AN $n+1$ MEMBER DECOMPOSITION FOR SETS WHOSE Lnc POINTS FORM n CONVEX SETS

MARILYN BREEN

1. Introduction. Let S be a subset of R^{d}. A point x in S is a point of local convexity of S if and only if there is some neighborhood N of x such that, if $y, z \in N \cap S$, then $[y, z] \subseteq S$. If S fails to be locally convex at some point q in S, then q is called a point of local nonconvexity (lnc point) of S.

Several interesting results have been proved for a set S whose lnc points Q may be represented as a finite union of convex sets. (See Valentine [5], Guay and Kay [2].) In particular, in [2] it is proved that for S closed, connected, $S \sim Q$ connected, and Q having cardinality n, S is expressible as a union of $n+1$ or fewer closed convex sets. Since the natural generalization of the Guay-Kay Theorem fails when Q is merely decomposable into n convex sets [1], this paper is concerned with obtaining sufficient conditions under which an analogue of the theorem might be proved.

The notation and terminology, following that used in [1], are introduced for completeness: Throughout the paper, S is a closed subset of R^{d}, where $d=\operatorname{dim} \operatorname{aff} S$, the dimension of the affine hull of $S . Q$ denotes the set of lnc points of S, and $S \sim Q$ is connected. We assume that $Q \subseteq \operatorname{ker} S \neq \emptyset$ (so S is connected) and that $Q=\bigcup_{i=1}^{n} C_{i}$ where each C_{i} is convex. Since Q is closed, without loss of generality, we consider each C_{i} to be closed. Further, we assume that n is minimal in the following sense: For every i, there are points of C_{i} which do not belong to any C_{j} for $j \neq i, 1 \leqq i, j \leqq n$.
2. Preliminary results. We begin with a sequence of lemmas which will be useful in proving the main theorem of the paper. The first is a variation of a result by Valentine [5, Corollary 2].

Lemma 1 (Valentine). If $[x, y] \cup[y, z] \subseteq S$ and no point of Q lies in $\operatorname{conv}\{x, y, z\} \sim[x, z]$, then $\operatorname{conv}\{x, y, z\} \subseteq S$.

The second lemma is proved in [1].
Lemma 2. For s in S, every neighborhood of s contains points in int S. Hence $S=\operatorname{cl}(\operatorname{int} S)$.

Lemma 3. If $p \in Q$ and N is any convex neighborhood of $p,(N \cap S) \sim Q$ is connected.

Received October 29, 1974 and in revised form, April 7, 1975.

Proof. We assert that $N \cap$ int S is connected. Since $S \sim Q$ is connected and locally convex, it is polygonally connected [4], and by standard arguments, since $S=\operatorname{cl}(\operatorname{int} S),(\operatorname{int} S) \sim Q=\operatorname{int} S$ is also polygonally connected. Thus for x, y in $N \cap \operatorname{int} S$, there is a polygonal path λ in int S from x to y. Since $p \in \operatorname{ker} S$ and $\lambda \subseteq \operatorname{int} S$, for every z in $\lambda,(p, z] \subseteq \operatorname{int} S$. Then there is a path λ_{0} in $(\cup\{(p, z]: z$ in $\lambda\}) \cap N \subseteq($ int $S) \cap N$ from x to y. We have $N \cap \operatorname{int} S=(N \cap \operatorname{int} S) \sim Q$ polygonally connected and hence connected. Since $(N \cap \operatorname{int} S) \sim Q \subseteq(N \cap S) \sim Q \subseteq \operatorname{cl}((N \cap \operatorname{int} S) \sim Q),(N \cap S) \sim Q$ is also connected, and the lemma is proved.

Corollary. For each $C_{i}, 1 \leqq i \leqq n$, dim aff $C_{i}=d-2$. Moreover, if $Q=C$ is convex, then S may be represented as a union of two closed convex sets.

Proof. By Lemma 3, each C_{i} satisfies the hypotheses of Theorems 1, 2, and 3 in [1]. Hence the corollary follows immediately from these results.

Finally, the following theorem by Lawrence, Hare and Kenelly [3, Theorem 2] will be helpful.

Lemma 4 (Lawrence, Hare, Kenelly). Let T be a subset of a linear space such that for each finite subset $F \subseteq T, F$ is a union of k sets F_{1}, \ldots, F_{k}, where conv $F_{i} \subseteq T, 1 \leqq i \leqq k$. Then T is a union of k convex sets.

