A PROBLEM ON GROWTH SEQUENCES OF GROUPS

A. ERFANIAN

(Received 6 October 1993; revised 16 November 1993)

Communicated by H. Lausch

Abstract

The aim of this paper is to consider Problem 1 posed by Stewart and Wiegold in [6]. The main result is that if G is a finitely generated perfect group having non-trivial finite images, then there exists a finite image B of G such that the growth sequence of B is eventually faster than that of every finite image of G. Moreover we investigate the growth sequences of simple groups of the same order.

1991 Mathematics subject classification (Amer. Math. Soc.): 20 F05.

Introduction

Let G be a finitely generated group, and G^{n} the nth direct power of G. The growth sequence of G is the sequence $\left\{d\left(G^{n}\right)\right\}$, where $d\left(G^{n}\right)$ is the minimum number of generators of G^{n}. Wiegold gave a very tight description on the growth sequences of finite groups in $[5,7,8,9,10]$. The rough picture is that if G is perfect, the growth sequence of G increases roughtly logarithmically in n and if G is not perfect, then $d\left(G^{n}\right)=n d\left(G / G^{\prime}\right)$ for large enough n. For infinite groups, the situation is less clear. If G is perfect, the growth sequence of G is bounded above by a logarithmic function of n and if G is not perfect, then again we have $d\left(G^{n}\right)=n d\left(G / G^{\prime}\right)$ for large enough n (see [11]). There are several difficult problems left in the case of infinite groups; in particular, when G is a finitely generated perfect group.

The present article considers Problem 1 posed by Stewart and Wiegold in [6], as follows:

Problem. Let G be a finitely generated group having a non-trivial finite image. Is the growth sequence of G eventually the same as that of a finite image of G ?
(C) 1995 Australian Mathematical Society 0263-6115/95 $\$$ A2.00 +0.00

This is certainly true if G is not perfect. For, by the above remarks, $d\left(G^{n}\right)=$ $n d\left(G / G^{\prime}\right)$ for large n, in this case. However, as a finitely generated abelian group, G / G^{\prime} has a finite image X of prime-power order with $d\left(G / G^{\prime}\right)=d(X)$, and for all n, $d\left(X^{n}\right)=n d(X)=n d\left(G / G^{\prime}\right)$. In this paper, we prove that there exists a finite image B of G such that the growth sequence of B is eventually as large as that of every finite image of G. This question was left undecided in [6]. So the problem shortens to this: Is the growth sequence of G eventually the same as that of B ? We have not been able to resolve this, but we believe that the growth sequence of G could be faster than B in some cases. We prove the following result, which is an improvement of [6, Theorem A].

THEOREM A'. Let G be a finitely generated perfect group having non-trivial finite images. Then there is a finite image B of G such that the growth sequence of B is eventually as large as that of every finite image of G; that is to say, there exists a positive integer K depending only on G such that for every finite image H of G, $d\left(B^{n}\right) \geq d\left(H^{n}\right)$ for $n \geq K$.

Proof. Suppose that S is a non-trivial finite image of G of the smallest order. From the classification of the finite simple groups and a theorem of Artin [1], there are up to isomorphism at most two possibilities for S. If S is unique, then by Theorem A in [6] we can choose $B=S^{\lambda}$, where S^{λ} is the hightest power of S that is an image of G. So let us consider the case when S is not unique. Suppose that S and T are two non-trivial images of G of the smallest order, and let S^{λ} and T^{μ} be the highest powers of S and T respectively that are images of G. Suppose that H is a non-trivial finite image of G; let $S_{1}, S_{2}, \ldots, S_{r}$ be the simple images of H, and $S_{1}^{\lambda_{1}}, S_{2}^{\lambda_{2}}, \ldots, S_{r}^{\lambda_{r}}$ the highest powers of $S_{1}, S_{2}, \ldots, S_{r}$ that are images of H. There are three cases for S and T, as follows:

Case 1. Suppose that S and T occur among $S_{1}, S_{2}, \ldots, S_{r} ;$ say $S=S_{1}$ and $T=S_{2}$. By a result of Gaschütz [3] (See $[8,10]$),

$$
d\left(H^{n}\right)=\max \left\{d(H), d\left(S_{1}^{\lambda_{1} n}, \ldots, d\left(S_{r}^{\lambda_{r} n}\right)\right\}\right.
$$

for all n. By the second part of the proof of Theorem A in [6], there is a number L depending only on G such that $d\left(H^{n}\right)=\max \left\{d(H), d\left(S^{\lambda_{1} n}\right), d\left(T^{\lambda_{2} n}\right)\right\}$ for all $n \geq L$. Thus $d\left(H^{n}\right)=\max \left\{d\left(S^{\lambda_{1} n}\right), d\left(T^{\lambda_{2} n}\right)\right\}$ provided $n \geq L, d\left(S^{\lambda_{1} n}\right) \geq d(G)$ and $d\left(T^{\lambda_{2} n}\right) \geq d(G)$. Since this holds whenever $\log _{s} \lambda_{1} n \geq d(G)$ and $\log _{s} \lambda_{2} n \geq d(G)$ where $s=|S|$, and also

$$
d\left(S^{\lambda n} \times T^{\mu n}\right) \geq d\left(S^{\lambda_{1} n} \times T^{\lambda_{2} n}\right) \geq d\left(H^{n}\right)
$$

by [7], we can therefore choose $B=S^{\lambda} \times T^{\mu}$ in this case.

CASE 2. Suppose that S is one of $S_{1}, S_{2}, \ldots, S_{r}$, say $S=S_{1}$, but T is not. Again by the same method as in Case 1, there is a constant K depending only on G such that $d\left(S^{\lambda n}\right) \geq d\left(H^{n}\right)$. It is clear that $d\left(S^{\lambda n} \times T^{\mu n}\right) \geq d\left(H^{n}\right)$, so we can choose $B=S^{\lambda} \times T^{\mu}$ here.

CASE 3. Suppose that S and T are not among $S_{1}, S_{2}, \ldots, S_{r}$. As in the first part of proof of Theorem A in [6], we see that $d\left(S^{\lambda n}\right), d\left(T^{\mu n}\right) \geq d\left(H^{n}\right)$ for large n. So there are three possibilities for λ and μ as follows:
(i) $\lambda<\mu$: It is clear that $d\left(S^{\lambda n}\right) \geq d\left(T^{\lambda n}\right)$ and $d\left(T^{\mu n}\right) \geq d\left(s^{\lambda n} \times T^{\lambda n}\right)$, because T^{λ} and $S^{\lambda} \times T^{\lambda}$ are images of G. So we can choose $B=T^{\mu}$.
(ii) $\mu<\lambda$: As in (i), we see that S^{λ} works.
(iii) $\lambda=\mu$: Here we can choose $B=S^{\lambda} \times T^{\mu}$ and the proof of Theorem A^{\prime} is complete.

It is possible that S^{λ} or T^{λ} can be chosen for B in case (iii), but we have been unable to check this. Let us consider the case $\lambda=\mu=1$ as an example. Then we have two finite images S and T of G of the smallest order (which must, of course, be simple). It follows from the classification of the finite simple groups and a theorem of Artin [1] that the possibilities for S and T are as follows:
(a) $S=A_{8}, T=P S L(3,4)$.
(b) $S=P S p(2 m, q), T=0^{\prime}(2 m+1, q)$ where $m \geq 3$ and q is an odd prime-power.

Theorem B. Suppose that $S=A_{8}$ and $T=P S L(3,4)$. Then $d\left(S^{n}\right) \leq d\left(T^{n}\right)$ for large enough n.

