# James-Hopf Invariants, Anick's Spaces, and the Double Loops on Odd Primary Moore Spaces 

Joseph Neisendorfer


#### Abstract

Using spaces introduced by Anick, we construct a decomposition into indecomposable factors of the double loop spaces of odd primary Moore spaces when the powers of the primes are greater than the first power. If $n$ is greater than 1 , this implies that the odd primary part of all the homotopy groups of the $2 n+1$ dimensional sphere lifts to a $\bmod p^{r}$ Moore space.


## 0 Introduction

Throughout this paper, $p$ will be a fixed odd prime and all spaces will be localized at $p$. Let $P^{m}\left(p^{r}\right)$ be the $\bmod p^{r}$ Moore space $S^{m-1} \bigcup_{p^{r}} e^{m}$ which is formed by attaching an $m$-cell to an $(m-1)$-sphere by a map of degree a power $p^{r}$ of the prime. The fibre of the degree $p^{r}$ map $p^{r}: S^{m} \rightarrow S^{m}$ will be denoted by $S^{m}\left\{p^{r}\right\}$. In [4], [5], maps $\partial_{r}: \Omega^{2} S^{2 n+1} \rightarrow S^{2 n-1}$ were constructed with a strong relation to the double suspension $\Sigma^{2}: S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$, namely, the compositions $\Sigma^{2} \circ \partial_{r}: \Omega^{2} S^{2 n+1} \rightarrow S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$ and $\partial_{r} \circ \Sigma^{2}: S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1} \rightarrow$ $S^{2 n-1}$ are $\Omega^{2}\left(p^{r}\right)$ and $p^{r}$, respectively. Let $D(n, r)$ be the fibre of $\partial_{r}$.

In [11], a proof was given that, if $r \geq 2$, there is a homotopy equivalence

$$
\begin{equation*}
D(n, r) \times \Omega\left[\prod_{k=1}^{\infty} S^{2 p^{k} n-1}\left\{p^{r+1}\right\}\right] \times \Omega^{2} \Sigma P(n, r) \rightarrow \Omega^{2} P^{2 n+1}\left(p^{r}\right) \tag{0.1}
\end{equation*}
$$

where $P(n, r)$ is some infinite bouquet of $\bmod p^{r}$ Moore spaces. In this paper we give another proof which is quite different from the proof in [11]. The proof given here is valid only for primes $p \geq 5$ while the proof in [11] is valid for $p \geq 3$. This happens because certain properties of Anick's spaces are known only for $p \geq 5$. It would not be surprising if this situation were remedied in the future.

Nonetheless, the proof given here has some advantages. It is a more straightforward attack on the problem and seems closer to a confrontation with the case $r=1$. It is a striking fact that both proofs fail in the case $r=1$. The failure here seems to be more enlightening, more closely related to the truth or falsity of the theorem in the case $r=1$, whereas the failure for $r=1$ in the first proof seems to be more a consequence of the method of attack. Of course, neither failure resolves the issue and there is as yet no reason to withdraw the conjecture that (0.1) is true for all $r \geq 1$.

[^0]Already in [6], it was shown that there is a homotopy equivalence

$$
\begin{equation*}
T^{2 n+1}\left(p^{r}\right) \times \Omega \Sigma P(n, r) \rightarrow \Omega P^{2 n+1}\left(p^{r}\right) \tag{0.2}
\end{equation*}
$$

where $T^{2 n+1}\left(p^{r}\right)$ is the fibre of the map $\Sigma P(n, r) \rightarrow P^{2 n+1}\left(p^{r}\right)$ and sits in a fibration sequence

$$
\begin{equation*}
\Omega^{2} S^{2 n+1} \rightarrow S^{2 n-1} \times \Pi_{r+1} \rightarrow T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega S^{2 n+1} \tag{0.3}
\end{equation*}
$$

with

$$
\Pi_{r+1}=\prod_{k=1}^{\infty} s^{2 p^{k} n-1}\left\{p^{r+1}\right\} .
$$

The map $\partial_{r}$ is nothing but the composition of the first map in (0.3) with projection on the first factor. It follows immediately that there is a fibration

$$
\begin{equation*}
\Omega \Pi_{r+1} \rightarrow \Omega T^{2 n+1}\left(p^{r}\right) \rightarrow D(n, r) \tag{0.4}
\end{equation*}
$$

and hence that ( 0.1 ) is equivalent to the problem of constructing a retraction $\Omega T^{2 n+1}\left(p^{r}\right) \rightarrow$ $\Omega \Pi_{r+1}$. In this paper we will construct this retraction with the aid of James-Hopf invariants [7], [8]. The James-Hopf invariants do not give this retraction immediately. The James-Hopf invariants must be modified and restricted. After that, some lifting of maps is required. It is there that the proof breaks down for $r=1$ in an essential way.

