THE ŁOJASIEWICZ EXPONENT FOR WEIGHTED HOMOGENEOUS POLYNOMIAL WITH ISOLATED SINGULARITY

OULD M. ABDERRAHMANE
Déparement de Mathématiques, Université des Sciences, de Technologie et de Médecine BP. 880, Nouakchott, Mauritanie
e-mail: ymoine@univ-nkc.mr

(Received 18 May 2015; revised 23 September 2015; accepted 2 January 2016; first published online 10 June 2016)

Abstract

The purpose of this paper is to give an explicit formula of the Łojasiewicz exponent of an isolated weighted homogeneous singularity in terms of its weights.

2010 Mathematics Subject Classification. Primary 14B05, 32S05.
Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a holomorphic function with an isolated critical point at 0 .The Łojasiewicz exponent $L(f)$ of f is by definition

$$
L(f)=\inf \left\{\lambda>0:|\operatorname{grad} f| \geq \text { const. }|z|^{\lambda} \text { near zero }\right\}
$$

It is well known (see [11]) that the Łojasiewicz exponent can be calculated by means of analytic paths

$$
\begin{equation*}
L(f)=\sup \left\{\frac{\operatorname{ord}(\operatorname{grad} f(\varphi(t)))}{\operatorname{ord}(\varphi(t))}: 0 \neq \varphi(t) \in \mathbb{C}\{t\}^{n}, \varphi(0)=0\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{ord}(\phi):=\inf _{i}\left\{\operatorname{ord}\left(\phi_{i}\right)\right\}$ for $\phi \in \mathbb{C}\{t\}^{n}$. By definition, we put ord $(0)=+\infty$.
Łojasiewicz exponents have important applications in singularity theory, for instance, Teissier [22] showed that C^{0}-sufficiency degree of f (i.e., the minimal integer r such that f is topologically equivalent to $f+g$ for all g with $\operatorname{ord}(g) \geq r+1)$ is equal to $[L(f)]+1$, where $[L(f)]$ denote integral part of $L(f)$. Despite deep research of experts in singularity theory, it is not proved yet that Łojasiewicz exponent $L(f)$ is a topological invariant of f (in contrast to the Milnor number). An interesting mathematical problem is to give formulas for $L(f)$ in terms of another invariants of f or an algorithm to compute it. In the two-dimensional case, there are many explicit formulas for $L(f)$ in various terms (see $[\mathbf{5}, \mathbf{6}, \mathbf{1 0}]$). Estimations of the Łojasiewicz exponent in the general case can be found in $[\mathbf{1 , 7 , 1 4 , 1 9]}$.

The aim of this paper is to compute the Łojasiewicz exponent for the classes of weighted homogeneous isolated singularities in terms of the weights. In particular, we generalize a formula for $L(f)$ of Krasiński, Oleksik and Płoski [9] for weighted homogeneous surface singularity. Here, we give an alternative proof of the result of Tan, Yau and Zuo [21]. We were motivated by their papers. However, our considerations are based on other ideas. More precisely, we use the notion of weighted homogenous filtration introduced by Paunescu in [18], the geometric characterization of μ-constancy
in $[\mathbf{1 3}, \mathbf{2 2}]$ and the result of Varchenko [23], which described the μ-constant stratum of weighted homogeneous singularities in terms of the mixed Hodge structures.

Moreover, we show that the Łojasiewicz exponent is invariant for all μ-constant deformation of weighted homogeneous singularity, which gives an affirmative partial answer to Teissier's conjecture [22].

Notation. To simplify the notation, we will adopt the following conventions: for a function $F(z, t)$ we denote by ∂F the gradient of F and by $\partial_{z} F$ the gradient of F with respect to variables z.

Let $\varphi, \psi:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{R}$ be two function germs. We say that $\varphi(x) \lesssim \psi(x)$ if there exists a positive constant $C>0$ and an open neighbourhood U of the origin in \mathbb{C}^{n} such that $\varphi(x) \leq C \psi(x)$, for all $x \in U$. We write $\varphi(x) \sim \psi(x)$ if $\varphi(x) \lesssim \psi(x)$ and $\psi(x) \lesssim \varphi(x)$. Finally, $|\varphi(x)| \ll|\psi(x)|$ (when x tends to x_{0}) means $\lim _{x \rightarrow x_{0}} \frac{\varphi(x)}{\psi(x)}=0$.