Proof. For any finite group U, set $h(m, U)=\max \left\{n: d\left(U^{n}\right) \leq m\right\}$. By [7], we have $h(m, S)=\mid$ Aut $\left.S\right|^{-1}|S|^{m}\left(1-\epsilon(m)\right.$, and $h(m, T)=\mid$ Aut $\left.T\right|^{-1}|T|^{m}(1-\eta(m))$, where $\eta(m), \epsilon(m) \rightarrow 0$ as $m \rightarrow \infty$. Thus, as $m \rightarrow \infty, h(m, S) / h(m, T) \rightarrow$ \mid Aut $T|/|$ Aut $S \mid=6$ by [2]. Thus $h(m, S)>h(m, T)$ for large enough m and then $d\left(S^{n}\right) \leq d\left(T^{n}\right)$ for large n.

Corollary. For each λ in (iii) of Case 3, S and T as Theorem B, the growth sequence of T^{λ} is faster than that of every finite image of G in Theorem A^{\prime}.

We can say less about the second possibility for S and T. However, the difference in the growth sequence is very small indeed:

Theorem C. Suppose that $S=P S p(2 m, q)$ and $T=0^{\prime}(2 m+1, q)$ with $m \geq 3$, q an odd prime-power. Then $\left|d\left(S^{n}\right)-d\left(T^{n}\right)\right|=0$ or 1 for large enough n.

Proof. We know that \mid Aut $S|=|$ Aut $T \mid$ by Liebeck, Praeger and Saxl [4]. Set $s=|S|$ and $a=\mid$ Aut $S \mid$. We have (see [7]) for sufficiently large n,

$$
\log _{s} n+\log _{s} a<d\left(S^{n}\right), d\left(T^{n}\right) \leq \log _{s} n+\log _{s} a+1+\varphi(n)
$$

where $\varphi(n) \rightarrow 0$ as $n \rightarrow \infty$. In considering upper and lower bounds, two cases arise.
(1) $\log _{s} n+\log _{s} a$ is an integer. For large n, it is clear that $d\left(S^{n}\right)=d\left(T^{n}\right)=$ $\log _{s} n+\log _{s} a+1$.
(2) $\log _{s} n+\log _{s} a$ is not an integer. We see easily that for large $n, d\left(S^{n}\right)$ and $d\left(T^{n}\right)$ are both one of the two smallest integers greater than $\log _{s} n+\log _{s} a$. Thus $\left|d\left(S^{n}\right)-d\left(T^{n}\right)\right| \leq 1$ and the proof of the theorem is complete.

The author wishes to acknowledge with thanks the valuable help of Professor J. Wiegold, under whose supervision the work was done.

References

[1] E. Artin, 'The orders of the classical simple groups', Comm. Pure Appl. Math. 8 (1955), 455-472.
[2] M. Aschbacher, 'On the maximal subgroups of the finite classical groups', Invent. Math. 76 (1984), 469-514.
[3] W. Gaschütz, 'Zu einem von B. H. and H. Neumann gestellten problem', Math. Nachr. 14 (1955), 249-252.
[4] M. W. Liebeck, C. E. Praeger and J. Saxl, 'The maximal factorizations of the finite simple groups and their automorphism groups', Mem. Amer. Math. Soc. No. 432 (1990), 17-23.
[5] D. Meier and James Wiegold, 'Growth sequences of finite groups V', J. Austral. Math. Soc. (Series A) 31 (1981), 374-375.
[6] A. G. R. Stewart and James Wiegold, 'Growth sequences of fintely generated groups II', Bull. Austral. Math. Soc. 40 (1989), 323-329.
[7] J. Wiegold, 'Growth sequences of finite groups', J. Austral. Math. Soc. 17 (1974), 133-141.
[8] ——, 'Growth sequences of finite groups II', J.Austral. Math. Soc. (SeriesA) 20(1975), 225-229.
[9] ——, 'Growth sequences of finite groups III', J. Austral. Math. Soc. (Series A) 25 (1978), 142-144.
[10] ——— 'Growth sequences of finite groups IV',J. Austral. Math. Soc. (Series A) 29 (1980), 14-16.
[11] James Wiegold and J. S. Wilson, 'Growth sequences of finitely generated groups', Arch. Math. 30 (1978), 337-343.

No. 31, 25th Edalat
Ahamd Abab Ave
Mashhad
Iran