As described in [11], (0.1) implies that the natural map $P^{2 n+1}\left(p^{r}\right) \rightarrow S^{2 n+1}$ induces split epimorphisms on all homotopy groups in dimensions greater than $2 n+1$ if $r$ is $\geq$ the maximum of 2 and $n$.

I wish to thank Stephen Theriault for valuable e-mail tutorials on the contents of his thesis [13]. Without his help in Section 2 to deloop the maps $\eta$ and $\zeta$, the proof given here would have been strong enough to prove only the loop of (0.1).

## 1 James-Hopf Invariants

The James-Hopf invariants [7], [8] are natural maps $h_{j}: \Omega \Sigma X \rightarrow \Omega \Sigma X^{\wedge j}$ with $X^{\wedge j}=$ $X \wedge \cdots \wedge X$ being the $j$-fold smash. These maps have the following homological property for field coefficients: if $x_{1} \in \bar{H}_{*}(X), \ldots, x_{i} \in \bar{H}_{*}(X)$, then

$$
h_{j *}\left(x_{1} \otimes \cdots \otimes x_{i}\right)= \begin{cases}0 & \text { if } i<j \\ x_{1} \otimes \cdots \otimes x_{i} & \text { if } i=j, \\ \text { a decomposable element } & \text { if } i>j\end{cases}
$$

Throughout this paper, the coefficients will be $Z / p Z$ and we will be concerned with the cases where $j=p^{k}$ and $X$ is $S^{2 n}$ or $P^{2 n}\left(p^{r}\right)$. In the second case, we will replace the James-Hopf invariant with a modified James-Hopf invariant $\bar{h}_{j}$ as follows.

Since $P^{a}\left(p^{r}\right) \wedge P^{b}\left(p^{r}\right) \simeq P^{a+b}\left(p^{r}\right) \vee P^{a+b-1}\left(p^{r}\right)$, it follows that, if $q: P^{a}\left(p^{r}\right) \rightarrow S^{a}$ is the natural map, there is a factorization of $\wedge^{j} q$ into $\left(P^{2 n}\left(p^{r}\right)\right)^{\wedge j} \xrightarrow{\alpha} P^{2 j n}\left(p^{r}\right) \xrightarrow{q}\left(S^{2 n}\right)^{\wedge j}$.

Hence, there is a commutative diagram


Let the modified James-Hopf invariant $\bar{h}_{j}=\Omega \Sigma \alpha \circ h_{j}: \Omega P^{2 n+1}\left(p^{r}\right) \rightarrow \Omega P^{2 j n+1}\left(p^{r}\right)$ be the composition in the top row of (1.1). If $u=u(a-1, r) \in H_{a-1}\left(P^{a}\left(p^{r}\right)\right)$ and $v=v(a, r) \in H_{a}\left(P^{a}\left(p^{r}\right)\right)$ are generators, then $\bar{h}_{j_{*}}\left(v(2 n, r)^{j}\right)=v(2 n j, r)$. Let $\beta^{r}$ be the $r$-th Bockstein. Then $\beta^{r} v(a, r)=u(a-1, r)$ and $\beta^{r}\left(v(2 n, r)^{p^{k}}\right)=$ $a d^{p^{k}-1}(v(2 n, r))(u(2 n-1, r))=\tau_{k}(v(2 n, r))$ [4]. Hence, $\bar{h}_{p_{*}^{k}}\left(\tau_{k}(v(2 n, r))\right)=u\left(2 p^{k} n-\right.$ $1, r)$.

The space $T^{2 n+1}\left(p^{r}\right)$ is defined to be the fibre of a map $\Sigma P(n, r) \rightarrow P^{2 n+1}\left(p^{r}\right)$ [6]. This map is defined on a bouquet of $\bmod p^{r}$ Moore spaces as a bouquet of mod $p^{r}$ Whitehead products which, since $S^{2 n+1}$ is an $H$-space, map to zero when composed with the map $P^{2 n+1}\left(p^{r}\right) \rightarrow S^{2 n+1}$. It follows that we may form the commutative diagram below in which the rows and columns are fibration sequences:


The result quoted in (0.2) gives a section $\sigma: T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega P^{2 n+1}\left(p^{r}\right)$ and (1.2) implies that $\sigma$ restricts to $\bar{\sigma}: W^{2 n+1}\left\{p^{r}\right\} \rightarrow \Omega F^{2 n+1}\left\{p^{r}\right\}$. At a certain point in the proof below we will restrict a further modification of the modified James-Hopf invariant $\bar{h}_{p^{k}}$ from $\Omega P^{2 n+1}\left(p^{r}\right)$ to $T^{2 n+1}\left(p^{r}\right)$ via the map $\sigma$. We will need to know the following: Suppose $v_{k}$ and $\tau_{k}=\beta^{r} v_{k}$ are the respective images of $v(2 n, r)^{p^{k}}$ and $\tau_{k}(v(2 n, r))$ in $H_{*}\left(T^{2 n+1}\left(p^{r}\right)\right)$. These are primitive elements. Since $v(2 n, r)^{p^{k}}$ is the primitive element of least length in its degree, it follows that $\bar{h}_{p_{*}^{k}} \circ \sigma_{*}$ sends $v_{k}$ to $v\left(2 p^{k} n, r\right)$ and $\tau_{k}$ to $u\left(2 p^{k} n, r\right)$.

## 2 Theriault's Reconstruction of Anick's Spaces BD ( $n, r$ )

In order to avoid proving our decomposition theorem for triple loops instead of double loops, we shall use spaces $\mathrm{BD}(n, r)$, defined for $r \geq 1$, which are candidates for classifying spaces for the spaces $D(n, r)$ (and, in fact, it is an elementary consequence of the product decomposition (0.1) that they are classifying spaces if $r \geq 2$ ). These spaces were introduced by Anick [1] for $p \geq 5$, further studied by Anick and Gray [2], and reconstructed for all $p \geq 3$ in the thesis of Theriault [13] and his subsequent paper [14]. (Theriault used the notation $T_{\infty}^{2 n-1}\left\{p^{r}\right\}$ for the spaces we call $\mathrm{BD}(n, r)$. Anick and Gray have used variations
of this notation involving the letter $T$. Because of a conflict with the notation of Cohen, Moore, and Neisendorfer, this notation will not be used here.) In this section we provide a brief summary of some of the work of Theriault and derive some consequences which we use in the proof of (0.1).

First, if $p \geq 3$ and $r \geq 1$, there are $H$-spaces $\operatorname{BD}(n, r)$, [2], [13], [14], and there are factorizations of the natural maps $\Omega P^{2 n+1}\left(p^{r}\right) \rightarrow \Omega S^{2 n+1}$ into

$$
\begin{equation*}
\Omega P^{2 n+1}\left(p^{r}\right) \rightarrow \mathrm{BD}(n, r) \rightarrow \Omega S^{2 n+1}\left\{p^{r}\right\} \rightarrow \Omega S^{2 n+1} \tag{2.1}
\end{equation*}
$$

where the second and third maps are $H$-maps. There is a fibration sequence

$$
\Omega^{2} S^{2 n+1} \rightarrow S^{2 n-1} \rightarrow \mathrm{BD}(n, r) \rightarrow \Omega S^{2 n+1}
$$

in which the first map has degree $p^{r}$ on the bottom cell [1].
The first and second maps in (2.1) are mod $p$ homology isomorphisms in dimensions $2 n-1$ and $2 n$. Accordingly, we shall denote the generators of both $H_{*}(\operatorname{BD}(n, r))$ and $H_{*}\left(\Omega S^{2 n+1}\left\{p^{r}\right\}\right)$ in these dimensions by $u(n, r)$ and $v(n, r)$, respectively.

If $p \geq 5$, the $H$-spaces $\mathrm{BD}(n, r)$ are homotopy commutative, homotopy associative, have null homotopic $p^{r}$-th power maps, and the first map in (2.1) is an $H$-map [13], [14].

Second, if $p \geq 3$, the spaces $\operatorname{BD}(n, r)$ and the natural maps $\iota: P^{2 n} \xrightarrow{\Sigma} \Omega P^{2 n+1}\left(p^{r}\right) \rightarrow$ $\mathrm{BD}(n, r)$ satisfy the universality property [14]: if $X$ is a homotopy commutative and homotopy associative $H$-space and $f: P^{2 n}\left(p^{r}\right) \rightarrow X$ is any map, then there is an extension to an $H$-map $\bar{f}: \mathrm{BD}(n, r) \rightarrow X$. The extension is unique up to homotopy.