3. The decomposition theorem.

Theorem 1. Let S be a closed subset of R^{d}, Q the points of local nonconvexity of S, with $S \sim Q$ connected. If $Q \subseteq \operatorname{ker} S \neq \emptyset$ and Q is expressible as a union of n convex sets, then S is a union of $n+1$ or fewer convex sets.

Proof. We assert that, without loss of generality, we may assume S to be a finite union of sets of the form $\operatorname{conv}(T \cup Q)$, where T is a finite subset of S : For F any finite subset of S, define

$$
S_{F}=\{x: x \in \operatorname{conv}(T \cup Q) \subseteq S \text { for some } T \subseteq F\}
$$

Clearly each finite subset F^{\prime} of S may be extended to a finite subset F of S for which S_{F} is a full d-dimensional and $S_{F} \sim Q$ is connected. Also, the set of lnc points of S_{F} lies in Q, and by an appropriate choice of F, this set of lnc points will be exactly Q. (For each C_{i}, select $x_{i} \in\left(\right.$ rel int $\left.C_{i}\right) \sim \cup_{j \neq i} C_{j}$ and let N be a neighborhood of x_{i} disjoint from $\bigcup_{i \neq j} C_{i}$. By adapting an argument in [1, Theorem 3], we may select p_{i}, q_{i} in $N \cap S$ so that for $p^{\prime} \in \operatorname{conv}\left(\left\{p_{i}\right\} \cup C_{i}\right) \sim C_{i}$ and $q^{\prime} \in \operatorname{conv}\left(\left\{q_{i}\right\} \cup C_{i}\right) \sim C_{i},\left[p^{\prime}, q^{\prime}\right] \nsubseteq S$. Then if $p_{i}, q_{i} \in F$, each point of C_{i} will be an lnc point for S_{F}.) Clearly $Q \subseteq \operatorname{ker} S_{F}$, so S_{F} satisfies the hypothesis of Theorem 1. Now by the Lawrence, Hare, Kenelly Theorem, we need only show that F^{\prime} is a union of $n+1$ convex sets, each having its convex hull in $S_{F} \subseteq S$. Therefore, it suffices to prove that S_{F} is a union of $n+1$ convex sets, so throughout the proof, we assume that S is a finite union of sets of the form $\operatorname{conv}(T \cup Q)$, where T is a finite subset of S.

The proof of the theorem will be by induction. For $n=0, Q=\emptyset$, and the result is an immediate consequence of a theorem by Tietze [4]. In case $n=1, Q$ is convex, and the result follows from the corollary to Lemma 3. Inductively, for some $n>1$, we assume that the theorem is true whenever Q is expressible as a union of fewer than n convex sets.

Select some point $p \in\left(\right.$ rel int $\left.C_{1}\right) \sim\left(\cup_{i=2}^{n} C_{i}\right)$, and let N be a convex neighborhood of p such that $(\mathrm{cl} N) \cap\left(\cup_{i=2}^{n} C_{i}\right)=\emptyset$. Letting $T=\operatorname{cl}[(N \cap S) \sim Q]$, the set Q_{T} of lnc points for T is exactly $T \cap C_{1}$. Using Lemma 3, it is clear that $T \sim Q_{T}$ is connected, and since Q_{T} is convex, by Theorem 3 in $[\mathbf{1}], T$ is expressible as a union of two closed convex sets. Moreover, by the proof of that theorem, there is a hyperplane M containing C_{1} such that $\operatorname{cl}\left(T \cap M_{1}\right)$, $\operatorname{cl}\left(T \cap M_{2}\right)$ are convex sets whose union is T (where M_{1}, M_{2} represent distinct open halfspaces determined by $M)$, and $[(\operatorname{ker} T) \cap M] \sim$ aff $C_{1} \neq \emptyset$.

