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In this paper, we show how to generate orthomodular posets from ses-
quilinear forms on a vector space.

Let £ be a vector space over the division ring k. A binary relation _L on £ is
called a linear orthogonality relation provided

(1) x _L y iff y _L x, and
(2) for each x in £, {x}x = {y | y ± x} is a linear subspace of £.
For a subset M of £ we define the orthogonal of M by

Mx = {j | y _L m for all m in M}.

Also we let [M] denote the linear span of M in £.
The first lemma is trivial.

LEMMA 1. For M, M,, and N subsets of E, we have
(1) M S Mx±

(2) M s N imp/ies JVX £ Mx

(3) Mx =

(5) Mx is a subspace of £
(6) M-^rjW]-1- so in particular if xLy and x±z then x±y + z and

x J. aj for all cc in k.
(7) (0)x = £ and £ = £ x x

Note that M K M"1""1" is a closure operator on the lattice of all subspaces of £.

Let 1 be a linear orthogonality relation on E. We say 1 is nondegenerate
when £ x = (0). In this case we call (£, _L) a linear orthogonality space.

Call a subspace M of £ orthogonally closed or _L-cZosed if M = MJ"X.
Let P^fi, ±) denote the set of all ±-closed subspaces of £ ordered by inclusion.
Using well known generalities on closure operators we see that Pc(£, -L) is a com-
lete involution lattice with zero (0) and unit £. Also for M{ in Pc(£, 1) we have
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inf(Mj)=nMj and sup(Mf) =
 1 1

Call a vector x in £ isotropic if x J. x and anisotropic otherwise. For a
subspace F of £ , define the radical of F by rad(F) = F n F\ Say that F is
semisimple provided rad(F) = (0). Let PSS(E, J.) denote the set of all semisimple
subspaces of E ordered by inclusion.

It can be shown that the orthogonal of a semisimple subspace need not be
semisimple. However,

is easily seen to be an orthocomplemented poset under the natural involution
F t-> F x . It need not though be orthomodular.

LEMMA 2. Let {Ft} be an orthogonal family of linear subspaces of E
(i.e. Fj £ Ff for i # j). Let F be the smallest subspace of E containing all the Fj.
We write F = I Ft. Then rad(F) = E rad(Ff).

PROOF. First rad(F) = F n Fx = F n(n Ff) = n(F n Ff). For each fixed
j and for any i we have

rad(F;) = Fj n F x £ F n Ff.

Hence for each 7", rad(F;) £ rad(F) so Srad(F;) £ rad(F).
Conversely, suppose x is in rad (F). Since x is in F we can write x as a finitely

nonzero sum x = Z xt with x; in Ft. For each 7,

Xy = X — Z Xj.

Since x is in rad(F) then x is in Ff. Since the family {F,} is orthogonal, each xt

with i 5̂  j also belongs to Ff. Thus Xj is in Fj". It follows each Xj is in rad (FJ).
Thus x is in Z rad(F;).

COROLLARY 3. If{Ft} is an orthogonal family of semisimple subspaces of E,
the join exists in PSS(E,±) and in fact the join is the orthogonal direct sum of
the Ft.

Next we have a technical lemma.

LEMMA 4. Let F and G be linear subspaces of E. Suppose F £ G and
G £ F + F"1". Let G be semisimple. Then G OF"1" is semisimple.

PROOF. If G n F x were not semisimple, we would have a vector w different
from zero with w belonging to

rad(G n Fx) = (G n Fx) n (G O Fx)x .

Since G is semisimple and w is in G we cannot have w in Gx. Thus there
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is a vector y in G such that y fails to be orthogonal to w. Since G is contained in
in F + F x and F is contained in G we see

Hence we can write y = u + x where u belongs to F and x is in F 1 n G
Since w is in F x and w is in (F"1" n G)x, then w is orthogonal to y, a contradiction.

A subspace F of the linear orthogonality space (E, _L) is called splitting if
£ = F + F x . Let P£E, 1 ) denote the set of all splitting subspaces of E again
ordered by inclusion.

The next lemma is straightforward and we omit the proof.

LEMMA 5. (1) (0) and E are splitting subspaces

(2) ifF is in PS(E, 1 ) then so is F x

(3) every splitting subspace is closed and semisimple
(4) PS(E, -L) is an orthocomplemented poset under the inovolution F ->FX.

The next lemma establishes the first crucial property of an orthomodular poset.

LEMMA 6. Finite orthogonal joins exist in PS{E, J_).

PROOF. Let e be any vector in E. Let F and G be in PS(E, 1 ) with
F s G\ We claim

F + G = F®G

is in PS(E, 1.). First e = w + wx with w in G and wx in G"1- and e = v + vt with v
in .F and i^ in F x . Clearly

e = (v + w) + x

where x = e — v — w, vx — w = w1 — v. Since vt is in Fx and w is in G then x
is in f-1-. Similarly, x is in G"1-. Thus e is in

(F + G) + ( F 1 n G'") = (F + G) + (F + G)x.

Hence E = (F + G) + (F + G)x

We now come to the main result.