1. Weighted homogeneous filtration. Let \mathbb{N} be the set of non-negative integers and \mathcal{O}_{n} denote the ring of analytic function germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$. The Milnor number of a germ f, denoted by $\mu(f)$, is algebraically defined as the $\operatorname{dim} \mathcal{O}_{n} / J(f)$, where $J(f)$ is the Jacobian ideal in \mathcal{O}_{n} generated by the partial derivatives $\left\{\frac{\partial f}{\partial z_{1}}, \cdots, \frac{\partial f}{\partial z_{n}}\right\}$. Let $F:\left(\mathbb{C}^{n} \times \mathbb{C}, 0\right) \rightarrow(\mathbb{C}, 0)$ be the deformation of f given by $F(z, t)=f(z)+\sum c_{v}(t) z^{v}$, where $c_{\nu}:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ are germs of holomorphic functions. We use the notation $F_{t}(z)=F(z, t)$ when t is fixed.

From now, we shall fix a system of positive integers $w=\left(w_{1}, \ldots, w_{n}\right) \in(\mathbb{N}-\{0\})^{n}$, the weights of variables $z_{i}, w\left(z_{i}\right)=w_{i}, 1 \leq i \leq n$, and a positive integer $d \geq 2 w_{i}$ for $i=1, \ldots, n$, then a polynomial $f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is called weighted homogeneous of degree d with respect the weight $w=\left(w_{1}, \ldots, w_{n}\right)$ (or type $(d ; w)$) if f may be written as a sum of monomials $z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ with

$$
\begin{equation*}
\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}=d \tag{2}
\end{equation*}
$$

Comparing these weights with the $w^{\prime}=\left(w_{1}^{\prime} \ldots, w_{n}^{\prime}\right)$ defined in $[\mathbf{9 , 2 1}]$, from (2), we get $w^{\prime}\left(z_{i}\right)=\frac{d}{w_{i}}$ for $i=1, \ldots, n$, so it follows that $w_{i}^{\prime} \geq 2$ if and only if $d \geq 2 w_{i}$. Also, we have

$$
\max _{i=1}^{n}\left(w_{i}^{\prime}-1\right)=\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)
$$

There is another (weaker) definition of a weighted homogeneous polynomial. A polynomial $f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is called a weak weighted homogeneous polynomial, if there exist n integers positive (weights) $w=\left(w_{1}, \ldots, w_{n}\right)$ such that f may be written as a sum of monomials $z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ with

$$
\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}=d
$$

We droop only the hypothesis $d \geq 2 w_{i}$ for $i=1, \ldots, n$.
We may introduce (see [18]) the function $\rho(z)=\left(\left|z_{1}\right|^{\frac{2}{w_{1}}}+\cdots+\left|z_{n}\right|^{\frac{2}{w_{n}}}\right)^{\frac{1}{2}}$. We also consider the spheres associated to this ρ

$$
S_{r}=\left\{z \in \mathbb{C}^{n}: \rho(z)=r\right\}, \quad r>0
$$

Here \cdot means the weighted action, with respect to the \mathbb{C}^{*} action defined below

$$
t \cdot z=\left(t^{w_{1}} z_{1}, \ldots, t^{w_{n}} z_{n}\right)
$$

Definition 1. Using ρ, we define a singular Riemannian metric on \mathbb{C}^{n} by the following bilinear form

$$
\left\langle\rho^{w_{i}} \frac{\partial}{\partial x_{i}}, \rho^{w_{j}} \frac{\partial}{\partial x_{j}}\right\rangle=\delta_{i, j}:=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} .\right.
$$

We will denote by grad_{w} and $\left\|\|_{w}\right.$, the corresponding gradient and norm associated with this Riemannian metric (for more details about these see [18]).

Let $f \in \mathcal{O}_{n}$. We denote the Taylor expansion of f at the origin by $\sum c_{v} z^{\nu}$. Setting $H_{j}(z)=\sum c_{v} z^{v}$ where the sum is taken over n with $\langle w, \nu\rangle=w_{1} \nu_{1}+\cdots+w_{n} \nu_{n}=j$, we can write the weak weighted Taylor expansion f

$$
f(z)=H_{d}(z)+H_{d+1}(z)+\cdots ; H_{d} \neq 0 .
$$

We call d the weak weighted degree of f and H_{d} the weak weighted initial form of f about the weight. Furthermore, for any $f \in \mathcal{O}_{n}$ we get

$$
\begin{equation*}
\left\|\operatorname{grad}_{w} f(z)\right\|_{w} \lesssim \rho^{d_{w}(f)}(z) \tag{3}
\end{equation*}
$$

