
8

Quantising fields: QED

We turn now to the quantisation of the electrodynamic fields introduced in

Chapter 7. So far we have treated the electromagnetic field and the Dirac field

as classical fields (though we were compelled in Chapter 7 to recognise that Dirac

fields anticommute). On quantisation, these fields become operator fields, acting

on the states of a system. The classical total field energy becomes the Hamiltonian

operator, which determines the dynamics of the system. We shall use the formal-

ism of annihilation and creation operators; this formalism is reviewed briefly in

Appendix C for readers not already familiar with it.

Quantum electrodynamics, or QED, is an important component of the Standard

Model. It is also the foundation of our understanding of the material world at the

atomic level. However, we do not wish to enter into the technical complications

of electrons in atoms or in material media. In this chapter we shall only con-

sider more simple situations of a few interacting photons, electrons and positrons,

at energies sufficiently high for bound systems of electrons and positrons to be

ignored. In these situations, the free field approximation to QED provides a sound

basis for understanding the interactions of particles as perturbations on their free

behaviour.

This is not a text on quantum field theory, and our outline of perturbation theory

in this chapter is necessarily sketchy. But our intention is to try to give some insight

into how the results of calculations, presented in later chapters, are arrived at. We

shall attempt to explain the necessity of renormalisation, which is an important

concept in the formulation of the Standard Model.

8.1 Boson and fermion field quantisation

The simplest classical field we have introduced is that of a massive free scalar

particle. It satisfies the Klein–Gordon equation (3.19). In the field expansion (3.21)

we have so far regarded the classical wave amplitudes ak and a∗
k as ordinary complex
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78 Quantising fields

numbers. We now quantise the theory. We interpret ak as an annihilation operator

and a∗
k becomes the creation operator a†

k, the Hermitian conjugate of ak. These

operators are to obey the commutation relations[
ak, a†

k′
] = δkk′, [ak, ak′] = 0,

[
a†

k, a†
k′
] = 0. (8.1)

The total field energy (3.30) becomes the Hamiltonian operator

H =
∑

k

a†
kakωk =

∑
k

Nkωk, (8.2)

where ωk = √
(k2 + m2) and it follows from the commutation relations that Nk =

a†
kak is the number operator (Appendix C). As in Chapter 3, we shall in this chapter

confine all particles to a cube of side l, volume V = l3, and use periodic boundary

conditions. By defining the Hamiltonian to be of the form (8.2), rather than the

more symmetrical form

1

2

∑
k

(
a†

kak + aka†
k

)
ωk =

∑
k

(
Nk + 1

2

)
ωk (8.3)

we discard ‘zero-point energy’ contributions and hence make the energy of the

vacuum state |0〉 to be zero. The excited energy eigenstates of the Hamiltonian can

then be interpreted as assemblies of particles (π0 mesons, say, or Higgs particles)

with an integer number nk of particles in the state k, where nk is the eigenvalue of

the number operator Nk. The particles will obey Bose–Einstein statistics.

In the radiation gauge of Section 4.1, the electromagnetic field in free space is

quantised in a very similar way to the Klein–Gordon field. The wave amplitudes akα

and a∗
kα which appear in the expansion (4.15), become the annihilation and creation

operators akα and a†
kα, and the total field energy (4.25) becomes the Hamiltonian

operator

Hem =
∑
k,α

a†
kαakαωk (8.4)

where ωk = |k|. The operators akα and a†
kα annihilate and create photons of wave

vector k and polarisation α, and satisfy commutation relations[
akω, a†

k′α′
] = δkk′δαα′, [akα, ak′α′] = 0,

[
a†

kα, a†
k′α′

] = 0. (8.5)

N (k, α) = a†
kαakα is the number operator. The energy eigenstates of the radiation

field correspond to assemblies of photons. Photons, like scalar particles, obey Bose–

Einstein statistics. (See Problem 8.1.)