Now let H denote a hyperplane supporting $\operatorname{cl}\left(T \cap M_{1}\right)$ which contains C_{1} and which also contains some point x in $\left[N \cap(b d r y S) \cap \operatorname{cl}\left(T \cap M_{1}\right)\right] \sim$ $\operatorname{cl}\left(T \cap M_{2}\right)$. (Clearly since T is not convex, the set $[N \cap($ bdry $S) \cap \operatorname{cl}(T \cap$ $\left.\left.M_{1}\right)\right] \sim \mathrm{cl}\left(T \cap M_{2}\right)$ is not empty, and by our opening assumption concerning S, H may be obtained by rotating M about the $(d-2)$ flat aff C_{1}.) Assume that $\operatorname{cl}\left(T \cap M_{1}\right) \subseteq \operatorname{cl} H_{1}$. We assert that $\operatorname{cl}\left(T \cap H_{1}\right), \operatorname{cl}\left(T \cap H_{2}\right)$ are also convex sets whose union is T. The proof follows:

If $H=M$, there is nothing to prove, so assume H, M are distinct. Now for y in $T \cap H_{2}, y \notin \operatorname{cl}\left(T \cap M_{1}\right)$, and $y \in T \cap H_{2} \cap M_{2}$. Thus $\operatorname{cl}\left(T \cap H_{2}\right)=$ $\operatorname{cl}\left(T \cap M_{2} \cap H_{2}\right)$, which is convex. To see that $T \cap H_{1}$ is convex, recall that there is some w in $[(\operatorname{ker} T) \cap M] \sim \operatorname{aff} C_{1}$. Now $w \in(\operatorname{ker} T) \cap M \subseteq \operatorname{cl}(T \cap$ $\left.M_{1}\right) \subseteq \operatorname{cl} H_{1}$; also $w \in$ aff $C_{1}=H \cap M$. Thus $w \in M \cap H_{1}$. For points y, z in $T \cap H_{1},[y, w] \cup[z, w] \subseteq T$, and since $C_{1} \subseteq H$, there can be no point of C_{1} in $\operatorname{conv}\{y, w, z\}$. Hence by Valentine's lemma, $[y, z] \subseteq T$. Then $[y, z] \subseteq T \cap H_{1}$, $T \cap H_{1}$ is convex, and $\operatorname{cl}\left(T \cap H_{1}\right)$ is convex. Since $S=\operatorname{cl}($ int $S), T=$ $\mathrm{cl}\left(T \cap H_{1}\right) \cup \mathrm{cl}\left(T \cap H_{2}\right)$, and the assertion is proved.

Furthermore, no point of Q may lie in H_{2} : Otherwise, for y in $H_{2} \cap Q \subseteq \operatorname{ker} S$ and x the member of H selected above, $(x, y] \subseteq H_{2}$, and since x is interior to N, there would be a sequence $\left(x_{n}\right)$ in $T \cap H_{2} \subseteq T \cap H_{2} \cap M_{2} \subseteq T \cap M_{2}$ converging to x. But then $x \in \operatorname{cl}\left(T \cap M_{2}\right)$, clearly impossible by our choice of x.

Define $A_{1}=S \cap H_{1}, A_{2}=S \cap H_{2}$. We will show that $\mathrm{cl} A_{2}$ is convex and that $\mathrm{cl} A_{1}$ is a set satisfying our induction hypothesis with its lnc points expressible as a union of $n-1$ or fewer convex sets.

To see that $\mathrm{cl} A_{2}$ is convex, let $y, z \in A_{2}=S \cap H_{2}$. Then $[y, p],[z, p] \subseteq S$ and each of these segments contains points of $N \cap S \cap H_{2} \subseteq T \cap H_{2}$. Select y^{\prime}, z^{\prime} in $T \cap H_{2}$ for which $\left[y, y^{\prime}\right],\left[z, z^{\prime}\right] \subseteq S$. Since $T \cap H_{2}$ is convex, [$\left.y^{\prime}, z^{\prime}\right] \subseteq S \cap H_{2}$, and since no lnc points of S lie in H_{2}, by repeated use of Valentine's lemma, $[y, z] \subseteq S \cap H_{2}$. Therefore A_{2} is convex, as in cl A_{2}.

It remains to show that $\mathrm{cl} A_{1}$ satisfies our induction hypothesis. Clearly $\mathrm{cl} A_{1}$ is connected since $[a, p] \subseteq \operatorname{cl} A_{1}$ for every $a \in \operatorname{cl} A_{1}$. To see that $\mathrm{cl} A_{1} \sim Q$ is connected, let $y, z \in\left(S \cap H_{1}\right) \sim Q$ and let U, V be neighborhoods
of y, z respectively, with $U \cap S, V \cap S$ convex (and hence disjoint from Q). We assert that $U \cap S$ contains some y_{1} for which $\left[y_{1}, p\right) \subseteq\left(S \cap H_{1}\right) \sim Q$: Each C_{i} has dimension $d-2$, so for each $i, 1 \leqq i \leqq n$, aff $\left(\{p\} \cup C_{i}\right)$ determines a flat of dimension at most $d-1$. Since $S=\mathrm{cl}\left(\right.$ int S), we may select y_{1} in $U \cap S \cap H_{1}$ and in none of these flats. Then $\left[y_{1}, p\right)$ is disjoint from Q. Similarly, there is some z_{1} in $V \cap S \cap H_{1}$ with $\left[z_{1}, p\right) \subseteq\left(S \cap H_{1}\right) \sim Q$.