where $d_{w}(f)$ denotes the degree of f with respect to w. Indeed, as all non-zero z, we find $\frac{1}{\rho(z)} \cdot z \in S_{1}$, moreover, we have $\frac{\partial H_{j}}{\partial z_{i}}$ is zero or a weak weighted homogeneous polynomial of degree $d-w_{j}$, then we obtain

$$
\left\|\operatorname{grad}_{w} H_{j}\left(\frac{1}{\rho(z)} \cdot z\right)\right\|_{w}=\frac{\left\|\operatorname{grad}_{w} H_{j}(z)\right\|_{w}}{\rho(z)^{j}} \lesssim 1
$$

Therefore,

$$
\left\|\operatorname{grad}_{w} f(z)\right\|_{w} \lesssim \sum_{j \geq d_{w}(f)}\left\|\operatorname{grad}_{w} H_{j}(z)\right\|_{w} \lesssim \rho^{d_{w}(f)}(z)
$$

Proposition 2. Let $f \in \mathcal{O}_{n}$ be a weak weighted homogeneous isolated singularity of type $(d ; w)$ at $0 \in \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left\|\operatorname{grad}_{w} f(z)\right\|_{w} \gtrsim \rho(z)^{d} \tag{4}
\end{equation*}
$$

Proof. Since f has only isolated singularity at the origin, then for small values of r we have

$$
\begin{equation*}
\left\|\operatorname{grad}_{w} f(z)\right\|_{w}=\left(\sum_{i=1}^{n}\left|\rho^{w_{i}}(z) \frac{\partial f}{\partial z_{i}}(z)\right|^{2}\right)^{\frac{1}{2}} \gtrsim 1, \forall z \in S_{r} \tag{5}
\end{equation*}
$$

On the other hand, $\frac{\partial f}{\partial z_{i}}$ is weak weighted homogeneous of degree $d-w_{i}$ for $i=1, \ldots, n$ and also, $\frac{r}{\rho(z)} \cdot z \in S_{r}$ for all non-zero z. Thus, by (5) we obtain

$$
\left\|\operatorname{grad}_{w} f\left(\frac{r}{\rho(z)} \cdot z\right)\right\|_{w}=r^{d} \frac{\left\|\operatorname{grad}_{w} f(z)\right\|_{w}}{\rho(z)^{d}} \gtrsim 1 .
$$

This completes the proof of the proposition.
2. The maximal and minimal coordinates. The class of weak weighted homogeneous polynomials is broader than the class of weighted homogeneous polynomials. In order to extend the main result announced by Tan, Yau and Zuo in [21] to this class, we introduce the maximal and the minimal coordinate.

Definition 3. Let $f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ be a weak weighted homogenous of type $\left(d ; w_{1}, \ldots, w_{n}\right)$, we set

$$
\begin{aligned}
M(w) & =\left\{i \in\{1, \ldots, n\} \mid d<2 w_{i}\right\}, \\
I_{\max _{1}} & =\max \{i \in M(w)\}, I_{\max _{2}}=\max \left\{i \in M(w)-\left\{I_{\max _{1}}\right\}\right\}, \ldots \\
I_{\max _{k}} & =\max \left\{i \in M(w)-\left\{I_{\max _{1}}, \ldots, I_{\max _{k-1}}\right\}\right\},
\end{aligned}
$$

where k is the cardinal of $M(w)$. We have $M(w)=\left\{I_{\max _{1}}, \ldots, I_{\max _{k}}\right\}$. We set

$$
\begin{aligned}
& I_{\min _{1}}=\left\{\begin{array}{l}
I_{\max _{1}} \text { if } z_{i} z_{I_{\max _{1}}} \text { don't appear in } f \forall i=1, \ldots n, \\
\min \left\{i \in\{1, \ldots, n\} \mid z_{i} z_{I_{\max _{1}}} \text { appear in } f\right\} .
\end{array},\right. \\
& I_{\min _{2}}=\left\{\begin{array}{l}
I_{\max _{2}} \text { if } z_{i} z_{I_{\max _{2}}} \text { don't appear in } f \forall i=1, \ldots n, \\
\min \left\{i \in\{1, \ldots, n\}-\left\{I_{\min _{1}}\right\} \mid z_{i} z_{I_{\max _{2}}} \text { appear in } f\right\} .
\end{array}\right. \\
& I_{\min _{k}}=\left\{\begin{array}{l}
I_{\max _{k}} \text { if } z_{i} z_{I_{\max _{k}}} \text { don't appear in } f \forall i=1, \ldots n, \\
\min \left\{i \in\{1, \ldots, n\}-\left\{I_{\min _{1}}, \ldots, I_{\min _{k-1}}\right\} \mid z_{i} I_{I_{\max _{2}}} \text { appear in } f\right\} .
\end{array}\right.
\end{aligned}
$$