Following a suggestion of Theriault we apply the universality property to the maps $\zeta$ and $\eta$ uniquely defined for $s<r$ by the maps of cofibration sequences


There are also maps $\zeta$ and $\eta$ uniquely defined by maps of fibration sequences


For the remainder of this paper, let $p \geq 5$.
Theriault's universality property implies that the maps in (2.2) extend to $H$-maps $\zeta$ : $\mathrm{BD}(n, s) \rightarrow \mathrm{BD}(n, r)$ and $\eta: \mathrm{BD}(n, r) \rightarrow \mathrm{BD}(n, s)$ where the $\zeta$ and $\eta$ maps are unique and
there are commutative diagrams


Therefore, for $n>1$ we have a commutative diagram with rows and columns fibration sequences

and for all $n \geq 1$ we have a commutative diagram with rows and columns fibration sequences


The uniqueness of $\zeta$ and $\eta$ clearly implies that $\zeta \circ \zeta=\zeta$ and $\eta \circ \eta=\eta$.
We note that the universality property implies that, if $r \geq 1$, the composition $\eta \circ$ $\zeta: \mathrm{BD}(n, r) \rightarrow \mathrm{BD}(n, r+1) \rightarrow \mathrm{BD}(n, r)$ is the $p$-th power map and, if $r \geq 2$, so is the composition $\zeta \circ \eta: \mathrm{BD}(n, r) \rightarrow \mathrm{BD}(n, r-1) \rightarrow \mathrm{BD}(n, r)$. Furthermore, the diagram below commutes


These equalities allow us to easily compute any composition $\eta \circ \zeta$ and any composition $\zeta \circ \eta$. For example, $\eta \circ \zeta: \mathrm{BD}(n, r) \rightarrow \mathrm{BD}(n, r+t) \rightarrow \mathrm{BD}(n, r+t-s)$ equals $\zeta \circ p^{t-s}=p^{t-s} \circ \zeta$ if $t, t-s>0$.

If we compose the modified James-Hopf invariant $\bar{h}_{p^{k}}$ with the map in (2.1), we get a map

$$
H_{p^{k}}: \Omega P^{2 n+1}\left(p^{r}\right) \rightarrow \mathrm{BD}\left(p^{k} n, r\right)
$$

and a commutative diagram with the columns fibration sequences:


We shall call the map $H_{p^{k}}$ the Anick-James-Hopf invariant.

## 3 Selick's Lifting Method

In this section, we apply a method due to Selick [12] to construct a lifting of $\Omega(p) \circ \Omega\left(H_{p^{k}}\right)$, the loops on the composition of the Anick-James-Hopf invariant with the $p$-th power map.

Selick's lifting method is based on two facts. First, if $A \rightarrow \Omega S^{2 n+1}$ is any map with $A$ a space of category $<p^{k}$, then the composition with the $p^{k}$-th James-Hopf invariant followed by the $p$-th power,

$$
A \longrightarrow \Omega S^{2 n+1} \xrightarrow{h_{p^{k}}} \Omega S^{2 p^{k} n+1} \xrightarrow{\Omega(p)} \Omega S^{2 p^{k} n+1}
$$

is null homotopic. Second, if $G$ is a topological group with classifying space $B G$ and Milnor filtration $B_{j} G$, then the composite map $G \xrightarrow{\Sigma} \Omega \Sigma G=\Omega B_{1} G \subseteq \Omega B G$ is a homotopy equivalence with $G \rightarrow \Omega B_{j} G$ an $H$-map for $j>1$. Selick wrote his proofs only for the case $k=1$, but, as he knew, they work without change for $k \geq 1$.

Let $1<j<p^{k}$. Since $B_{j} G$ is a space of category $j$, it follows that the composite map

$$
B_{j}\left(\Omega^{2} S^{2 n+1}\right) \subseteq B\left(\Omega^{2} S^{2 n+1}\right)=\Omega S^{2 n+1} \xrightarrow{h_{p^{k}}} \Omega S^{2 p^{k} n+1} \xrightarrow{\Omega(p)} \Omega S^{2 p^{k} n+1}
$$

is null homotopic. The range being simply connected, we can assume that the homotopy is basepoint preserving.

If we restrict (2.8) to $B_{j} G$, we get a diagram


The above basepoint preserving null homotopy of $\Omega(p) \circ h_{p^{k}}$ on $B_{j}\left(\Omega^{2} S^{2 n+1}\right)$ yields, via the covering homotopy property, a homotopy of $p \circ H_{p^{k}}$ defined on $B_{j}\left(\Omega^{2} P^{2 n+1}\left(p^{r}\right)\right)$. This covering homotopy terminates at a map $\bar{H}$ of $B_{j}\left(\Omega^{2} P^{2 n+1}\left(p^{r}\right)\right)$ into the fibre $S^{2 p^{k} n-1}$ and since the original homotopy is basepoint preserving it may be constructed to be a stationary homotopy on $B_{j}\left(\Omega^{2} F^{2 n+1}\left\{p^{r}\right\}\right)$. Hence, we get a commutative diagram


If we loop (3.2), inject $G$ into $\Omega B_{j} G$ as described in the first paragraph of this section, and include the maps $\sigma$ and $\bar{\sigma}$ from the end of Section 1, we get a commutative diagram of $H$-maps as follows


## 4 Lifting the Lift

In this section we construct a lift of the map $H$ in (3.3).