On quantising the Dirac field of a free electron, the wave amplitudes appearing in

the expansion (6.24), and their complex conjugates likewise become operators: bpε

and bpε
† annihilate and create electrons of momentum p, helicity ε; dpε and dpε

†

https://doi.org/10.1017/9781009401685.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.010


8.1 Boson and fermion field quantisation 79

annihilate and create positrons of momentum p, helicity ε. Electrons and positrons

are fermions, and these operators obey anticommutation relations, for example

bpεb†
p′ε′ + b†

p′ε′bpε = {
bpε, b†

p′ε′
} = δpp′δεε′, {bpε, bp′ε′ } = 0,

{
b†

pε, b†
p′ε′

} = 0

(8.6)

dpε and d†
p′ε′ obey similar rules. Also all electron operators anticommute with

all positron operators. The electron number operator Ne (p, ε) = b†
pεbpε and the

positron number operator Np (p, ε) = d†
pεdpε have possible eigenvalues restricted

to 0 and 1, in accord with the Pauli exclusion principle (Appendix C). Electrons

and positrons obey Fermi–Dirac statistics. (See Problem 8.2.)

After second quantisation, the difficulties that were associated with the interpre-

tation of the Dirac equation as a single particle wave equation disappear. Elec-

trons and positrons are now on a similar footing and the ‘sea’ of filled nega-

tive energy states is no longer needed. The total field energy (6.25) becomes the

Hamiltonian

H =
∑
p,ε

(
b†

pεbpε − dpεd†
pε

)
Ep.

Using an anticommutation relation, we can replace this by

H =
∑
p,ε

(
b†

pεbpε + d†
pεdpε − 1

)
Ep.

We shall discard the constant zero-point energy term (which we note is negative

for fermions) and take

H =
∑
p,ε

(
b†

pεbpε + d†
pεdpε

)
Ep. (8.7)

The energy of the vacuum state is then zero, and the excited states correspond to

assemblies of electrons and positrons.

Similarly, the field momentum (6.26) becomes the momentum operator

P =
∑
p,ε

(
b†

pεbpε + d†
pεdpε

)
p. (8.8)

The conserved particle number (Problem 7.1) becomes the time independent

operator ∫
P

(
x0, x

)
d3x =

∑
p,ε

(
b†

pεbpε + dpεd†
pε

)
. (8.8)

which we replace by:

conserved number operator =
∑
p,ε

(
b†

pεbpε + d†
pεdpε

)
. (8.9)
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80 Quantising fields

This operator counts the number of electrons minus the number of positrons, a

number which is therefore constant in quantum electrodynamics.

8.2 Time dependence

In the Schrödinger picture, a system described by a Hamiltonian H evolves in time

from a state |t0〉 at time t0 to a state |t〉 at time t, where

|t〉 = e−iH (t−t0)|t0〉.
Thus time displacements are generated by the unitary operator e−iHt .

The expectation value of a time independent operator Ô at time t is

〈t |Ô|t〉 = 〈t0|eiH (t−t0) Ôe
−iH (t−t0)|t0〉

= 〈t0|Ô H (t − t0)|t0〉
where

Ô H (t) = eiHt Ôe−iHt (8.10)

depends on t.
These last equations give the so-called Heisenberg picture, in which the states

of a system remain fixed and the operators become time dependent. In the case of

free fields, the time dependence of the annihilation and creation operators is very

simple. For example, in the case of a scalar field (see (3.21)),

ak (t) = e−iωkt ak, a†
k(t) = eiωkt a†

k, (8.11)

as may be seen by considering the effect of the operators on a state |nk〉 (Appendix

C). It is usual in quantum field theory to work in the Heisenberg picture.

In the case of interacting fields, the basic free field states we have defined are no

longer eigenstates of the total Hamiltonian. In QED we may write

H = H0 + V, (8.12)

where

H0 = H (photons) + H (electrons) + H (positrons)

is given by (8.4) and (8.7). The eigenstates of Ho are just collections of freely

moving photons, electrons, and positrons.

V comes from the term −q
(
ψ̄γ μψ

)
Aμ in the Lagrangian density, (7.7),

which we constructed in Chapter 7. We are here excluding external fields. Since

V does not depend on derivatives of the fields, its contribution to the energy

density T 0
0 is just q(ψ̄γ μψ)Aμ, and setting q = −e for electrons we obtain
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at t = t0

V (t0) = −e
∫

ψ̄(r, t0)γ μψ(r, t0)Aμ(r, t0)d3r. (8.13)

Note that the subsequent time development of the fields is not that of the free fields,

since it is determined by the full Hamiltonian H = H0 + V .

