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AN n + 1 MEMBER DECOMPOSITION FOR SETS WHOSE 
Lnc POINTS FORM n CONVEX SETS 

MARILYN BREEN 

1. Introduction. Let S be a subset of Rd. A point x in 5 is a point of local 
convexity of S if and only if there is some neighborhood N of x such that, if 
y, z Ç N C\ 5, then [y, z] C 5. If S fails to be locally convex at some point q in 
S} then ç is called a /win/ 0/ /oca/ nonconvexity (lnc point) 0/ 5. 

Several interesting results have been proved for a set S whose lnc points Q 
may be represented as a finite union of convex sets. (See Valentine [5], Guay 
and Kay [2].) In particular, in [2] it is proved that for S closed, connected, 
S ~ Q connected, and Q having cardinality n, S is expressible as a union of 
n + 1 or fewer closed convex sets. Since the natural generalization of the 
Guay-Kay Theorem fails when Q is merely decomposable into n convex sets [1], 
this paper is concerned with obtaining sufficient conditions under which an 
analogue of the theorem might be proved. 

The notation and terminology, following that used in [1], are introduced for 
completeness: Throughout the paper, 5 is a closed subset of Rd, where 
d = dim aff S, the dimension of the affine hull of 5. Q denotes the set of lnc 
points of S, and 5 ~ Q is connected. We assume that Q C ker 5 ^ 0 (so S is 
connected) and that Q = Ul=i Ci where each Ct is convex. Since Q is closed, 
without loss of generality, we consider each Ct to be closed. Further, we assume 
that n is minimal in the following sense: For every i, there are points of Ct which 
do not belong to any Cj for j 9^ i, 1 ^ i, j ^ n. 

2. Preliminary results. We begin with a sequence of lemmas which will be 
useful in proving the main theorem of the paper. The first is a variation of a 
result by Valentine [5, Corollary 2]. 

LEMMA 1 (Valentine). If [x, y] W [y, z] C 5 and no point of Q lies in 
convfx, y, z} ~ [x, z], then convfx, y, z) C S. 

The second lemma is proved in [1]. 

LEMMA 2. For s in S, every neighborhood of s contains points in int 5. Hence 
S = cl (int S). 

LEMMA 3. If p G Q and N is any convex neighborhood of p, (N P\ S) ~ Q is 
connected. 
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Proof. We assert that N Pi int S is connected. Since 5 ~ Q is connected and 
locally convex, it is polygonally connected [4], and by standard arguments, 
since S = cl (int S), (int 5) ^ Q = int 5 is also polygonally connected. Thus 
for x, y in N P\ int S, there is a polygonal path X in int 5 from x to y. Since 
p Ç ker 5 and X C int 5, for every 2 in X, (£, z] C int 5. Then there is 
a path X0 in (\J{(p, z] : z in \}) C\ N Q (int 5) H TV from x to 3/. We have 
N C\ int 5 = (N C\ int 5) ^ Q polygonally connected and hence connected. 
Since ( 7 V P i i n t S ) ~ Ç Ç (TV H 5) ~ Q C cl ( ( iVn int 5) ~ Q), (iV H 5) ~ Q 
is also connected, and the lemma is proved. 

COROLLARY. For each Ci} 1 ^ i ^ n, dim aff Ct = J — 2. Moreover, if Q = C 
is convex, then S may be represented as a union of two closed convex sets. 

Proof. By Lemma 3, each d satisfies the hypotheses of Theorems 1, 2, and 3 
in [1]. Hence the corollary follows immediately from these results. 

Finally, the following theorem by Lawrence, Hare and Kenelly [3, Theorem 2] 
will be helpful. 

LEMMA 4 (Lawrence, Hare, Kenelly). Let T be a subset of a linear space such 
that for each finite subset F C T, F is a union of k sets F\, . . . , Fk, where 
conv Ft C T, 1 ^ i ^ k. Then T is a union of k convex sets. 

3. The decomposition theorem. 

THEOREM 1. Let S be a closed subset of Rd, Q the points of local nonconvexity of S, 
with S ~ Q connected. If Q C ker 5 ^ 0 and Q is expressible as a union of n 
convex sets, then S is a union of n + 1 or fewer convex sets. 

Proof. We assert that, without loss of generality, we may assume 5 to be a 
finite union of sets of the form conv(T U Q), where T is a finite subset of S: 
For F any finite subset of S, define 

SF = {x : x Ç conv(T U Q) C 5 for some T Q F}. 