We put $I(f)=\left\{I_{\min _{1}}, \ldots, I_{\min _{k}}\right\}$, we define the maximal coordinates of the variables, the z_{i}, for $i \in M(w)$, i.e., the coordinates of weights $w\left(z_{i}\right)=w_{i}>\frac{d}{2}$, also we called the minimal coordinates of the variables, the z_{i}, for $i \in I(f)$. Finally, we set $M(f)=M(w) \cup I(f), \ell(f)$ the cardinal of $M(f)$ and $w_{M(f)}=\left(w_{1}, \ldots, \widehat{w_{k}}, \ldots, w_{n}\right)$, where the hat means omission of all w_{k} such that $\mathrm{k} \in M(f)$.
3. The results. The main result of this paper is the following:

Theorem 4. Let $f \in \mathcal{O}_{n}$ be a weak weighted homogeneous polynomial of type $\left(d ; w_{1}, \ldots, w_{n}\right)$ defining an isolated singularity at the origin. Then

$$
L(f)= \begin{cases}\max _{i \notin M(f)}\left(\frac{d}{w_{i}}-1\right) & \text { if } \ell(f)<n \\ 1 & \text { if } \ell(f)=n\end{cases}
$$

Note that if $d \geq 2 w_{i}$ for all $i=1, \ldots, n$, then $M(f)=\emptyset$ and we recover the following Theorem 5.

Theorem 5. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be weighted homogeneous polynomial of type $(d ; w)$, with $d \geq 2 w_{i}$ for $i=1, \ldots, n$ defining an isolated singularity at the origin $0 \in \mathbb{C}^{n}$. Then

$$
L(f)=\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)
$$

Corollary 6. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a weak weighted homogeneous polynomial of type $(d ; w)$, defining an isolated singularity at the origin in \mathbb{C}^{n}. For any deformation $F_{t}(z)=f(z)+\sum c_{v}(t) z^{v}$ for which $\mu\left(F_{t}\right)=\mu(f)$ is called μ-constant, then $L\left(F_{t}\right)$ is also constant.

Corollary 7. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a holomorphic function If the weak weighted initial forms H_{d} of f define an isolated singularity at the origin, then

$$
L(f)= \begin{cases}\max _{i \notin M\left(H_{d}\right)}\left(\frac{d}{w_{i}}-1\right) & \text { if } \ell\left(H_{d}\right)<n \\ 1 & \text { if } \ell\left(H_{d}\right)=n .\end{cases}
$$

4. Proofs of the Theorem 5. Before starting the proofs, we will recall some important results on the geometric characterization of μ-constancy.

Theorem 8 Greuel [8], Lê-Saito [13], Teissier [22]. Let $F:\left(\mathbb{C}^{n} \times \mathbb{C}^{m}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ be the deformation of a holomorphic $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ with isolated singularity. The following statements are equivalent:
(1) F is a μ-constant deformation of f.
(2) $\frac{\partial F}{\partial t_{j}} \in \overline{J\left(F_{t}\right)}$, where $\overline{J\left(F_{t}\right)}$ denotes the integral closure of the Jacobian ideal of F_{t} generated by the partial derivatives of F with respect to the variables z_{1}, \ldots, z_{n}.
(3) The deformation $F(z, t)=F_{t}(z)$ is a Thom map, that is,

$$
\sum_{j=1}^{m}\left|\frac{\partial F}{\partial t_{j}}\right| \ll\|\partial F\| \text { as }(z, t) \rightarrow(0,0)
$$

(4) The polar curve of F with respect to $\{t=0\}$ does not split, that is,

$$
\left\{(z, t) \in \mathbb{C}^{n} \times \mathbb{C}^{m} \mid \partial_{z} F(z, t)=0\right\}=\{0\} \times \mathbb{C}^{m} \text { near }(0,0)
$$

4.1. Proof of Theorem 5. First, by the Proposition 2 we get

$$
\left\|\operatorname{grad}_{w} f(z)\right\|_{w}^{2}=\sum_{i=1}^{n}\left|\rho^{w_{i}}(z) \frac{\partial f}{\partial z_{i}}(z)\right|^{2} \gtrsim \rho(z)^{2 d}
$$

