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In this paper, we show how to generate orthomodular posets from ses-
quilinear forms on a vector space.

Let E be a vector space over the division ring k. A binary relation L on E'is
called a linear orthogonality relation provided

(1) xLyiff y L x, and

(2) for each x in E, {x}* = {y|y L x} is a linear subspace of E.

For a subset M of E we define the orthogonal of M by

M*={y,y_l_mforallminM}.

Also we let [M] denote the linear span of M in E.
The first lemma is trivial.

Lemma 1. For M, M;, and N subsets of E, we have

() Mc M+

(2) M = N implies N* = M*

(3) MJ. = MJ.J..L

@) (UMY = nM;

(5) M*is a subspace of E

(6) M*=[M]* so in particular if x Ly and x Lz then x1y+z and
x Loy for all o in k.

(7D (O*=Eand E=E"

Note that M+ M is a closure operator on the lattice of all subspaces of E.

Let L be a linear orthogonality relation on E. We say L is nondegenerate
when E* = (0). In this case we call (E, 1) a linear orthogonality space.

Call a subspace M of E orthogonally closed or L-closed if M = M**.
Let P(E, 1) denote the set of all L-closed subspaces of E ordered by inclusion.
Using well known generalities on closure operators we see that P(E, L)is a com-
lete involution lattice with zero (0) and unit E. Also for M; in P(E, L) we have
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inf(M) = NM; and sup(M,) = [UM]™"

Call a vector x in E isotropic if x 1 x and anisotropic otherwise. For a
subspace F of E, define the radical of F by rad(F) = F N F* Say that F is
semisimple provided rad (F) = (0). Let P, (E, L) denote the set of all semisimple
subspaces of E ordered by inclusion.

It can be shown that the orthogonal of a semisimple subspace need not be
semisimple. However,

P (E,1L)yNP(E, 1)

is easily seen to be an orthocomplemented poset under the natural involution
F+ F* It need not though be orthomodular.

LemMA 2. Let {F;} be an orthogonal family of linear subspaces of E
(i.e. F; S Fj for i # j). Let F be the smallest subspace of E containing all the F,.
We write F = X F;. Then rad(F) = X rad(F)).

PrOOF. First rad(F)=F N F* = F N (N F{) = N(F N Fy). For each fixed
Jj and for any i we have

rad(F;) = F;, " F; = F N F{.

Hence for each j, rad (F;) < rad (F) so Xrad(F,) < rad(F).
Conversely, suppose x is in rad (F). Since x is in F we can write x as a finitely
nonzero sum x = 2 x; with x; in F;. For each j,

xX;j=x— X X
i#j

Since x is in rad (F) then x is in F7. Since the family {F,} is orthogonal, each x;
with i # j also belongs to Fy. Thus x; is in F7. It follows each x; is in rad (F)).
Thus x is in X rad(F,).

COROLLARY 3. If {F;} is an orthogonal family of semisimple subspaces of E,

the join exists in P (E, L) and in fact the join is the orthogonal direct sum of
the F,.

Next we have a technical lemma.

LEMMA 4. Let F and G be linear subspaces of E. Suppose F< G and
G < F + F*. Let G be semisimple. Then G N\ F* is semisimple.

PRrOOF. If G N F* were not semisimple, we would have a vector w different
from zero with w belonging to

rad(G N FY) = (G N FY N (G N FH-.

Since G is semisimple and w is in G we cannot have w in G*. Thus there
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is a vector y in G such that y fails to be orthogonal to w. Since G is contained in
in F + F* and F is contained in G we see

G=F+(F-NnG).
Hence we can write y =u + x where u belongs to F and x is in F' n G

Since w is in F*and w is in (F* N G)*, then w is orthogonal to y, a contradiction.

A subspace F of the linear orthogonality space (E, 1) is called splitting if
E=F + F*. Let P(E, 1) denote the set of all splitting subspaces of E again
ordered by inclusion.

The next lemma is straightforward and we omit the proof.

LeMMA 5. (1) (0) and E are splitting subspaces

(2) if F is in P(E, L) then so is F*

(3) every splitting subspace is closed and semisimple

(4) P(E, 1) is an orthocomplemented poset under the inovolution F — F*,

The next lemma establishes the first crucial property of an orthomodular poset.
LeEMMA 6. Finite orthogonal joins exist in P(E, L).

Proor. Let e be any vector in E. Let F and G be in P(E, 1) with
F < G*. We claim

F+G6=F®G

is in P(E, L). First e =w + w, with w in G and w, in G"and e = v + v, with v
in F and v, in F*, Clearly
e=@O+w)+x

where x = ¢ — v — w,0; — w = w; — v. Since v, is in F* and w is in G then x
is in F % Similarly, x is in G*. Thus e is in

F+G)+F"NnGH=(F+G)+(F+06"~
Hence E = (F + G) + (F + G)*
We now come to the main result.