Now select y_{2} on $\left(y_{1}, p\right), z_{2}$ on $\left(z_{1}, p\right)$, with y_{2}, z_{2} in $(S \cap N) \cap H_{1} \subseteq T \cap H_{1}$. Since $T \cap H_{1}$ is convex and disjoint from Q, the path $\left[y, y_{1}\right] \cup\left[y_{1}, y_{2}\right] \cup$ $\left[y_{2}, z_{2}\right] \cup\left[z_{2}, z_{1}\right] \cup\left[z_{1}, z\right]$ lies in $\left(S \cap H_{1}\right) \sim Q$. Thus the set $\left(S \cap H_{1}\right) \sim Q=$ $A_{1} \sim Q$ is polygonally connected and hence connected. Since $A_{1} \sim Q \subseteq\left(\mathrm{cl} A_{1}\right)$ $\sim Q \subseteq \operatorname{cl}\left(A_{1} \sim Q\right),\left(\operatorname{cl} A_{1}\right) \sim Q$ is also connected. Trivially, if Q_{A} denotes the set of lnc points of $\mathrm{cl} A_{1},\left(\mathrm{cl} A_{1}\right) \sim Q_{A}$ is connected.

Finally, we show that Q_{A} is expressible as a union of $n-1$ or fewer convex sets, each in $\operatorname{ker}\left(\mathrm{cl} A_{1}\right)$. However, the following preliminary result will be needed: For $i \neq j, 1 \leqq i, j \leqq n$, if $\left(\right.$ rel int $\left.C_{i}\right) \cap$ aff $C_{j} \neq \emptyset$, then aff $C_{i}=$ aff C_{j}. The proof is given below.

For simplicity of notation, we will prove the result for $j=1$. Recall that p is an arbitrary point in rel int C_{1} and in no $C_{i}, i \neq 1, N$ is a convex neighborhood of p disjoint from $C_{i}, i \neq 1$, and H a hyperplane supporting $\mathrm{cl}\left(T \cap M_{1}\right), H$ containing C_{1} and some x in $\left[N \cap(b d r y S) \cap \operatorname{cl}\left(T \cap M_{1}\right)\right] \sim \operatorname{cl}\left(T \cap M_{2}\right)$, $\operatorname{cl}\left(T \cap M_{1}\right) \subseteq \operatorname{cl} H_{1}$. Similarly, let J be a hyperplane supporting $\operatorname{cl}\left(T \cap M_{2}\right), J$ containing C_{1} and some point in $\left[N \cap(\right.$ bdry $\left.S) \cap \operatorname{cl}\left(T \cap M_{2}\right)\right] \sim \operatorname{cl}\left(T \cap M_{1}\right)$, $\operatorname{cl}\left(T \cap M_{2}\right) \subseteq \operatorname{cl} J_{2}$. By previous remarks, no point of Q may lie in H_{2} or in J_{1}. Hence $Q \subseteq \mathrm{cl} H_{1} \cap \mathrm{cl} J_{2}$. For $2 \leqq i \leqq n$, if C_{i} contains a point in $\left[\mathrm{cl} H_{1} \cap \mathrm{cl} J_{2}\right] \sim\left(\right.$ aff $\left.C_{1}\right)$, then certainly $\left(\right.$ rel int $\left.C_{i}\right) \cap$ aff $C_{1}=\emptyset$. Otherwise, $C_{i} \subseteq$ aff C_{1}, and aff $C_{i}=$ aff C_{1}.