Therefore,

$$
\rho(z)^{\min \left\{w_{i}\right\}}\|\operatorname{grad} f(z)\| \gtrsim \rho(z)^{d} .
$$

Hence,

$$
\|\operatorname{grad} f(z)\| \gtrsim\left(\sum_{i=1}^{n}\left|z_{i}\right|^{\frac{1}{w_{i}}}\right)^{d-\min \left\{w_{i}\right\}} \gtrsim|z|^{\frac{d-\min w_{i}}{\min w_{i}}}=|z|^{\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)},
$$

it follows that $L(f) \leq \max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)$.
In order to show the opposite inequality we need the following lemma.
Lemma 9. Let $f \in \mathcal{O}_{n}$ be a weighted homogeneous isolated singularity of type $(d ; w)$. Suppose that $w_{k}=\min _{i=1}^{n} w_{i}$ and $V_{z_{k}}(f) \nsubseteq\left\{z_{k}=0\right\}$, where

$$
V_{z_{k}}(f)=\left\{z \in \mathbb{C}^{n}: \frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{k-1}}(z)=\frac{\partial f}{\partial z_{k+1}}(z)=\cdots=\frac{\partial f}{\partial z_{n}}(z)=0\right\} .
$$

Then $L(f)=\frac{d}{w_{k}}-1=\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)$.
Proof. See [9], Proposition 2.
We now want to prove the opposite inequality. Modulo a permutation coordinate of \mathbb{C}^{n}, we may assume that $w_{1} \leq w_{2} \leq \cdots \leq w_{n}$. Since f be a weighted homogeneous of degree d with isolated singularity. It is easy to check that the monomial $z_{1}^{q_{1}}$ or $z_{1}^{q_{1}} z_{i}$ appear in the expansion of f. There are three cases to be considered.

Case 1. In this case, we suppose $z_{1} z_{i}$ appear in the expansion of f, since f defining an isolated singularity at the origin $0 \in \mathbb{C}^{n}$, there exist the terms $z_{n}^{q_{n}}$ or $z_{n}^{q_{n}} z_{j}$ with non-zero coefficients in f.

We first consider the case whereby $z_{n}^{q_{n}} z_{j}$ appear in f, from the hypotheses $d=$ $w_{1}+w_{i} \geq 2 w_{n} \geq \cdots \geq 2 w_{1}$, then we may write

$$
\begin{aligned}
d & =q_{n} w_{n}+w_{j} \geq\left(q_{n}-1\right) w_{n}+w_{i}+w_{j} \geq w_{i}+w_{j} \geq w_{i}+w_{1} \\
& =d \geq w_{i}+w_{i} \geq w_{1}+w_{i}=d .
\end{aligned}
$$

Therefore, $q_{n}=1$ and $w_{1}=w_{2}=\cdots=w_{n}$.
We will next consider the case whereby $z_{n}^{q_{n}}$ appear in f, since $\partial f(0)=0$, we have $q_{n} \geq 2$, it follows that

$$
d=q_{n} w_{n} \geq\left(q_{n}-1\right) w_{n}+w_{i} \geq w_{1}+w_{i}=d,
$$

hence $q_{n}=2$ and $w_{1}=w_{2}=\cdots=w_{n}$.
In the homogenous case $w_{1}=w_{2}=\cdots=w_{n}$, for any non-zero $a \in \mathbb{C}^{n}$, along the curve $\varphi(t)=t \cdot a=\left(t^{w_{1}} a_{1}, \ldots, t^{w_{n}} a_{n}\right)$, we obtain $\partial f(\varphi(t))=t^{d-w_{1}} \partial f(a)$, it follows from (1) that

$$
L(f) \geq \frac{\operatorname{ord}(\partial f(\varphi(t))}{\operatorname{ord}(\varphi(t))}=\frac{d}{w_{1}}-1=\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)
$$

This ends the proof of Theorem 5 in the first case.
Case 2. In this case, we suppose $z_{1}^{q_{1}}$ appear in the expansion of f and $z_{1} z_{i}$ doesn't appear for $i=2, \ldots, n$. Take an analytic path $\varphi(t)=(t, 0, \ldots, 0)$, then from (1) we get

$$
L(f) \geq \frac{\operatorname{ord}(\partial f(\varphi(t))}{\operatorname{ord}(\varphi(t))}=q_{1}-1=\frac{d}{w_{1}}-1=\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right) .
$$

This ends the proof of Theorem 5 in the second case.