THEOREM 7. Let (E, 1) be a linear orthogonality space. Then P,(E, L) is an
orthomodular poset.

PrOOF. Wehavealready that P(E, 1)isanorthocomplemented poset with zero
(0) and unit E under the involution F» F*. Orthogonal joins are just orthogonal
direct sums. It suffices then to show the orthomodular identity. Let F and G be
spliting subspaces with F < G. Then G* £ F* so F is orthogonal to G* so
FV G* = F + G*. Thus
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FvGHy*=F+GH"=F" NG

Now G=GNE=GNEF+F)=F+(GNFY=F v (Fv G"* which
completes the proof.

Note if E is finite dimensional, P(E, l) is necessarily an atomic ortho-
modular poset. Also note that linear orthogonality relations exist in great abun-
dance. Let E be any vector space. Let ® be a f-sesquilinear nondegenrate ortho-
symmetric from on E. For x and y in E, define x L y by ®(x,y) = 0. Then
(E, 1) = (E,®) is a linear orthogonality space. Call such a quadratic space. We
have characterized which linear orthogonality spaces are quadratic spaces else-
where. For a quadratic space (E,®) it can also be shown that P (E,®) is an ample
atomic orthomodular poset with the ortho-covering and ortho-exchange properties.

A crucial problem is to determine when P (E,®) is a lattice. The next theorem
provides and important partial answer. We are indebted to H. R. Fischer for the
proof.

THEOREM 8. Let (E,®) be a quadratic space of dimension at least 4 over a
field of characteristic different from two. Suppose not every vector of E is iso-
tropic. If P(E,®) is a lattice then ® admits no non-zero isotropic vectors.

PrOOF.

Suppose on the contrary that ® admits a nonzero isotropic vector. Since
every nondegenerate space of dimension at least 4 contains a four dimensional
semisimple subspace, it suffices to consider the case where the dimension of E
equals 4 and show that E contains two distinct three dimensional semisimple
subspaces whose intersection is a degenerate plane, but not totally isotropic (i.e.
with radical properly contained in this plane, thus of dimension one).

The proof proceeds as follows: we shall construct in E a plane [x,y] such
that x L x, y L y, and x L y. Then we shall find two distinct three dimensional
semisimple spaces F and G in E such that F NG = [x, y]. Once this is done, it
is clear that F and G do not possess any infimum in P(E,®); [y] and [x + y] are
distinct noncomparable lower bounds of F and G in P(E, D).

The construction is as follows. Choose any nonzero x in E such that x 1 x.
Then [x]* is a subspace of dimension three. Therefore it cannot be totally
isotropic. Now choose anisotropic y in [x]*. Then [x,y] is the required plane. It
is degenerate with rad([x, y]) = [x].

Next [y]" is three dimensional and semisimple. Since x is in [y]* there
exists a in [y] such that x X a. If a is anisotropic, let z = a. If a is isotropic, let
z = a + x. This will be anisotropic and still not orthogonal to x. In either case we
have an anisotropic z in [y]* such that x £ z. From this it follows that [x,y,z]
is semisimple; its radical is properly contained in [ x] whence is (0).

The three dimensional space F = [x, y, z] is also spanned by x, x + y, and z.
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Since x + y is anisotropic [x + y]* is semisimple. Hence, x being in [x + y]
there is an anisotropic u in [x + yJ* such that x £ u. Then [x,x + y,u] = [x,y,u]
is again semisimple and of dimension three.

We now have two cases:

case a: uisnotin[x,y, z]. Thenweput G =[x,y,u]and get F NG = [x,y].

case b: uisin[x,y,z]. By construction, {x,x + y,u}isalinearlyinderencdent
subset of F and hence is a basis of F. In particular, [x,x + y,u]*=
[u]* N [x]* = [x + y]* is one dimensional semisimple, i.e. is spanned by an
anisotropic vector a. Now u isin [x + y]*= [u] ® M, M of dimension two and
semisimple. Note that M = [u]* N [x + y]*. Also [a] = [u]* N[x]* N[x + y]*
= [x]* N M. Thus there exists an anisotropic vector w in M such that a L w.
Clearly then w is not in [x]* but w is in [x + y]*. In this case we put G
= [x,x + y,w] = [x,y,w]. Again we have F NG =[x, y] both F and G semi-
simple of dimension three. This completes the proof.

We remark that if the dimension of E does not exceed 3, then P(E.®) is a
lattice simply tecause there is not enough height for things to go wreng. Ifin the
above theorem, the dimension of E is finite and ® admits no nonzero isotropic
vectors, then P(E,®) = P, (E,®) is the lattice of all subspaces of E. Also in partic-
ular we note that if @ is the Minkowski metric fo space-time, then P(R*, @) is
an orthomodular poset that is not an orthomodular lattice.

We close with some open questions:

QUESTION 1. W hat akout the contverse of Theorem 8?

QUESTION 2. W hat is the cut completion of P(E, 1)?
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