Using this result, it is not hard to show that no point of $C_{1} \sim \bigcup_{i=2}^{n} C_{i}$ is in Q_{A}. Let $u \in C_{1} \sim \bigcup_{i=2}^{n} C_{i}, u \neq p$. Then $(u, p] \subseteq \operatorname{rel}$ int C_{1}. If $[u, p]$, contains any point of $C_{i}, 2 \leqq i \leqq n$, then rel int $C_{1} \cap C_{i} \neq \emptyset$, and by our earlier result, $C_{i} \subseteq$ aff C_{1}. We assert that for each v on $[u, p]$ there is a convex neighborhood N_{v} of v such that $N_{v} \cap Q \subseteq C_{1}$: Since $u \in C_{1} \sim \bigcup_{i=2}^{n} C_{i}$, select N_{u} disjoint from each $C_{i}, 2 \leqq i \leqq n$. For $v \in(u, p]$, it is simple to select a neighborhood N_{v} of v disjoint from every C_{i} not containing v. Also, since $v \in \operatorname{rel}$ int C_{1}, N_{v} may be selected so that $N_{v} \cap$ aff $C_{1} \subseteq$ rel int C_{1}. If N_{v} contains a point q of some $C_{i}, i \neq 1$, then $v \in C_{i}, v \in\left(\right.$ rel int $\left.C_{1}\right) \cap C_{i} \neq \emptyset$, and $C_{i} \subseteq$ aff C_{1}. Hence $q \in N_{v} \cap C_{i} \subseteq N_{v} \cap$ aff $C_{1} \subseteq$ rel int C_{1}, and $N_{v} \cap Q \subseteq$ rel int C_{1}. Thus the assertion is proved.

By Lemma 3, $\left(N_{v} \cap S\right) \sim Q$ is connected for each neighborhood N_{v} selected above. Reduce to a finite subcollection N_{1}, \ldots, N_{j} of the N_{i} sets which covers $[u, p]$. Choose a convex cylinder U^{\prime} so that $\mathrm{cl} U^{\prime} \subseteq N_{1} \cup \ldots \cup N_{j}$, and define

$$
U \equiv\left(U^{\prime} \cap S\right) \sim Q
$$

Clearly the lnc points for cl U are exactly $C_{1} \cap \mathrm{cl} U, C_{1} \cap \mathrm{cl} U=C_{1} \cap \mathrm{cl} U^{\prime}$ is convex, $\mathrm{cl} U$ is closed, connected, and using Lemma 3, it is easy to see that
(cl U) $\sim C_{1}$ is connected. Hence our previous argument for $\mathrm{cl} T$ may be adapted to cl U to show that each of the sets $\operatorname{cl}\left(U \cap H_{1}\right), \operatorname{cl}\left(U \cap H_{2}\right)$ is convex. Thus u cannot be an lnc point for $\mathrm{cl} A_{1}=\operatorname{cl}\left(S \cap H_{1}\right)$, since U^{\prime} is a neighborhood of u whose intersection with $\mathrm{cl} A_{1}$ is convex. Then $u \notin Q_{A}$, the desired result.

It is a simple matter to show that for each $i, 1 \leqq i \leqq n, C_{i} \cap \mathrm{cl} A_{1}=C_{i}$, and hence $C_{i} \cap \mathrm{cl} A_{1}$ is convex: Let $z \in C_{i}$, to prove $z \in \operatorname{cl} A_{1}$. By previous remarks, $z \notin C_{i} \cap H_{2}=\emptyset$, and if $z \in C_{i} \cap H_{1} \subseteq S \cap H_{1}=A_{1}$, the result is immediate. Therefore, we need only consider the case for $z \in C_{i} \cap H$. Since $S=\mathrm{cl}($ int $S)$, there is a sequence in $S \sim H$ converging to z. Moreover, since z cannot be an lnc point for the convex set $\mathrm{cl} A_{2}=\operatorname{cl}\left(S \cap H_{2}\right)$, there must be a sequence in $S \cap H_{1}$ converging to z, and $z \in \mathrm{cl} A_{1}$. Thus $C_{i} \cap \mathrm{cl} A_{1}=C_{i}$, and the set is convex.

Furthermore, for $2 \leqq i \leqq n$, either $C_{i} \subseteq Q_{A}$ or $C_{i} \sim \bigcup_{j \neq i} C_{j}$ is disjoint from Q_{A}. The proof follows: Since we have already proved the result for $i=1$, suppose that for some $2 \leqq i \leqq n, C_{i} \nsubseteq Q_{A}$. For convenience, relabel the C_{j} sets so that $i=2$. Then clearly $C_{2} \subseteq H$. There is some point r in rel int C_{2} with $r \notin Q_{A}$, and for some convex neighborhood W of $r, \operatorname{cl}\left(W \cap H_{1}\right), \operatorname{cl}\left(W \cap H_{2}\right)$ are convex. For t in $C_{2} \sim \bigcup_{j \neq 2} C_{j},(t, r] \subseteq$ rel int C_{2}, and a previous argument may be repeated to select a convex neighborhood of $[t, r]$ whose intersection with cl A_{1} is convex. Thus $t \notin Q_{A}$ and $C_{2} \sim \cup_{j \neq 2} C_{j}$ is disjoint from Q_{A}.

