\right)\right\}$. We have $w_{2} \in$ $g(D)$. Since $g\left(z_{2}\right) \in S_{g}$ it follows that $w_{1} \in g(D)$ which contradicts $w_{1} \notin$ $g(D)$. Hence S_{g} is convex.

Lemma 2. Let $f \in \mathscr{S}_{0}, \xi: D \rightarrow S_{f}^{0}$ be a univalent analytic function such that $\boldsymbol{\xi}(0)=0, \xi(D)=S_{f}^{0}$, and let z_{0}, z_{1} be complex numbers such that $\left|z_{0}\right|<\left|z_{1}\right|=r<1$. Then the segment $\left[f\left(z_{1}\right), \xi\left(z_{0}\right)\right]$ is contained in $f\left(\bar{D}_{r}\right)$, where $\bar{D}_{r}=\{z:|z| \leq r\}$.

Proof. For $\xi\left(z_{0}\right)=0$ the lemma is known [2, page 220]. Let ρ and θ be two real numbers such that $0<\rho<1,-\pi \leq \theta \leq \pi$, $\rho e^{i \theta} z_{1}=z_{0}$. Put $\Phi(z)=t f(z)+(1-t) \xi\left(\rho e^{i \theta} z\right), z \in D, 0 \leq t \leq 1$. Clearly Φ is analytic in $D, \Phi(0)=f(0)=0$, and for each z the point $\xi\left(\rho e^{i \theta} z\right)$ is a s.c.p of $f(D)$. Hence Φ is subordinate to f, so $\Phi(z)=f(\varphi(z))$, where φ is analytic in
D, and $|\varphi(z)| \leq|z|$. We have

$$
\Phi\left(z_{1}\right)=t f\left(z_{1}\right)+(1-t) \xi\left(\rho e^{i \theta} z_{1}\right)=t f\left(z_{1}\right)+(1-t) \xi\left(z_{0}\right)=f\left(\varphi\left(z_{1}\right)\right)
$$

and $\left|\varphi\left(z_{1}\right) \leq\left|z_{1}\right|\right.$. Hence $\Phi\left(z_{1}\right) \in f\left(\bar{D}_{r}\right)$.
Lemma 3. Let $n>2$ be an integer. Given $1 / 2 \leq x \leq 1$ and integers $1 \leq p \leq q$, define

$$
F_{q, p}=(p-x)(p+1-x) \cdots(q-x) .
$$

Then

$$
\begin{align*}
-n!n+n F_{n, 2}(x)+ & 2 x\left[F_{n, 3}(x)+2!2 F_{n, 4}(x)+\cdots\right. \tag{1}\\
& \left.+(n-2)!(n-2) F_{n, n}(x)+(n-1)!(n-1)\right] \leq 0 .
\end{align*}
$$

Proof. We proceed by induction on n. Observe that (1) holds for $n=3$. We assume that it holds for n and we prove that it holds for $n+1$. It suffices to show that the left-hand side of (1) is nonincreasing in n, for each fixed $x \in[1 / 2,1]$, or equivalently

$$
\begin{aligned}
& (n+1) F_{n+1,2}(x)-n F_{n, 2}(x)+2 x n!n+2 x(n-x) \\
& \quad \cdot\left[F_{n, 3}(x)+2!2 F_{n, 4}(x)+\cdots+(n-1)!(n-1)\right] \\
& \quad \leq(n+1)!(n+1)-n!n .
\end{aligned}
$$

Now by the induction hypothesis we have

$$
2 x\left[F_{n, 3}(x)+2!2 F_{n, 4}(x)+\cdots+(n-1)!(n-1)\right] \leq n!n-n F_{n, 2}(x) .
$$

Hence (2) will hold if the following holds:

$$
\begin{align*}
& (n+1) F_{n+1,2}(x)-n F_{n, 2}(x)+2 x n!n+(n-x)\left(n!n-n F_{n, 2}(x)\right) \tag{3}\\
& \quad \leq(n+1)!(n+1)-n!n .
\end{align*}
$$

This is equivalent to

$$
\begin{equation*}
F_{n+1,2}(x)+n!n x-(n+1)!\leq 0 . \tag{4}
\end{equation*}
$$

To prove (4) we proceed as follows. We put $\Phi(x)=F_{n+1,2}(x)+n!n x$ $-(n+1)$! and we claim that the derivative $\Phi^{\prime}(x)$ is nonnegative for $1 / 2 \leq$ $x \leq 1$. If this is proven it will mean that $\Phi(x)$ is nondecreasing so that its maximum value will be taken for $x=1$. But since $\Phi(1)=0$ (4) will be proven.