We can expand the fields Aμ and ψ at the initial time to using (4.15) and (6.24),

replacing the wave amplitudes by appropriate operators. On expanding out V there

will be several types of term. For example, setting to = 0 one can easily pick out a

term

− em√
(2V ωk Ep′ Ep′′)

[ūε′(p′)γ μυε′′(p′′)εμ]d†
p′εd†

p′′ε′′akαδ(k−p′−p′′),0. (8.14)

This term annihilates a photon and creates an electron–positron pair. The condition

k − p′ − p′′ = 0 comes from the integration over space of the exponential factors,

and explicitly conserves momentum.

Dynamical calculations in a quantum field theory can be viewed as the calculation

of the unitary operator e−iHt acting on some initial specified state. In QED, the

coupling (8.13) between the radiation field and the Dirac field is determined by the

charge on the electron e. It is natural to introduce the dimensionless parameter α,

the fine structure constant:

α = e2

4πhc
≈ 1

137
.

α characterises the strength of the coupling, and is small. Much progress has been

made in QED by the construction of the operator e−iHt as an expansion of the form

e−iHt = e−iH0t [1 + eÔ1 (t) + e2 Ô2 (t) + . . .] (8.15)

where the Ôn(t) are time-dependent operators.

8.3 Perturbation theory

To construct the perturbation expansion (8.15), one can start by considering

e−iHt = [e−iHδt ]nwith δt = t/n.

For large enough n (small enough δt), one can take

e−iHδt = 1 − iHδt

and discard higher order terms in the Taylor expansion. Then

e−iHt = [1 − i (H0 + V ) δt]n .
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In the lowest order of perturbation theory only the terms linear in V are kept, so

that

e−iH0t eÔ1 (t) = −i
n−1∑
r=0

[1 − iH0δt]n−1−r V δt [1 − iH0δt]r

= −i
n−1∑
r=0

e−iH0(t−t ′)V δte−iH0t ′

with t ′ = rδt and n large.

In the limit of δt → 0, we can replace the sum by an integral, so that

eÔ1 (t) = −i

t∫
0

dt ′eiH 0t ′
V e−iH0t ′

. (8.16)

The operator e−iH0t ′
is the simple free field time evolution operator. If we take V to

be given at t = 0 by (8.13), we can write

Ô1 (t) = i

t∫
0

ψ̄(r′, t ′)γ μψ(r′, t ′)Aμ(r′, t ′) dt ′d3r′ (8.17)

where the fields have the time dependence of free unperturbed fields. A term like

(8.14), for example, will have time dependence (see equation (8.11)).

e−i(ωk−Ep′−Ep′′)t ′
(8.18)

The evolution of a state from time −t/2 in the past to time t/2 in the future

corresponds to taking the integral in (8.17) from −t/2 to t/2. This more symmetrical

form is appropriate to the description of particle scattering processes. For example,

if the initial state at time −t/2 consists of a photon in the state (k, α), the operators in

(8.14) annihilate this photon and create an electron in a state (p′, ε′) and a positron

in the state (p′′, ε′′). Taking the limit t → ∞ in the time factor (8.18) gives

∞∫
−∞

e−i(ωk−Ep′−Ep′′ )t ′
dt ′ = 2πδ(ωk − Ep′ − Ep′′).

Thus energy conservation, as well as momentum conservation, is explicit. In free

space it is impossible to satisfy both these conservation laws in the case of pair

production from a photon (Problem 8.3), so that first-order perturbation theory con-

tributes nothing. (In the presence of an external electromagnetic field, for example

the Coulomb field of a nucleus, momentum conservation between electrons and

photons is lost, and pair production is possible if ωk > 2m.)
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When the first-order transition amplitude at time t does not vanish, we have,

using (8.16),

〈final state|eÔ1(t)|initial state〉 = 〈f|V (0)|i〉
t/2∫

−t/2

e−i
Et ′
dt ′,

where 
E = Ei − Ef and Ei and Ef are the energies of the initial state |i〉 and final

state | f 〉. It is shown in textbooks on quantum mechanics that the time dependence

can be interpreted as a transition probability per unit time, from the initial state i to

the final state f, given by

transition probability = 2π |〈f|V (0)|i〉|2ρ(Ef),

whereρ(Ef)is the density of final energy states at Ef = Ei.