Case 3. In this case, we suppose that $z_{1}^{q_{1}} z_{i}$ appear in the expansion of f with $q_{1} \geq 2$. By lemma 9 , it is enough to prove that $V_{z_{1}}(f) \nsubseteq\left\{z_{1}=0\right\}$. Indeed, suppose that $V_{z_{1}}(f) \subset\left\{z_{1}=0\right\}$. Then, we let the deformation $F(z, t)=f(z)+t z_{1}^{q_{1}}$ of f. Since,

$$
V_{t}(F)=\left\{(z, t) \in \mathbb{C}^{n} \times \mathbb{C} \mid \partial_{z} F(z, t)=0\right\} \subset V_{z_{1}}\left(F_{t}\right)=V_{z_{1}}(f) \subset\left\{z_{1}=0\right\}
$$

this means that

$$
\partial_{z} F(z, t)=0 \text { if and only if } \partial f(z)=0 .
$$

Since f defining an isolated singularity, and hence, by (4) in Theorem 8 we get that F_{t} is μ-constant. According to the result of Varchenko's theorem [23], the monomial $z_{1}^{q_{1}}$ verifies $d_{w}\left(z_{1}^{q_{1}}\right)=q_{1} w_{1} \geq d$. But $d=q_{1} w_{1}+w_{i}>q_{1} w_{1} \geq d$, which is a contradiction. This completes the proof of Theorem 5.

5. Proofs of the Theorem 4, Corollary 6 and Corollary 7

5.1.Proof of Theorem 4

Proof. Without loss of generality, we suppose that $w_{1} \leq w_{2} \leq \cdots \leq w_{n}$. By the proof of the Theorem 5 , only the first case in the opposite inequality can be considered. This remains us to consider the case where $z_{1} z_{i}$ appears in the expansion of f.

Let $\quad d<2 w_{n-k+1} \leq \cdots \leq 2 w_{n}, \quad$ and \quad so $\quad M(w)=\{n, \ldots, n-k+1\}=$ $\left\{I_{\max _{1}}, \ldots, I_{\max _{k}}\right\}$. Since f defining an isolated singularity, it is easy to check that the monomial z_{n}^{q} or $z_{n}^{q} z_{j}$ appear in expansion of f, then $q w_{n}=d$ or $q w_{n}+w_{j}=d$, but $\partial f(0)=0$ and $d<2 w_{n}$, so that $z_{n} z_{j}$ appear in f. Moreover, for any monomial $z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ of f with $\alpha_{n} \neq 0$, we have

$$
2 w_{n}>d=\sum_{j<n} \alpha_{j} w_{j}+\alpha_{n} w_{n} \geq\left(\sum_{j<n} \alpha_{j}\right) w_{1}+w_{n} \geq w_{1}+w_{i}=d .
$$

Then, $\sum_{j<n} \alpha_{j}=1, \alpha_{n}=1$ and $w_{i}=w_{n}$.
Therefore we may write

$$
f(z)=a_{I_{\min _{1}}} z_{I_{\min _{1}}} z_{n}+\sum_{j \neq I_{\min _{1}}} a_{j} z_{j} z_{n}+f\left(z_{1}, \ldots, z_{n-1}, 0\right), \quad a_{I_{\min _{1}}} \neq 0,
$$

for $a_{j} \neq 0$, we have $d=w_{n}+w_{I_{\min 1}}=w_{n}+w_{j}=w_{1}+w_{i}$, so we obtain $w_{j}=w_{I_{\min _{1}}}=$ w_{1}. After permutation of coordinates with same weights it can be written as

$$
f(z)=z_{1} z_{n}+\sum_{j>1} a_{j} z_{j} z_{n}+f\left(z_{1}, \ldots, z_{n-1}, 0\right) .
$$

Then we may assume, by a change of coordinates $\xi_{1}=z_{1}+\sum_{j>1} a_{j} z_{j}$, that $f(z)=z_{1} z_{n}+f\left(z_{1}, \ldots z_{n-1}, 0\right)=z_{1}\left(z_{n}+g(z)\right)+f\left(0, z_{2} \ldots, z_{n-1}, 0\right)$ also by a change of coordinates $\xi_{n}=z_{n}+g(z)$, we can assume that