We show that

$$
\begin{equation*}
\Phi^{\prime}(x)=n!n+F_{n+1,2}^{\prime}(x) \geq 0, \quad 1 / 2 \leq x \leq 1 . \tag{5}
\end{equation*}
$$

Observe that from the definition of $F_{q, p}(x)$ it follows that

$$
\begin{equation*}
F_{n+1,2}^{\prime}(x)=-F_{n+1,2}(x) \cdot \sum_{k=2}^{n+1} \frac{1}{k-x} \tag{6}
\end{equation*}
$$

so (5) can be written

$$
\begin{equation*}
n!n-F_{n+1,2}(x) \cdot \sum_{k=2}^{n+1} \frac{1}{k-x} \geq 0 \tag{7}
\end{equation*}
$$

Since $1 / 2 \leq x \leq 1$, to prove (7) it suffices to show

$$
\begin{equation*}
n!n-F_{n+1,2}\left(\frac{1}{2}\right) \cdot \sum_{k=2}^{n+1} \frac{1}{k-\frac{1}{2}} \geq 0 \tag{8}
\end{equation*}
$$

We again proceed by induction on n. It is easily seen that (8) holds for $n=3$. Assume that it holds for n. To show that (8) holds for $n+1$ we prove that the left-hand side of (8) is nondecreasing in n, or that

$$
\begin{equation*}
(n+1)!(n+1)-n!n \geq F_{n+1,2}\left(\frac{1}{2}\right)\left[\left(n+\frac{1}{2}\right) \cdot \sum_{k=2}^{n+1} \frac{1}{k-\frac{1}{2}}+1\right] \tag{9}
\end{equation*}
$$

If in (9) the expression $F_{n+1,2}\left(\frac{1}{2}\right)$ is replaced by

$$
n!n / \sum_{k=2}^{n+1} \frac{1}{k-\frac{1}{2}}
$$

we get

$$
\begin{align*}
(n+1)!(n+1)-n!n \geq & {\left[\frac{n!n}{\sum_{k=2}^{n+1}} \frac{1}{k-\frac{1}{2}}\right] } \\
& \cdot\left[\left(n+\frac{1}{2}\right) \cdot \sum_{k=2}^{n+1} \frac{1}{k-\frac{1}{2}}+1\right] . \tag{10}
\end{align*}
$$

Since (8) holds, it follows that (9) is true if (10) holds. But (10) is equivalent to

$$
\begin{equation*}
\frac{n}{n+2} \leq \sum_{k=1}^{n} \frac{1}{2 k+1}, \quad n \geq 3 \tag{11}
\end{equation*}
$$

which is easily seen to be true by induction. It follows that (9) holds, and this proves the lemma.

3. The main results

We wish to give coefficient estimates for the Taylor expansion of a function in \mathscr{S}_{0}.

Let $f \in \mathscr{S}_{0}$. From Lemma 1 it follows that S_{f}^{0} is convex. Also $S_{f}^{0} \neq \mathbb{C}$ since $f(C) \neq \mathbb{C}$.

Let α be any point of S_{f}^{0}. Riemann's Mapping Theorem asserts that there is a unique analytic function

$$
\begin{equation*}
g_{\alpha}: S_{f}^{0} \rightarrow D \tag{12}
\end{equation*}
$$

having the properties
(a) $g_{\alpha}(\alpha)=0$ and $g_{\alpha}^{\prime}(\alpha)>0$,
(b) g_{α} is one-to-one,
(c) $g_{\alpha}\left(S_{f}^{0}\right)=D$.