THEOREM 7. Let (£, _L) be a linear orthogonality space. Then PS(E,±.) is an
orthomodular poset.

PROOF. We have already that PS(E, 1 ) is an orthocomplemented poset with zero
(0) and unit E under the involution FH> F X . Orthogonal joins are just orthogonal
direct sums. It suffices then to show the orthomodular identity. Let F and G be
spliting subspaces with F c G. Then G x ^ F x so F is orthogonal to Gx so
F\/G± = F + G\ Thus
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(F v G-1-)"1 = (F + GY" = Fx nG.

Now G = G n £ = G n (F + F"1) = F + (G n Fx) = F v (F v Gx)x which
completes the proof.

Note if E is finite dimensional, PS(E, 1) is necessarily an atomic ortho-
modular poset. Also note that linear orthogonality relations exist in great abun-
dance. Let E be any vector space. Let $ be a 0-sesquilinear nondegenrate ortho-
symmetric from on E. For x and y in £, define x±y by ®(x,y) = 0. Then
(E,±) = (£,$) is a linear orthogonality space. Call such a quadratic space. We
have characterized which linear orthogonality spaces are quadratic spaces else-
where. For a quadratic space (£,<X>) it can also be shown that PS(£,O) is an ample
atomic orthomodular poset with the ortho-covering and ortho-exchange properties.

A crucial problem is to determine when PS(E, $) is a lattice. The next theorem
provides and important partial answer. We are indebted to H. R. Fischer for the
proof.

THEOREM 8. Let (E,<&) be a quadratic space of dimension at least 4 over a
field of characteristic different from two. Suppose not every vector of E is iso-
tropic. If PS(E,<&) is a lattice then O admits no non-zero isotropic vectors.

PROOF.

Suppose on the contrary that O admits a nonzero isotropic vector. Since
every nondegenerate space of dimension at least 4 contains a four dimensional
semisimple subspace, it suffices to consider the case where the dimension of E
equals 4 and show that E contains two distinct three dimensional semisimple
subspaces whose intersection is a degenerate plane, but not totally isotropic (i.e.
with radical properly contained in this plane, thus of dimension one).

The proof proceeds as follows: we shall construct in £ a plane [x,y] such
that xlx, yJLy, and xly. Then we shall find two distinct three dimensional
semisimple spaces F and G in £ such that F C\G = [x,y\. Once this is done, it
is clear that F and G do not possess any infimum in PS(£,O); [y] and \x + y~\ are
distinct noncomparable lower bounds of F and G in Ps(£,$).

The construction is as follows. Choose any nonzero x in £ such that xlx.
Then [x]x is a subspace of dimension three. Therefore it cannot be totally
isotropic. Now choose anisotropic y in [x]1. Then [x,j>] is the required plane. It
is degenerate with rad([x,>']) = [*].

Next [_y]x is three dimensional and semisimple. Since x is in [_y]x there
exists a in [y] such that x JL a. If a is anisotropic, let z = a. If a is isotropic, let
z = a + x. This will be anisotropic and still not orthogonal to x. In either case we
have an anisotropic z in [y]x such that x jLz. From this it follows that [x,^,z]
is semisimple; its radical is properly contained in [x] whence is (0).

The three dimensional space F = \x,y, z] is also spanned by x, x + y, and z.
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Since x + y is anisotropic [x + y]x is semisimple. Hence, x being in [x + y~\
there is an anisotropic u in [x + y~\x such that x /. u. Then [x,x + j , u ] = [x,.y,u]
is again semisimple and of dimension three.

We now have two cases:
case a: u isnotin [x,j ,z]. Then weput G = [x,>>,u] and getf n G = [x,_y].
case b: u is in [x,y,z]. By construction, {x,x + y,u} is a linearly independent

subset of F and hence is a basis of F. In particular, [x, x + y,u\x =
[u]x n [x]"1" = [x + j]"1" is one dimensional semisimple, i.e. is spanned by an
anisotropic vector a. Now u is in [x + y~\ x = [u] © M, M of dimension two and
semisimple. Note that M = \u\x n [x + ^ ] x . Also [a] = [u~\x n [x]1 n [x + j]"1

= [x]x O M. Thus there exists an anisotropic vector vv in M such that a ±w.
Clearly then w is not in [x]x but w is in [x + y~\x. In this case we put G
= [x,x + j>,w] = [x,>»,vv]. Again we have F n G = [x,y] both f and G semi-
simple of dimension three. This completes the proof.

We remark that if the dimension of E does not exceed 3, then Ps(£,$) is a
lattice simply because there is not enough height for things togowrcng. If in the
above theorem, the dimension of E is finite and <& admits no nonzero isotropic
vectors, then PS{E, <t) = PSS(E, $) is the lattice of all subspaces of E. Also in partic-
ular we note that if $ is the Minkowski metric fo space-time, then PS(R

4, <S>) is
an orthomodular poset that is not an orthomodular lattice.

We close with some open questions:

QUESTION 1. What about the converse of Theorem 8?

QUESTION 2. What is the cut completion of PS(E, ±)?
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