$$
f(z)=z_{1} z_{n}+f\left(0, z_{2}, \ldots, z_{n-1}, 0\right)
$$

We set $h\left(z_{1}, \ldots, z_{n-2}\right)=f\left(0, z_{1}, \ldots, z_{n-2}, 0\right)$, obviously implies $L(f)=L(h)$. For $M(f) \neq\{1, \ldots, n\}$, it follows by elimination of the maximal and minimal coordinates that $L(f)=L(h)$, where $h \in \mathcal{O}_{n-\ell(f)}$ be weighted homogenous of type $\left(d ; w_{M(f)}\right)$. Therefore by Theorem 5, we get

$$
L(f)=L(h)=\max _{i \notin M(f)}\left(\frac{d}{w_{i}}-1\right)
$$

For $M(f)=\{1, \ldots, n\}$, then we can suppose, by the splitting lemma, that $f(z)=z_{1}^{2}+$ $\cdots+z_{n}^{2}$, thus $L(f)=1$. The Theorem 4 is proved.
5.2. Proof of Corollary 6. Let $f_{t}(z)=f(z)+\sum_{v} c_{v}(t) z^{\nu}$ be a deformation $\boldsymbol{\mu}$ constant of a weighted homogeneous polynomial f of degree d with isolated singularity. Since $c_{\nu}(0)=0$, we can write

$$
f_{t}(z)=f(z)+\operatorname{tg}_{t}(z)
$$

By a result of Varchenko's theorem [23], the deformation g_{t} verifies $d_{w}\left(g_{t}\right) \geq d$ for all t. This together with (3) and (4) gives

$$
\begin{aligned}
\left\|\operatorname{grad}_{w} f_{t}(z)\right\|_{w} & \geq\left\|\operatorname{grad}_{w} f(z)\right\|_{w}-|t|\left\|\operatorname{grad}_{w} g_{t}(z)\right\|_{w} \\
& \gtrsim \rho^{d}(z), \quad \text { as }|t| \ll 1
\end{aligned}
$$

Moreover, by a similar argument to the proof of the first inequality in Theorem 5 we find the following:

$$
L\left(f_{t}\right) \leq \max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)
$$

Also, using the processes of elimination of the maximal and minimal coordinates, we can get

$$
L\left(f_{t}\right) \leq \begin{cases}\max _{i \notin M(f)}\left(\frac{d}{w_{i}}-1\right) & \text { if } \ell(f)<n \\ 1 & \text { if } \ell(f)=n\end{cases}
$$

By the semi-continuity of the Łojasiewicz exponent in holomorphic μ-constant families of isolated singularities $[\mathbf{2 0}, \mathbf{2 2}]$, we find that

$$
L(f)=\left\{\begin{array}{ll}
\max _{i \notin M(f)}\left(\frac{d}{w_{i}}-1\right) & \text { if } \ell(f)<n \\
1 & \text { if } \ell(f)=n
\end{array} \leq L\left(f_{t}\right)\right.
$$

Then the result follows.
5.3. Proof of Corollary 7. Let $d=d_{w}(f)$, it says that f can be written in the form

$$
f(z)=H_{d}(z)+H_{d+1}(z)+\cdots ; H_{d} \neq 0
$$

Take the following family of singularities

$$
f_{t}(z):=H_{d}(z)+t H_{d+1}(z)+t^{2} H_{d+2}(z)+\cdots, t \in \mathbb{C}
$$

It follows from the isolated singularity of H_{d} and the theorem in ([2] Section 12.2) that f_{t} is a μ-constant deformation of H_{d}, and so by the above corollary we find

$$
L(f)=L\left(f_{t}\right)=L\left(H_{d}\right)= \begin{cases}\max _{i \notin M\left(H_{d}\right)}\left(\frac{d}{w_{i}}-1\right) & \text { if } \ell\left(H_{d}\right)<n \\ 1 & \text { if } \ell\left(H_{d}\right)=n\end{cases}
$$

This completes the proof of the corollary.
Remark 10. For three variables $n=3$, Krasiński, Oleksik and Płoski proof in [9] that

$$
L(f)=\min \left(\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right), \mu(f)\right)
$$

But this is not valid for n greater than 3, indeed, let

$$
f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{4}+z_{1}^{10}+z_{2}^{5}+z_{3}^{5},
$$

is weak weighted homogeneous of type $(10 ; 1,2,2,9)$. Since $\mu(f)=\prod_{i}^{n}\left(\frac{d}{w_{i}}-1\right)$ by the Milnor-Orlik formula [16], then $\mu(f)=16$. Moreover, it easy to cheek that $L(f)=4$ and $\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right)=10$, hence $L(f)<\min \left(\max _{i=1}^{n}\left(\frac{d}{w_{i}}-1\right), \mu(f)\right)$.