It is straightforward to extract higher order terms of the perturbation expansion.

For example

Ô2 (t) =
t/2∫

−t/2

d4x2 ψ̄(x2)γ μψ (x2) Aμ (x2)

t2∫
−t/2

d4x1 ψ̄ (x1) γ μψ (x1) Aμ (x1)

(8.19)

where x1 = (t1, r1), x2 = (t2, r2) and −t/2 < t2 < t/2.

8.4 Renormalisation and renormalisable field theories

In second-order perturbation theory, we can pick out terms corresponding to the

creation of an electron–positron pair at a point x1 in space-time and its destruction

at a point x2. They may be characterised by the diagrams of Fig. 8.1. In these dia-

grams time runs from left to right. Momentum is conserved at x1 and x2. Overall

there is also conservation of energy and angular momentum, so that the ‘unper-

turbed’ photon that emerges at time t2 is in the same state as the initial unperturbed

photon.

We pointed out that in free space it is not possible to create a real e−e+ pair from

a photon. The e−e+ pair of the diagram is a virtual pair, corresponding to a term in

a mathematical expansion. The transition amplitude

〈k|e−iH0t Ô2 (t) |k〉 = e−iωkt〈k|Ô2 (t) |k〉
is non-vanishing. The ‘real’ photon is evidently a complex object. Calculations

show that the effect of virtual e−e+ pairs is to make the vacuum behave like an

electrically polarisable medium. In particular, the Coulomb interaction between

two ‘bare’ electrons is screened. We can envisage this effect as resulting from a

screening cloud of virtual positrons around each bare electron, the corresponding
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Figure 8.1 In these diagrams an unperturbed electron–positron pair is created at
a point x1 in space-time and destroyed at a point x2. In (a) the initial unperturbed
photon is destroyed at x1 and recreated at x2; vice versa in (b). In (a) and (b)
time runs from left to right. As shown by Feynman it is convenient to characterise
both processes by the single Feynman diagram (c). In all of these diagrams the
arrows on the fermion lines follow the direction of electron number. (The arrows
on positrons then run backwards in time.)

negative charge of the virtual e−e+ pairs appearing as charge at the surface of the

confining volume.

What is measured experimentally as the charge −e on an electron is the screened

charge. To compensate for this screening effect, the parameter e that appears in the

Lagrangian must be replaced by a ‘bare’ charge eo = e + 
e. This gives ‘counter

terms’ in the Lagrangian. 
e is chosen to cancel the screening effect. To second

order the calculation gives 
e = αA1e where A1 is a dimensionless quantity. With

this adjustment and to this order, the screened charge on the electron becomes −e.

In higher orders of perturbation theory one obtains


e = e[αA1 + α2 A2 + · · ·].

To any order of perturbation theory an account must be kept of the readjustment

of e, in order to extract from a calculation the significant physical effects which

are also determined by terms in the perturbation expansion. The charge −e on

the electron is said to be renormalised. 
e itself can never be measured. Physical

effects in atomic physics arising in part from vacuum polarisation terms have been

calculated and measured with high precision. (See also Section 16.3.)

The other parameter appearing in electrodynamics is the mass of the elec-

tron. The bare mass of the electron is modified in second-order perturbation
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Figure 8.2 In these diagrams an unperturbed photon is created at a point x1 in
space-time and destroyed at a point x2. In (a) the initial unperturbed electron is
destroyed at x1 and recreated at x2; vice versa in (b). In (a) and (b) time runs from
left to right. It is convenient to characterise both processes by the single Feynman
diagram (c). In all of these diagrams the arrows on the fermion lines follow the
direction of the electron number. (The arrows on positrons then run backwards in
time.)

theory by the processes shown in Fig. 8.2. To compensate for these processes

we must take mo = m − 
m in the Lagrangian where 
m is chosen to compen-

sate for the shift in mass produced by the electron–photon interactions. We can

think of the bare electron as ‘dressed’ by virtual photons. It is found that to sec-

ond order 
m = αm B1, where B1 is another dimensionless quantity, and more

generally


m = m[αB1 + α2 B2 + · · ·].