Put

$$
\mu(f, \alpha)=\left[1-\left|g_{\alpha}(0)\right|^{2}\right] / g_{\alpha}^{\prime}(0)
$$

Theorem 1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be a function in \mathscr{S}_{0} and let α be a point of S_{f}^{0}. Then
(i) $0<\mu(f, \alpha) \leq 1$.
(ii) If $\mu(f, \alpha)=1$ then $\left|a_{n}\right| \leq 1, n=1,2, \ldots$.
(iii) $\mu(f, \alpha)=1$ if and only if $S_{f}^{0}=f(D)$.
(iv) If $\mu(f, \alpha)<1$ then $\left|a_{n}\right| \leq A_{n}(f, \alpha)+R_{n-1}(\sigma)=M_{n}(f, \alpha), n \geq 2$, where $A_{n}(f, \alpha)=1+(n-1) \prod_{k=2}^{n}(k-1) /(k-\sigma), \sigma=1 /(1+\mu(f, \alpha))$, and

$$
\begin{aligned}
R_{n}(\sigma)=\frac{-n!n}{\prod_{k=2}^{n+1}(k-\sigma)}+ & \frac{n}{n+1-\sigma}+\frac{2 \sigma}{n+1-\sigma} \\
\cdot & {\left[\frac{1}{2-\sigma}+\frac{2!2}{(2-\sigma)(3-\sigma)}+\cdots\right.} \\
& \left.\quad+\frac{(n-2)!(n-2)}{(2-\sigma) \cdots(n-1-\sigma)}+\frac{(n-1)!(n-1)}{(2-\sigma) \cdots(n-\sigma)}\right] .
\end{aligned}
$$

(v) $\left|a_{n}\right| \leq B(f, n), n \geq 2$, where $B(f, n)=\inf _{\alpha \in S_{f}^{0}}\left(M_{n}(f, \alpha)\right)$.

Proof. Put $g=g_{\alpha}^{-1}$ where g_{α} is the function defined in (12). Then $g: D \rightarrow S_{f}^{0}$ is analytic in D and has the following properties:
(a') $g(0)=\alpha, g^{\prime}(0)=1 / g_{\alpha}^{\prime}(\alpha)>0$;
(${ }^{\prime}$) g is one-to-one;
$\left(\mathrm{c}^{\prime}\right) g(D)=S_{f}^{0}$.
Let $g_{\alpha}(0)=\beta$. Then $\beta \in D$ and $g(\beta)=0$.
Put

$$
\begin{equation*}
G(z)=g\left(\frac{z+\beta}{1+\bar{\beta} z}\right), \quad z \in D \tag{13}
\end{equation*}
$$

The function $G: D \rightarrow S_{f}^{0}$ is analytic in D and has the following properties:
$\left(\mathrm{a}^{\prime \prime}\right) G(0)=g(\beta)=0 ; G^{\prime}(0)=g^{\prime}(\beta)\left(1-|\beta|^{2}\right)=\left(1-|\beta|^{2}\right) / g_{\alpha}^{\prime}(0)=$ $\left(1-\left|g_{\alpha}(0)\right|^{2}\right) / g_{\alpha}^{\prime}(0)$;
($\mathrm{b}^{\prime \prime}$) G is one-to-one;
(c") $G(D)=S_{f}^{0}$.
Clearly G is subordinate to f. It follows that

$$
\begin{equation*}
G(z)=f(\omega(z)) \tag{14}
\end{equation*}
$$

where ω is analytic on D and $|\omega(z)| \leq|z|$.
Put $G(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, z \in D$. We have since, $G^{\prime}(0)$ does not vanish, that

$$
\begin{equation*}
0<b_{1}=G^{\prime}(0)=\omega^{\prime}(0)=\left[1-\left|g_{\alpha}(0)\right|^{2}\right] / g_{\alpha}^{\prime}(0)=\mu(f, \alpha) \leq 1 \tag{15}
\end{equation*}
$$