Clearly each finite subset F' of 5 may be extended to a finite subset F of 5 for 
which SF is a full ^-dimensional and SF ~ Q is connected. Also, the set of lnc 
points of SF lies in Q, and by an appropriate choice of F, this set of lnc points 
will be exactly Q. (For each Cu select xt G (rel int C<) ~ U ^ i Cj and let N be 
a neighborhood of xt disjoint from U ^ j Ct. By adapting an argument in [1, 
Theorem 3], we may select pu qi'm N C\ S so that f o r^ G conv({pi\ \J Ci) ^ Ci 
and q' G conv({ç*} KJ Ct) ~ Cu [pf, q'] £ S. Then if pt, q{ G F, each point of 
d will be an lnc point for SF.) Clearly Q C ker SF, so SF satisfies the hypothesis 
of Theorem 1. Now by the Lawrence, Hare, Kenelly Theorem, we need only 
show that F' is a union of n + 1 convex sets, each having its convex hull in 
SF C 5. Therefore, it suffices to prove that SF is a union of n + 1 convex sets, 
so throughout the proof, we assume that 5 is a finite union of sets of the form 
conv(jT \J Q), where T is a finite subset of S. 
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T h e proof of the theorem will be by induction. For n = 0, Q = 0, and the 
result is an immediate consequence of a theorem by Tietze [4]. In case n = 1, Q 
is convex, and the result follows from the corollary to Lemma 3. Induct ively, 
for some n > 1, we assume tha t the theorem is t rue whenever Q is expressible as 
a union of fewer than n convex sets. 

Select some p o i n t y £ ( r e l i n t C i ) ^ (U"=2 Cf), and let N be a convex neighbor
hood of p such tha t (cl N) P (U?-2 Ci) = 0. Let t ing T = cl[(7V H 5 ) - Q], 
the set Qr of lnc points for T is exactly T P C\. Using Lemma 3, it is clear t ha t 
T ^ QT is connected, and since QT is convex, by Theorem 3 in [1], T is ex
pressible as a union of two closed convex sets. Moreover, by the proof of t ha t 
theorem, there is a hyperplane M containing C\ such t h a t c\(T C\ Mi), 
c\(T P M2) are convex sets whose union is T (where Mi, M2 represent dist inct 
open halfspaces determined by M), and [(ker T) P M] ~ aff d ^ 0. 

Now let 77 denote a hyperplane support ing c l ( T P Mi) which contains d 
and which also contains some point x in [N C\ (bdry S) P c\(T P Mi)] ~ 
c l ( T P M2). (Clearly since T is not convex, the set [TV P (bdry S) P d(T P 
Mi)] ~ c\(T P M2) is not empty , and by our opening assumption concerning 
S, 77 may be obtained by rota t ing M about the (d — 2) flat aff Ci.) Assume 
tha t c l ( m Mi) Ç dHi. We assert t ha t c l ( T P 770, c l ( T P H2) are also 
convex sets whose union is T. The proof follows: 

If 77 = M, there is nothing to prove, so assume 77, M are distinct. Now for y 
m Tr\H2, y $ c l ( m M i ) , and y £ TC\H2r\M2. T h u s c l ( 7 ^ P 7 7 2 ) = 
c\(T P M2 P H2), which is convex. T o see t h a t T P Hi is convex, recall t ha t 
there is some w in [(ker T) P M] ~ aff d . Now w G (ker T) P M Ç c l (T P 
Mi) Ç cl 77 i ; also w £ aiï d = H C\ M. T h u s w G M H Hx. For points 3/, 2 in 
T C\ Hi, [y, w] W [z, w] Ç 7", and since Ci C 77, there can be no point of C\ in 
convj^ , w, z). Hence by Valentine 's lemma, [3;, z] C T. Then [3/, z] Ç 7" P 77i, 
TC\Hi is convex, and <A(T C\ Hi) is convex. Since 5 = c l ( i n t £ ) , 7' = 
cl(7" P 77i) W cl(7" P 772), and the assertion is proved. 

Fur thermore , no point of Q may lie in 772: Otherwise, for y in 772 H Ç Ç ker 5 
and x the member of 77 selected above, (x, y] Ç 772, and since x is interior to N, 
there would be a sequence (xn) in T P 772 C T C\ H2 P M2 Ç m M2 con
verging to x. Bu t then x Ç c l ( T P M2), clearly impossible by our choice of x. 

Define Ai = S P 77^ A2 = S P 772. We will show tha t cl A2 is convex and 
tha t cl^4i is a set satisfying our induction hypothesis with its lnc points 
expressible as a union of n — 1 or fewer convex sets. 

T o see t ha t cl A2 is convex, let y, z £ A2 = 5 P 772. Then [3/, £ ] , [z, p] Ç 5 
and each of these segments contains points of TV P S P 772 Ç 7 H 772. Select 
3/, z' in 7" P 772 for which [y, yf], [z, z'] Q S. Since T P 772 is convex, 
[ y , z'] ^ 5 H 772, and since no lnc points of 5 lie in 772, by repeated use of 
Valentine 's lemma, [y, z] Ç 5 P 772. Therefore A2 is convex, as in cl A2. 