As with 
e, 
m has to be adjusted at each higher order of perturbation theory,

and there is a systematic way of extracting physical answers from perturbation

calculations. The physical mass m is the renormalised mass.

Diagrams like those of Fig. 8.3, in which virtual e−e+ pairs and virtual photons

are created and annihilated together, give terms that modify the vacuum energy.

Energy shifts in perturbation theory are to be expected, but since we have no

unperturbed vacuum with which to compare, such shifts are not measurable. The

cosmological constant of general relativity gives a measure of the vacuum energy
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Figure 8.3 The vacuum state of quantum electrodynamics differs from the unper-
turbed vacuum by processes, one of which is illustrated in this figure.

density that is certainly very small, and is consistent with its being zero. We shall

take the vacuum energy density, whatever its origin, to be zero.

It could have been anticipated without calculation that there would be perturbing

effects of charge renormalisation and mass renormalisation. The unpalatable feature

of quantum electrodynamics is that when the constants Ai , and Bi are calculated

they all turn out to be infinite, as does the correction to the vacuum state energy. It

is just as well that 
e and 
m have no physical significance. However, it is the case

that an expansion in the small parameter α gives seemingly infinite corrections to

quantities one cannot measure. An important feature of QED is that, leaving aside

a scaling of the fields that is also part of the renormalisation scheme, infinities only

appear in the renormalisation of the parameters of the theory, e, m and the vacuum

energy. The only infinite counter terms that have to be added to the Lagrangian

are contained in these parameters. Having made these adjustments, the remaining

physical effects are calculable and finite.

QED is a local field theory, i.e. a theory in which the interaction terms involve a

product of fields at the same point in space time. Infinities such as occur in QED

are endemic in all local field theories. Field theories in which the infinities only

appear in a finite number of parameters of the theory are said to be renormalisable.
The divergences in the coefficients Ai of 
e and Bi of 
m arise, for example,

in the contribution from O2 (see (8.19)), from the integration region where x2 ≈ x1

and in particular where r2 ≈ r1. An important feature of QED is that the expansion

parameter α and hence the coefficients, are dimensionless numbers. In Chapters 9

and 21 we will encounter theories in which the coupling constants and therefore

the expansion parameters have the dimensions of inverse powers of mass. All

the terms in perturbation expansions must have the same dimension, therefore the

coefficients have a dimension to compensate those of the coupling constant. In the

integration regions the integrands diverge with large inverse powers of |r2 − r1| as

r2 → r1 to achieve the compensation, but they render the integrals infinite. Infinities

occur for all multiparticle interactions, they can not be removed just by mass and
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coupling constant renormalisation. Such theories are unrenormalisable, they can

not be taken seriously as quantum field theories.

8.5 The magnetic moment of the electron

We shall now illustrate the remarkable success of QED in calculating quantities

of physical significance by giving an account of the calculation of the electron’s

magnetic moment. In Chapter 7 we showed that the Dirac equation before second

quantisation implies that the electron carries a magnetic moment of magnitude

μB = eh/2m anti-aligned with its spin. The electron’s magnetic moment has been

measured with high precision: the experimental value μe is

μe = μB (1 + a)

where the ‘anomaly’ a = 0.001159 652 188 4(43) (Van Dyck et al., 1987).

After second quantisation, the perturbative corrections to the Dirac value can be

calculated. The Dirac value is contained in the operator Ô1 of equation (8.16), and

is associated with diagram (a) of Fig. 8.4. This lowest order calculation reproduces

the Dirac result μe = μB.

Since μB is the only combination of the parameters e, me and h which has the

dimensions of magnetic moment, higher orders of perturbation theory will give

terms of the form

μe = μB(1 + αC1 + α2C2 + α3C3 + α4C4 + · · ·),
where the Ci are dimensionless constants. To compare the theory with experiment

we use the 1986 adjusted value of the fine structure constant,

α−1 = 137.035 9979 (32) .