This proves assertion (1) of Theorem 1.
The function $G(z) / b_{1}=\sum_{n=1}^{\infty}\left(b_{n} / b_{1}\right) z^{n}$ belongs to the class \mathscr{S}_{0} and maps D onto the region $\left(1 / b_{1}\right) S_{f}^{0}=\left\{w / b_{1}: w \in S_{f}^{0}\right\}$ which is convex since S_{f}^{0} is convex. It follows that

$$
\begin{equation*}
\left|b_{n} / b_{1}\right| \leq 1, \quad n=1,2, \ldots \tag{16}
\end{equation*}
$$

Observe that ω is univalent in D because the composition of two univalent functions is univalent.

Summarizing the properties of ω, we have:
(i) ω is univalent in D;
(ii) $\omega(D) \subset D$;
(iii) $\omega(0)=0$;
(iv) $0<\omega^{\prime}(0)=b_{1} \leq 1$.

If in addition we had $\omega(D)=D$ then we would have $\omega(z)=z, \omega^{\prime}(0)=$ $b_{1}=1$ and it would follow from (14) and (16) that $G(z)=f(z)$ so that $a_{n}=b_{n},\left|a_{n}\right| \leq 1$. This proves assertion (ii) of Theorem 1.

Next assume that $\omega(D)$ is a proper subset of D. Then it follows from the condition for equality in Schwarz's lemma that $\omega^{\prime}(0)<1$.

The above imply
(i) $\omega(D)=D$ if and only if $\omega^{\prime}(0)=1$,
(ii) if $\omega^{\prime}(0)<1$ then $0<b_{1}<1$,
(iii) $\left|b_{n}\right| \leq\left|b_{1}\right| \leq 1$,
and assertion (iii) of Theorem 1 follows from (17)(i).
Let $z, z_{0} \in D$ such that $\left|z_{0}\right|<|z|=r<1$. Put $G\left(z_{0}\right)=w \in S_{f}^{0}$, $f(z)-w=R e^{i \tau}, z=r e^{i \theta}$. It follows from Lemma 2 that w is a s.c.p of $f\left(\bar{D}_{r}\right)$. Therefore

$$
\frac{\partial}{\partial \theta} \arg [f(z)-w]=\frac{\partial \tau}{\partial \theta} \geq 0
$$

We have

$$
\log [f(z)-w]=\log R+i \tau
$$

so

$$
\operatorname{Im}\left[\frac{\partial}{\partial \theta} \log (f(z)-w)\right] \geq 0
$$

In view of

$$
\frac{\partial}{\partial \theta}=i r e^{i \theta} \frac{d}{d z}=i z \frac{d}{d z}
$$

we get

$$
\operatorname{Re}\left[z f^{\prime}(z) /\left(f(z)-G\left(z_{0}\right)\right)\right] \geq 0
$$

The last inequality holds for all z, z_{0} in D for which $|z|>\left|z_{0}\right|$. Therefore if λ is a real number such that $0 \leq \lambda<1$, we have

$$
\operatorname{Re}\left[z f^{\prime}(z) /(f(z)-G(-\lambda z))\right] \geq 0, \quad z \in D
$$

Put

$$
\begin{equation*}
F(z)=\left[z f^{\prime}(z) /(f(z)-G(-\lambda z))\right]=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad z \in D \tag{18}
\end{equation*}
$$

It is easily seen that F is analytic in D and that $c_{0}=1 /\left(1+b_{1} \lambda\right)$.
Due to the inequality

$$
\operatorname{Re} F(z) \geq 0, \quad z \in D
$$

we have

$$
\begin{equation*}
\left|c_{n}\right| \leq 2 c_{0}=\frac{2}{1+b_{1} \lambda} \tag{19}
\end{equation*}
$$

From (18) we get

$$
z f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n}=\sum_{n=1}^{\infty}\left[a_{n}-b_{n}(-\lambda)^{n}\right] z^{n} \cdot \sum_{n=0}^{\infty} c_{n} z^{n}
$$