I t remains to show t h a t cl^4i satisfies our induction hypothesis. Clearly 
cl^4i is connected since [a, p] Ç^ cl Ai for every a G cl^4i. T o see tha t 
cl A1 ^ Q is connected, let y, z Ç (S Pi Hi) ~ Q and let U, V be neighborhoods 
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of y, z respectively, with [ / H S , V C\ S convex (and hence disjoint from Q). 
We assert t ha t [ / H 5 contains some j \ for which [yu p) C (S P i î i ) ^ Ç: 
Each Ci has dimension d — 2, so for each i, 1 ^ i ^ » , a f f ( ( f j U G ) determines 
a flat of dimension a t most d — 1. Since 5 = c l ( i n t S ) , we may select 3/1 in 
U C\ S C\ Hi and in none of these flats. Then [j\, p) is disjoint from Q. 
Similarly, there is some Zi in V P 5 P Hi with [zi, p) Q (S r\ Hi) ~ Q. 

Now select y2 on (^i, £>), z2 on (zi, £>), with y2l z2 in (5 Pi N) P Hi Ç r P i2\ . 
Since T C\ Hi is convex and disjoint from Ç, the path Qy, 3/1] W [3^, y2] KJ 
[y2, z2] \J [z2, zi] U [zi, z] lies in (5 P tf 0 ~ (X Thus the set (S P Hi) ~ Q = 
^4i ^ Q is polygonally connected and hence connected. Since Ai ~ Q C (cl ^4i) 
^ Q S cl(^4i ^ Q), (cl ^4i) ^ Q is also connected. Trivially, if QA denotes the 
set of lnc points of cl Ai, (cl Ai) ~ QA is connected. 

Finally, we show tha t QA is expressible as a union of n — 1 or fewer convex 
sets, each in ker(cl^4i) . However, the following preliminary result will be 
needed: For i ^ j , 1 S hj ^ n, if (rel int G ) P aff Cj 9e 0, then aff G = aff Cj. 
The proof is given below. 

For simplicity of notation, we will prove the result for j = 1. Recall tha t p is 
an arbi t rary point in rel int G and in no G , i 9^ 1, N is a convex neighborhood 
of p disjoint from G , i 9^ 1, and H a hyperplane supporting c l (T P M i ) , i2" 
containing G and some x in [N P (bdry 5) P c l (T P Mi)] — c l (T H M 2 ) , 
cl ( JH P Mi) C cl Hi. Similarly, let J be a hyperplane supporting cl {T P M2), J 
containing G and some point in [TV Pi (bdry S) P c l ( T P M2)] ~ c l ( T P Mi ) , 
c l (T P M2) Ç cl J2. By previous remarks, no point of Q may lie in H2 or in 
Ji. Hence Q C cl Hi P cl 72 . For 2 ^ i ^ n, if G contains a point in 
[cl i7i P cl J2] ~ (aff G ) , then certainly (rel int G ) P aff G = 0- Otherwise, 
Ct- Ç aff G , and aff G = aff G-

Using this result, it is not hard to show tha t no point of G ~ U"=2 G is in 
0 A . Let u G Ci ~ U^=2 Cf, w ^ £. Then (u, p] Ç rel int G . If [w, £] , 
contains any point of G, 2 S i ^ w, then rel int G P G ^ 0, and by our 
earlier result, G £ aff G . We assert tha t for each v on [u, p] there is a convex 
neighborhood Nv of z; such tha t A v P Q Ç G : Since it Ç Ci ^ U*=2 G , 
select iVM disjoint from each Cu2 ^ i ^ n. For y Ç (w, p] , it is simple to select 
a neighborhood A^ of v disjoint from every G n ° t containing u. Also, since 
v Ç rel int G , TV» may be selected so tha t Nv P aff G Ç rel int G . If Nv con
tains a point ç of some Ciy i 7e 1, then t; Ç G , v Ç (rel int G ) P G ^ 0, and 
G £ aff G . Hence q £ Nv Hi Ct Q Nv C\ aff Ci Q rel int G , and i V ^ Ç Ç 
rel int G . Thus the assertion is proved. 

By Lemma 3, (Nv P S) ~ Q is connected for each neighborhood A v selected 
above. Reduce to a finite subcollection Nu . . . , N3 of the Nv sets which covers 
[w, p]. Choose a convex cylinder U' so tha t cl [/' Q Ni W . . . KJ Nj} and define 

U= (UTiS) ~Q. 