C1 is associated with diagram (b) of Fig. 8.4; the calculation gives C1 = 1/(2π ).

Hence to this order

a = C1α = 0.001 161 409 74,

which agrees with experiment to within five significant figures.

The next order correction, associated with diagrams (c) of Fig. 8.4, is

C2 = 1

π2

(
197

144
+ 3

4
ζ (3)

)
− 1

2
ln 2 + 1

12

where ζ (z) is the Riemann zeta function. To this order,

a = 0.001 159 637 44,

in agreement to seven significant figures.
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Figure 8.4 Perturbation theory Feynman diagrams that represent contnbutions to
the electron magnetic moment. The anomalous moment, to order α2, comes from
calculations associated with diagrams (b) and (c).
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Calculations of higher orders of perturbation theory become rapidly more

intractable. Numerical estimates give C3 ≈ 0.03792, C4 ≈ −0.014. At this level

of accuracy, corrections have to be made for processes that come from other parts

of the Standard Model, in particular from the muon. The most recent comprehensive

calculations (Kinoshita and Lindquist, 1990) give

a = 0.001 159 652 140 0 (41 + 53 + 271),

in agreement with experiment to ten significant figures. The largest error in the

theory is from the uncertainty in α−1.

Within its range of applicability, quantum electrodynamics provides an aston-

ishingly exact model of Nature. One may have some confidence that the techniques

of renormalisation in perturbation theory are valid.

8.6 Quantisation in the Standard Model

In this chapter we have outlined the ‘canonical quantisation’ techniques that have

been particularly successful in quantum electrodynamics. Many books have been

written on this subject, for example Itzykson and Zuber (1980); some will have to

be consulted if one is to be competent and confident in making detailed calcula-

tions. However, many of the decay rates and cross-sections given in the following

chapters, which are needed to compare the predictions of the Standard Model with

experiment, are quite well approximated by the so-called ‘tree level’ of perturbation

theory. The tree-level diagrams have no closed loops (see Fig. 8.4(a)) and require

no renormalisation. It is a fortunate circumstance that in low orders of perturbation

theory these can be calculated quite easily.

The particles and forces of the weak and the strong interactions are also described

by local gauge field theories, which will be exhibited at the classical level in the

chapters that follow. The quantisation procedures used in these extensions of QED

have been most successfully pursued by the path integral method of quantisation

(see, for example, Cheng and Li (1984)). Both the theory of the weak interaction

and the theory of the strong interaction pose their own special problems, but the

principles of gauge symmetry and renormalisability have been essential in the

construction of the Standard Model as it is today.

Problems

8.1 A general two-particle state of scalar bosons (Section 8.1) can be written

|state〉 =
∑
k1,k2

f (k1, k2) a†
k1 a†

k2|0〉,
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where, apart from normalisation, f (k1, k2) is any function of k1 and k2. (f can be

called the wave function of the state.)

Show that this state may be written

|state〉 =
∑
k1,k2

g (k1, k2) a†
k1 a†

k2|0〉

with g(k1, k2) = {f (k1, k2) + f (k2, k1)}/2, symmetric under the interchange of

labelling.

8.2 A general two-particle state of fermions can be written

|state〉 =
∑

p1,ε1,p2,ε2

f (p1, ε1, p2, ε2) b†
p1ε1

b†
p2ε2

|0〉

where apart from normalisation f is any function of p1, ε1 and p2, ε2.

Show that this state can also be written

|state〉 =
∑

p1,ε1,p2,ε2

g (p1, ε1, p2, ε2) b†
p1ε1

b†
p2ε2

|0〉

with g(p1, ε1; p2, ε2) = {f (p1, ε1; p2, ε2) − f (p2, ε2; p1, ε1}/2, antisymmetric under

the interchange of labelling.

8.2 Use energy and momentum conservation to show that pair creation by a single photon,

γ → e+ + e−, is impossible in free space.

8.3 The energy density of an electromagnetic field is given by equation (4.24). Show that

the total electric field energy of a point charge q outside a sphere of radius R centred

on the particle is

energy = q2/(8πR).

Note that this classical contribution to the particle rest energy is infinite in the limit

R → 0.
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