The last equation gives

$$
n a_{n}=\sum_{k=1}^{n}\left[a_{k}-(-\lambda)^{k} b_{k}\right] c_{n-k}, \quad n=1,2, \ldots
$$

or

$$
\begin{equation*}
\left(n-c_{0}\right) a_{n}=\sum_{k=1}^{n-1} a_{k} c_{n-k}-\sum_{k=1}^{n}(-\lambda)^{k} b_{k} c_{n-k} \tag{20}
\end{equation*}
$$

If we set $\lambda=0$ then (20) and (19) provide the well known inequality $\left|a_{n}\right| \leq$ $n, n=2,3, \ldots$.

From (20) we obtain, on account of (16) and (19),

$$
\begin{aligned}
\left|a_{n}\right| & \leq \frac{2 c_{0}}{n-c_{0}} \sum_{k=1}^{n-1}\left|a_{k}\right|+\frac{1}{n-c_{0}} \sum_{k=1}^{n} \lambda^{k}\left|c_{n-k}\right|\left|b_{k}\right| \\
& \leq \frac{2 c_{0}}{n-c_{0}} \sum_{k=1}^{n-1}\left|a_{k}\right|+\frac{\lambda^{n} b_{1} c_{0}}{n-c_{0}}+\frac{1}{n-c_{0}} \sum_{k=1}^{n-1} 2 b_{1} c_{0} \lambda^{k} .
\end{aligned}
$$

Now if we let $\lambda \rightarrow 1$ we get, since $b_{1} \sigma=1-\sigma$, that

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2 \sigma}{n-\sigma} \sum_{k=1}^{n-1}\left|a_{k}\right|+\frac{(1-\sigma)(2 n-1)}{n-\sigma}, \quad n \geq 2 . \tag{21}
\end{equation*}
$$

From (21) we deduce that for $n \geq 2$,

$$
\begin{equation*}
\left|a_{n}\right| \leq A_{n}(f, \alpha)+R_{n-1}(\sigma)=M_{n}(f, \alpha) \leq A_{n}(f, \alpha) . \tag{22}
\end{equation*}
$$

The last part of (22) follows immediately from Lemma 3, since $R_{n}(\sigma)$ is nonpositive for $n \geq 1$ and $1 / 2 \leq \sigma \leq 1$.

To prove the first part of (22) we proceed by induction on n. It is easily seen that for $n=2,3,(21)$ provides

$$
\begin{gathered}
\left|a_{2}\right| \leq 1+\frac{1}{2-\sigma}=A_{2}(f, \alpha)+R_{1}(\sigma)=A_{2}(f, \alpha) \\
\left|a_{3}\right| \leq 1+\frac{2!2}{(2-\sigma)(3-\sigma)}=A_{3}(f, \alpha)+R_{2}(\sigma)=A_{3}(f, \alpha),
\end{gathered}
$$

because $R_{1}(\sigma)=R_{2}(\sigma)=0$, which proves that (22) holds for $n=2,3$. Assume that (22) holds for n. We get from (21), after some calculations, that

$$
\begin{aligned}
\left|a_{n+1}\right| & \leq \frac{2 \sigma}{n+1-\sigma} \sum_{k=1}^{n}\left|a_{k}\right|+\frac{(1-\sigma)(2 n+1)}{n+1-\sigma} \\
& \leq A_{n+1}(f, \alpha)+R_{n}(\sigma)=M_{n+1}(f, \alpha)
\end{aligned}
$$

It follows that (22) holds for $n+1$. This proves assertion (iv) of Theorem 1 , while assertion (v) is obvious. The theorem is proved.

Remark. If in (19) and (16) equality holds for $n=2,3,4$ then for $c_{1}=c_{2}=c_{3}=2 \sigma, b_{2}=b_{4}=-b_{1}, b_{3}=b_{1}, \lambda=1$, it is easily checked that (22) is sharp for $n \leq 4$. Indeed we find

$$
\begin{gathered}
a_{2}=1+\frac{1}{2-\sigma}, \quad a_{3}=1+\frac{4}{(2-\sigma)(3-\sigma)}, \\
a_{4}=1+\frac{18}{(2-\sigma)(3-\sigma)(4-\sigma)}+\frac{\sigma^{2}-\sigma}{(2-\sigma)(3-\sigma)(4-\sigma)} .
\end{gathered}
$$

However the sharpness of (22) for all n remains open.