The set Q_{A} is the union of some of the $n-1$ convex sets C_{2}, \ldots, C_{n}. Moreover, each lnc point for $\mathrm{cl} A_{1}$ is in $\operatorname{ker}\left(\mathrm{cl} A_{1}\right)$: For q in Q, s in $\mathrm{cl} A_{1}$, there is a sequence $\left(s_{n}\right)$ in $S \cap H_{1}$ converging to $s,\left(q, s_{n}\right] \subseteq S \cap H_{1}$, and $[q, s] \subseteq \operatorname{cl}(S \cap$ $\left.H_{1}\right)=\operatorname{cl} A_{1}$. Hence $Q \subseteq \operatorname{ker}\left(\mathrm{cl} A_{1}\right)$ and certainly $Q_{A} \subseteq \operatorname{ker}\left(\mathrm{cl} A_{1}\right)$.

Therefore, the set cl A_{1} satisfies our induction hypothesis and is expressible as a union of $(n-1)+1=n$ or fewer convex sets. Then $S=\operatorname{cl} A_{1} \cup \mathrm{cl} A_{2}$ is a union of $n+1$ or fewer convex sets, finishing the proof of Theorem 1 .

Clearly the bound of $n+1$ in Theorem 1 is best possible for $n=0$ and for $n=1$. For $n \geqq 2$, the bound is best possible provided $S \subseteq R^{d}, d \geqq 3$, as the following example reveals.

Example 1. Let P be a prism in R^{3} whose basis is a $2 n$-gon, $n \geqq 2$. Remove disjoint wedges W_{1}, \ldots, W_{n} from non-adjacent, non-basis facets of P to produce the convex sets of lnc points C_{1}, \ldots, C_{n}. Each wedge W_{j} should be removed so that the corresponding C_{j} intersects both bases of P, and so that for $1 \leqq i<j \leqq n$, no hyperplane containing C_{j} contains C_{i}. This may be done in such a way that the resulting set S satisfies the hypothesis of Theorem 1, and S is not expressible as a union of fewer than $n+1$ convex sets.

The example may be generalized to $d>3$.
In case $d \leqq 1, n$ must be zero, and the theorem is trivial. Thus the only other interesting case occurs when $d=2$, and we have the following theorem.

Theorem 2. Let S be a closed subset of the plane, Q the set of lnc points of S
with $S \sim Q$ connected. If $Q \subseteq \operatorname{ker} S \neq \emptyset$, then S is expressible as a union of three or fewer convex sets.

Proof. If card $Q=0, S$ is convex, and if card $Q=1, S$ is a union of two convex sets by Theorem 1. For card $Q=2$, it is easy to see that the line determined by Q yields the desired decomposition. Similarly, in case $Q=\{x, y, z\}$, it is not hard to show that the points in Q cannot be collinear. Hence these points determine three lines, each pair of which yield a convex subset of S for the decomposition.

For card $Q \geqq 4$, an argument similar to that used by Valentine in Lemma 5 of [6] may be applied to show that S is 3 -convex. Then S is expressible as a union of three or fewer convex sets by Theorem 2 of [6].

References

1. Marilyn Breen, Points of local nonconvexity and finite unions of convex sets, Can. J. Math. 27 (1975), 376-383.
2. Merle D. Guay and David C. Kay, On sets having finitely many points of local nonconvexity and property P_{m}, Israel J. Math. 10 (1971), 196-209.
3. J. F. Lawrence, W. R. Hare, and John W. Kenelly, Finite unions of convex sets, Proc. Amer. Math. Soc. 34 (1972), 225-228.
4. F. A. Valentine, Convex sets (McGraw-Hill, New York, 1964).
5. -Local convexity and L_{n} sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.
6. - A three point convexity property, Pacific J. Math. 7 (1957), 1227-1235.

The University of Oklahoma, Norman, Oklahoma

