On a Differential Equation and the Construction of Milner's Liamp.

By Professor Cayley.

What sort of an equation is
$h^{3} \cos (\alpha+\theta)=a \cos \theta \int_{\theta}^{\beta} \gamma^{r^{2} d \theta}-\frac{2}{3}\left\{\cos \theta \int_{\theta}^{\beta} r^{3} \cos \theta d \theta+\sin \theta \int_{\theta}^{\beta} r^{r^{3} \sin \theta d \theta}\right\} ?(1)$
Write $\quad \mathrm{X}=\int_{\theta}^{\beta} r^{2} d \theta, \mathrm{Y}=\int_{\theta}^{\beta} r^{3} \cos \theta d \theta, \mathrm{Z}=\int_{\theta}^{\beta} r^{3} \sin \theta d \theta$,
and start with the equations

$$
\begin{gather*}
d \theta=\frac{d \mathrm{X}}{-r^{2}}=\frac{d \mathrm{Y}}{-r^{3} \cos \theta}=\frac{d \mathrm{Z}}{-r^{3} \sin \theta} \tag{3}\\
\left(\frac{d^{2}}{d \theta^{2}}+1\right)\left\{a \cos \theta \cdot \mathrm{X}-\frac{2}{3}(\mathrm{Y} \cos \theta+\mathrm{Z} \sin \theta)\right\}=0 \tag{4}
\end{gather*}
$$

This last gives $\quad(r-a \cos \theta) d r+a r \sin \theta \cdot d \theta=0$,
and the system thus is

$$
\begin{equation*}
d \theta=\frac{d \mathrm{X}}{-r^{2}}=\frac{d \mathrm{Y}}{-r^{3} \cos \bar{\theta}}=\frac{d Z}{-r^{3} \sin \theta}=\frac{(r-a \cos \theta) d r}{-a r \sin \bar{\theta}}, \tag{5}
\end{equation*}
$$

viz., this is a systew of ordinary differential equations between the five variables θ, r, X, Y, Z : the system can therefore be integrated with 4 arbitrary constants, and these may be so determined that for the value β of $\theta, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ shall be each $=0$; and r shall have the value r_{0}.

But this being so, from the assumed equations (3) and (4) we have

$$
\mathrm{X}=\int_{\theta}^{\beta} r^{2} d \theta, \mathrm{Y}=\int_{\theta}^{\beta} r^{r^{3} \cos \theta d \theta}, \mathrm{Z}=\int_{\theta}^{\beta} r^{3} \sin \theta d \theta
$$

and further (by integration of 4)

$$
\mathrm{L} \cos \theta+\mathrm{M} \sin \theta=a \cos \theta \cdot \mathrm{X}-\frac{2}{3}(\mathrm{Y} \cos \theta+\mathrm{Z} \sin \theta) .
$$

Where L and M denote properly determined constants: viz., the conclusion is that r, X, Y, Z admit of being determined as functions of θ and of an arbitrary constant r_{0}, in such wise that

$$
a \cos \theta \cdot \mathrm{X}-\frac{2}{3}(\mathrm{Y} \cos \theta+\mathrm{Z} \sin \theta)
$$

shall be a function of θ, of the proper form $L \cos \theta+M \sin \theta$, but not so that it shall be the precise function $b^{3} \cos (\alpha+\theta)$. To make it have
this value we must have $\mathrm{L}=b^{3} \cos a, \mathrm{M}=-b^{3} \sin \alpha$ (where L, M are given functions of $\left.a, \beta, r_{0}\right)$, i.e., we must have two given relations between a, b, a, β, r_{0} : or treating r_{0} as a disposable constant we must have one given relation between a, b, a, β.

The equation $d \theta=\frac{r-a \cos \theta}{-a r \sin \theta} d r$ gives $r^{2}-2 a r \cos \theta=\mathrm{C} .\left(\mathrm{C}=r_{0}^{2}-2 a r_{0}\right.$ $\cos \beta)$. There would be considerable diffculty in working the question out with r_{0} arbitrary, but we may do it easily enough for the particular value $r_{0}=0$ or $r_{0}=2 a \cos \beta$, giving $C=0$ and $\therefore r=2 a \cos \theta$: and we ought in this case to be able to satisfy the given equation not in general but with two determinate relations between the constants a, b, a, β.