We make the following conjecture.
Conjecture. Let $f \in \mathscr{S}_{0}, \alpha \in S_{f}^{0}$. Then

$$
\begin{equation*}
\left|a_{n}\right| \leq A_{n}(f, \alpha)+R_{n-1}(\sigma)+H_{n}(\sigma), \quad n \geq 2, \tag{*}
\end{equation*}
$$

where

$$
H_{n}(\sigma)=\sum_{k=3}^{n-2}\left[R_{k}(\sigma)(2 \sigma)^{n-k-1} / \prod_{p=5}^{n+3-k}(p-\sigma)\right],
$$

for $n \geq 5$ and $H_{n}(\sigma)=0$ for $n<5$.
Furthermore, if equality holds in (16) and (19) and if

$$
c_{n}=2 \sigma, \quad b_{2 q}=-b_{1}, \quad b_{2 q-1}=b_{1}, \quad n=1,2, \ldots, q=1,2, \ldots,
$$

then for the a_{n} obtained from (20), (*) is sharp.
Theorem 2. Let f_{1}, f_{2} be functions in \mathscr{S}_{0}. Let $B\left(f_{1}, n\right), B\left(f_{2}, n\right)$ be the corresponding bounds on the Taylor coefficients of f_{1} and f_{2} respectively, as these are defined in Theorem $1(v)$. Suppose $S_{f_{1}}^{0} \subset S_{f_{2}}^{0}$. Then

$$
\begin{equation*}
B\left(f_{2}, n\right) \leq B\left(f_{1}, n\right) . \tag{23}
\end{equation*}
$$

Proof. Let $\alpha \in S_{f_{1}}^{0}$. Let G_{1} be the function obtained from f_{1} exactly the same way as G was obtained from f in (13). Similarly, since α also belongs to $S_{f_{2}}^{0}$, let G_{2} be the function obtained from f_{2}. We have

$$
G_{1}(D)=S_{f_{1}}^{0} \subset S_{f_{2}}^{0}=G_{2}(D), \quad G_{1}(0)=G_{2}(0)=0
$$

and both G_{1} and G_{2} are regular and univalent in D. It follows that G_{1} is subordinate to G_{2}, so $G_{1}(z)=G_{2}(\varphi(z))$, where φ is analytic in D and $|\varphi(z)| \leq|z|$. We have $G_{1}^{\prime}(z)=G_{2}^{\prime}(\varphi(z)) \varphi^{\prime}(z)$, or

$$
G_{1}^{\prime}(0)=\mu\left(f_{1}, \alpha\right)=G_{2}^{\prime}(0) \varphi^{\prime}(0)=\mu\left(f_{2}, \alpha\right) \varphi^{\prime}(0) .
$$

Since $\left|\varphi^{\prime}(0)\right| \leq 1$ we have

$$
\begin{equation*}
\mu\left(f_{1}, \alpha\right) \leq \mu\left(f_{2}, \alpha\right) \tag{24}
\end{equation*}
$$

Put

$$
\sigma_{1}=\frac{1}{1+\mu\left(f_{1}, \alpha\right)}, \quad \sigma_{2}=\frac{1}{1+\mu\left(f_{2}, \alpha\right)} .
$$

We have from (24) that

$$
\begin{equation*}
\sigma_{1} \geq \sigma_{2} \tag{25}
\end{equation*}
$$

Now the function $M_{n}(f, \alpha)=A_{n}(f, \alpha)+R_{n-1}(\sigma)$, defined in the statement of Theorem 1, can be written as follows

$$
\begin{aligned}
M_{n}(f, \alpha)= & 1+\frac{n-1}{n-\sigma}+\frac{2 \sigma}{n-\sigma} \\
& \cdot\left[\frac{1}{2-\sigma}+\frac{2!2}{(2-\sigma)(3-\sigma)}+\cdots+\frac{(n-2)!(n-2)}{(2-\sigma) \cdots(n-1-\sigma)}\right] .
\end{aligned}
$$