Example 11. Let

$$
f(z)=z_{1} z_{6}+z_{1}^{12}+z_{2} z_{5}+z_{3}^{4}+z_{4}^{3}+z_{2}^{6},
$$

f is weak weighted homogenous of type $(12 ; 1,2,3,4,10,11)$ with isolated singularity, since $M(w)=\{5,6\}$ and $M(f)=\{1,2,5,6\} \subsetneq\{1, \ldots, 6\}$, then by Theorem 4 we get

$$
L(f)=\max _{i \notin M(f)}\left(\frac{d}{w_{i}}-1\right)=3
$$

Example 12. Let

$$
f(z)=z_{1} z_{6}+z_{2} z_{5}+z_{3} z_{4}
$$

f is weak weighted homogenous of type $(12 ; 1,2,3,9,10,11)$ defining an isolated singularity, since $M(w)=\{4,5,6\}$ and $M(f)=\{1, \ldots, 6\}$, then by Theorem 4 we get $L(f)=1$. Also f can be seen as weighted homogenous of type ($2 ; 1,1,1,1,1,1$), and hence by Theorem $5, L(f)=1$.

Note. A. Parusiński called my attention to S. Brzostowski's result [3], which has independently proved the Theorem 5 of this paper. But his proof is different from ours.

REFERENCES

1. O. M. Abderrahmane, On the Łojasiewicz exponent and Newton polyhedron, Kodai Math. J. 28 (2005), 106-110.
2. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Mono- graphs Math., vol. 82 (Birkhäuser, Boston, 1985).
3. S. Brzostowski, The Łojasiewicz Exponent of Semiquasihomogeneous Singularities, http://arxiv.org/abs/1405.5179v1, May 2014.
4. S. Brzostowski, T. Krasiński and G. Oleksik, A conjecture on the Lojasiewicz exponent, J. Singularities 6 (2012), 124-130.
5. J. Chadzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in Singularities (PWN, Warszawa, 1988), 139-146.
6. A. Lenarcik, On the Łojasiewicz exponent of the gradient of a holomorphic function, in Singularities Symposiumî Łojasiewicz 70, Banach Center Publications, vol. 44 (PWN, Warszawa, 1998), 149-166.
7. T. Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991), 1169-1183.
8. G.-M. Greuel, Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscritpta Math. 56 (1986), 159-166.
9. T. Krasiński, G. Oleksik and A. Płoski, The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc. 137 (2009), 3387-3397.
10. T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299І̂-310.
11. M. Lejeune-Jalabert and B. Teissier, Clôture integrale des idéaux et équisingularite, Séminaire Lejeune-Teissier Centre de Mathématiques, Ecole Polytechnique (Université Scientifique et Medicale de Grenoble, 1974).
12. D. T. Lê and C. P. Ramanujam, Invariance of MilnorÈs number implies the invariance of topological type, Amer. J. Math. 98 (1976), 67-78.
13. D.T. Lê and K. Saito, La constence du nombre de Milnor donne des bonnes stratifications, Compt. Rendus Acad. Sci. Paris, série A 272 (1973), 793-795.
14. B. Lichtin, Estimation of Łojasiewicz exponents and Newton polygons, Invent. Math. 64 (1981), 417-429.
15. J. Milnor, Singular points of complex hypersurfaces (Princeton University Press, Princeton, NJ, 1968).
16. J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393.
17. D. B. O'Shea, Topologically trivial deformations of isolated quasihomogeneous singularities are equimultiple, Proc. A.M.S. 101(2) (1987), 260-262.
18. L. Paunescu, A weighted version of the Kuiper-Kuo-Bochnak-Łojasiewicz theorem, J. Algebr. Geom. 2 (1993), 69-79.
19. A. Płoski, Sur l'exposant d'une application analytique. I, Bull. Polish Acad. Sci. Math. 32 (1984), 669-673.
20. A. Ploski, Semicontinuity of the Lojasiewicz exponent, Univ. Iagel. Acta Math. 48 (2010), 103-110.
21. S. Tan, S. S.-T. Yau and H. Zuo, Łojasiewicz inequality for weighted homogeneous polynomial with isolated singularity, Proc. Amer. Math. Soc. 138 (2010), 3975-3984.
22. B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292
23. A. N. Varchenko, A lower bound for the codimension of the stratum μ-constant in term of the mixed Hodge structure, Vest. Mosk. Univ. Mat. 37 (1982), 29-31