We have

$$
\begin{aligned}
& \int \cos ^{2} \theta d \theta=\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta \\
& \int \cos ^{4} \theta d \theta=\frac{3}{8} \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{32} \sin 4 \theta \\
& \int \cos ^{3} \theta \sin \theta d \theta=-\frac{1}{4} \cos ^{4} \theta
\end{aligned}
$$

And thence

$$
\begin{aligned}
& \quad a \cos \theta \cdot \mathrm{X}-\frac{2}{3}(\mathrm{Y} \cos \theta+Z \sin \theta) \\
& =4 a^{3} \cos \theta\left\{\frac{1}{2}(\beta-\theta)+\frac{1}{4}(\sin 2 \beta-\sin 2 \theta)\right\} \\
& -\frac{16}{3} a^{3} \cos \theta\left\{\frac{3}{8}(\beta-\theta)+\frac{1}{4}(\sin 2 \beta-\sin 2 \theta)+\frac{1}{32}(\sin 4 \beta-\sin 4 \theta)\right\} \\
& -\frac{16}{3} a^{2}(\sin \theta\{ \\
& =-\frac{1}{3} a^{3} \cos \theta(\sin 2 \beta-\sin 2 \theta) \\
& - \\
& \left.-\frac{1}{6} a^{3} \cos \theta\left(\cos 4 \beta-\cos ^{4} \theta\right)\right\} \\
& +\frac{4}{3} a^{3} \sin \theta\left(\cos ^{4} \beta-\sin 4 \theta\right)
\end{aligned}
$$

Where the terms containing β are seadily reduced to $\frac{4}{3} q^{3} \cos ^{3} \beta$ $\sin (\theta-\beta)$; hence also the terms without β disappear of themselves : and we have

$$
\begin{aligned}
\text { acosi } A- & \frac{2}{3}(\mathrm{Y} \cos \theta+Z \sin \theta)= \\
& =\frac{4}{3} a^{3} \cos \beta \sin (\theta-\beta), \\
& \text { which may be put }=
\end{aligned} b^{3} \cos (\theta+\alpha) . ~ \$
$$

viz., this will be so if we have the two relations

$$
a=\frac{\pi}{2}-\beta ; \text { and } b^{3}=-\frac{4}{3} a^{3} \cos ^{2} \beta
$$

I make (see fig. 84) Milner's lamp, with a circular section, β arbitrary, but a segruent $A M(\angle S A M=\beta)$ made solid. G in the line SG at right angles to $A M$ is the C.G. of the lamp, and G^{\prime} the C.G. of the oil.

And this seems to be the only form-for the pole of r must, it seems to me, be on the bounding circle-viz., in the cquation $r^{2}-2 a r \cos \theta=\mathrm{C}$, we must have $\mathrm{C}=0$.

An Exercise on Logarithmic Tables.

By Professor Tait.

In reducing some experiments, I noticed that the logarithm of 237 is about 2.37 Hence it occurred to me to find in what cases the figures of a number and of its common logarithm are identical :-i.e., to solve the equation

$$
\log _{10} x=x / 10^{m}
$$

where m is any positive integer.
It is easy to see that, in all cases, there are two solutions; one greater than, the other less than, ϵ. This follows at once from the position of the maximum ordinate of the curve

$$
y=(\log x) / x
$$

The smaller root is, for

$$
\begin{array}{lll}
m=1, x=1.371288 & \ldots & \ldots \\
m=2, x=1.023855 & \ldots & \ldots
\end{array}
$$

For higher values of m, it differs but little from 1 , and the excess may be calculated approximately from

$$
y-y^{2} / 2+\quad \ldots=(1+y) \log _{\epsilon} 10 / 10^{m}
$$

Ultimately, therefore, the value of the smaller root is

$$
1.00 \quad \ldots \quad \ldots \quad 0230258 \quad \ldots \quad \ldots
$$

where the number of cyphers following the decimal point is $m-1$.
The greater root must have $m+p$ places of figures before the decimal point; p being unit till $m=9$, thenceforth 2 till $m=98,3$ till $m=997$, \&c. Thus, for example, if $m>8<98$ we may assume

$$
x=(m+1) 10^{n}+y
$$