It is easily seen that the derivative of $M_{n}(f, \alpha)$ with respect to σ is nonnegative, which implies that $M_{n}(f, \alpha)$ is an increasing function of σ. It follows that

$$
\begin{equation*}
M_{n}\left(f_{1}, \alpha\right) \geq M_{n}\left(f_{2}, \alpha\right) \tag{26}
\end{equation*}
$$

By taking the infinum of the left side of (26) for $\alpha \in S_{f_{1}}^{0}$ and of the right side for $\alpha \in S_{f_{2}}^{0}$, we get (23) because $S_{f_{1}}^{0} \subset S_{f_{2}}^{0}$. This proves the theorem.

4. Examples and comments

Example (from [1]). The function

$$
f(z)=\frac{1}{2 \varepsilon}\left[\left(\frac{1+z}{1-z}\right)^{\varepsilon}-1\right], \quad z \in D, 1<\varepsilon<2
$$

belongs to the class \mathscr{S}_{0}. This is easily seen if we sketch $f(D)$. More precisely let L_{1}, L_{2} be the rays which start from the point $(-1 / 2 \varepsilon, 0)$ and make with the positive x-axis the angles $(2-\varepsilon) \frac{\pi}{2},(\varepsilon-2) \frac{\pi}{2}$ respectively. Then S_{f}^{0} is the open set which contains the origin and is bounded by the rays L_{1}, L_{2}. Let T be the symmetric set of S_{f}^{0} with respect to the line $x=-1 / 2 \varepsilon$. Then $f(D)=\mathbb{C}-\bar{T}$.

If we choose $\alpha=0 \in S_{f}^{0}$ then the function G considered in (13), which maps D onto S_{f}^{0}, is

$$
G(z)=\frac{1}{2 \varepsilon}\left[\left(\frac{1+z}{1-z}\right)^{2-\varepsilon}-1\right], \quad z \in D
$$

and we have $\mu(f, 0)=G^{\prime}(0)=(2-\varepsilon) / \varepsilon$ and $\sigma=\varepsilon / 2$.
Other examples can be found in [2, pages 196, 197].
We close with the following comment.
In [1] the authors present a different approach to the subject. Given $f \in \mathscr{S}$ the index δ of starlikeness of f is defined to be

$$
\delta=\sup \{r: f(z) \text { is a s.c.p of } f(D), \text { whenever }|z|<r\}
$$

Let Δ_{δ} be the class of all starlike functions whose index is equal to δ, $0 \leq \delta \leq 1$. For $f \in \Delta_{\delta}$ the following inequality holds:

$$
\begin{equation*}
\left|a_{n}\right| \leq \prod_{k=1}^{n-1} \frac{k(1+\delta)+1-(-\delta)^{k}}{k(1+\delta)+\delta+(-\delta)^{k}} . \tag{27}
\end{equation*}
$$

The estimates given by (27) depend on δ, or equivalently on the size of $f\left(D_{\delta}\right)$ which (in the cases of interest, that is, when $0<\delta<1$) is always a bounded subset of S_{f}^{0}.

On the other hand the estimates, given in Theorem 1 above, depend on the entire set S_{f}^{0}. If S_{f}^{0} is unbounded (see example given above) then $f\left(D_{\delta}\right)$ is a proper subset of S_{f}^{0}. Now it is possible in this case (that is, when S_{f}^{0} is unbounded) that the "unused" part of S_{f}^{0} "hides" some additional information on the a_{n}, including some concerning the sharpness of (27).

References

[1] L. Raymon and D. E. Tepper, 'Star center points of starlike functions', J. Austral. Math. Soc. (Series A) 19 (1975).
[2] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.

169, Megalou Alexandrou Street

13671 Thrakomakedones
Athens
Greece