Clearly the lnc points for cl U are exactly G P cl U, G P cl £/ = G P cl £/' 
is convex, cl U is closed, connected, and using Lemma 3, it is easy to see t ha t 
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(cl U) ~ C\ is connected. Hence our previous argument for cl T may be 
adapted to cl U to show that each of the sets c\(UC\ Hi), cl(UC\ H2) is 
convex. Thus u cannot be an lnc point for cl Ai — cl(5 C\ Hi), since U' is a 
neighborhood of u whose intersection with cl A\ is convex. Then u $ QA, the 
desired result. 

11 is a simple matter to show that for each i, 1 ^ i ^ n, Ct P\ cl A i = Cu and 
hence Ctr\clAi is convex: Let z £ Cu to prove z Ç cl^4i. By previous 
remarks, z d Ci H i72 = 0, and if 2 Ç C< P\ iJi Ç 5 H # i = ^4i, the result is 
immediate. Therefore, we need only consider the case for z Ç C< O H. Since 
5 = cl(int S), there is a sequence in 5 ~ H converging to z. Moreover, since z 
cannot be an lnc point for the convex set cl A2 = cl(5 P\ H2), there must be a 
sequence in S P\ Hi converging to z, and z Ç cl Ai. Thus C* C\ cl Ai = Ci} and 
the set is convex. 

Furthermore, for 2 ^ i ^ n, either C{ Ç QA or Ct ^ U;>** Cy is disjoint 
from ÇA- The proof follows: Since we have already proved the result for i = 1, 
suppose that for some 2 ^ i ^ n, C{ <£ QA. For convenience, relabel the C;- sets 
so that i = 2. Then clearly C2 £ # . There is some point r in rel int C2 with 
r (? QA, and for some convex neighborhood W of r, c l (WP\ Hi), c\{W C\ H2) 
are convex. For tm C2~ Uy*2 Q» (̂ » r] ^ rel int C2, and a previous argument 
may be repeated to select a convex neighborhood of [/, r] whose intersection 
with cl Ai is convex. Thus t $ QA and C2 ~ Uj^2 C3 is disjoint from QA. 

The set QA is the union of some of the n — 1 convex sets C2, . . . , Cn. More
over, each lnc point for cl Ai is in ker(cl Ai): For q in Q, s in cl Ai, there is a 
sequence (sw) in 5 P\ # i converging to 5, (q, sn] C S H ifi, and [q, s] C cl(5 P\ 
ffi) = cl ^4i. Hence Q Ç ker(cl Ai) and certainly Q^ Ç ker(cl Ai). 

Therefore, the set cl A\ satisfies our induction hypothesis and is expressible 
as a union of (n — 1) + 1 = n or fewer convex sets. Then 5 = cl Ai U cl A2 is 
a union of n + 1 or fewer convex sets, finishing the proof of Theorem 1. 

Clearly the bound of n + 1 in Theorem 1 is best possible for n = 0 and for 
n = 1. For n ^ 2 , the bound is best possible provided 5 C Rd, d ^ 3, as the 
following example reveals. 

Example 1. Let P be a prism in J?3 whose basis is a 2w-gon, n ^ 2. Remove 
disjoint wedges Wi, . . . , Wn from non-adjacent, non-basis facets of P to 
produce the convex sets of lnc points Ci, . . . , Cn. Each wedge Wj should be 
removed so that the corresponding C ; intersects both bases of P, and so that for 
1 ^ i < j ^ n, no hyperplane containing C; contains C*. This may be done in 
such a way that the resulting set 5 satisfies the hypothesis of Theorem 1, and 5 
is not expressible as a union of fewer than n + 1 convex sets. 

The example may be generalized to d > 3. 

In case d ^ 1, n must be zero, and the theorem is trivial. Thus the only 
other interesting case occurs when d = 2, and we have the following theorem. 

THEOREM 2. Let S be a closed subset of the plane, Q the set of lnc points of S 
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with S ~ Q connected. If Q Q ker 5 ^ 0 , then S is expressible as a union of three 
or fewer convex sets. 

Proof. If card Q = 0, S is convex, and if card Q = 1, 5 is a union of two 
convex sets by Theorem 1. For card Q = 2, it is easy to see that the line deter
mined by Q yields the desired decomposition. Similarly, in case Q = {x, y, z\, it 
is not hard to show that the points in Q cannot be collinear. Hence these points 
determine three lines, each pair of which yield a convex subset of 5 for the 
decomposition. 

For card Q ^ 4, an argument similar to that used by Valentine in Lemma 5 
of [6] may be applied to show that 5 is 3-convex. Then 5 is expressible as a 
union of three or fewer convex sets by Theorem 2 of [6]. 
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