The main technical result of [10], slightly extended as in [11], is a map $T^{2 n+1}\left(p^{r}\right) \rightarrow \Pi_{r}$ such that, if we compose this map with the map $S^{2 n-1} \times \Pi_{r+1} \rightarrow T^{2 n+1}\left(p^{r}\right)$, the result fits into horizontal fibration sequences

where $C(n)$ is the fibre of the double suspension $S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$.
Consider the diagram of [10] in which the rows and columns are all fibration sequences, $C(n) \rightarrow S^{2 n-1} \xrightarrow{\Sigma^{2}} \Omega^{2} S^{2 n+1}$ is the fibration sequence of the double suspension, and the left hand column is the evident product:


The fact that $S^{2 n+1}\left\{p^{r}\right\}$ is an $H$-space with a null homotopic $p^{r}$-th power map [9], together with (4.1) and (4.2) looped to make everything an $H$-map, easily shows, using standard lifting properties of fibrations as in the proof of Proposition 1.2 of [10], that the $p^{r}$-th power map on $\Omega T^{2 n+1}$ ( $p^{r}$ ) factors as

$$
\begin{align*}
\Omega\left(p^{r}\right): \Omega T^{2 n+1}\left(p^{r}\right) & \longrightarrow \Omega C(n) \times \Omega \Pi_{1} \quad \xrightarrow{1 \times \Pi \zeta} \Omega C(n)  \tag{4.3}\\
\times \Omega \Pi_{r+1} & \longrightarrow \Omega S^{2 n-1} \times \Omega \Pi_{r+1}
\end{align*} \quad \longrightarrow \Omega T^{2 n+1}\left(p^{r}\right) .
$$

Notice that $W^{2 n+1}\left\{p^{r}\right\}=S^{2 n-1} \times \Pi_{r+1}$ and use the above paragraph and the fact that $H$ in (3.3) is an $H$-map to conclude that $\Omega\left(p^{r}\right) \circ H \circ \Omega \sigma=H \circ \Omega \sigma \circ \Omega\left(p^{r}\right)$ factors as

$$
\begin{aligned}
\Omega T^{2 n+1}\left(p^{r}\right) & \longrightarrow \Omega C(n) \\
\times \Omega \Pi_{1} & \longrightarrow \Omega W^{2 n+1}\left\{p^{r}\right\} \xrightarrow{\Omega \bar{\sigma}} \Omega^{2} F^{2 n+1}\left\{p^{r}\right\} \xrightarrow{\Omega(p) \circ \Omega\left(\bar{H}_{p^{k}}\right)} \Omega S^{2 p^{k} n-1} .
\end{aligned}
$$

Since $C(n)$ and $\Pi_{1}$ are both $H$-spaces with null homotopic $p$-th power maps [5, 9], it follows that $\Omega\left(p^{r}\right) \circ H \circ \Omega \sigma$ is null homotopic and thus that we have a lift of $H \circ$ $\Omega \sigma: \Omega T^{2 n+1}\left\{p^{r}\right\} \rightarrow \Omega S^{2 p^{k} n-1}$ to a map $K: \Omega T^{2 n+1}\left\{p^{r}\right\} \rightarrow \Omega S^{2 p^{k} n-1}\left\{p^{r}\right\}$.

## 5 Proof of the Decomposition Theorem for the Double Loop Space

From Section 2 we get a commutative diagram with the columns fibration sequences

with $\zeta \circ \eta=p$ in the middle row. Since the spaces $D\left(p^{k}, 0\right)$ do not exist, we are required to assume that $r \geq 2$. Clearly, the lower left hand square and the upper right hand square are both homotopy pullbacks, a fact that will be preserved if we apply the loop functor to (5.1).

Hence, the maps

$$
K: \Omega T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega S^{2 p^{k} n-1}\left\{p^{r}\right\}
$$

and

$$
\Omega \eta \circ \Omega H_{p^{k}} \circ \Omega \sigma: \Omega T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega^{2} p^{2 n+1}\left(p^{r}\right) \rightarrow \Omega \mathrm{BD}\left(p^{k} n, r\right) \rightarrow \Omega \mathrm{BD}\left(p^{k} n, r-1\right)
$$

yield a map

$$
L: \Omega T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega S^{2 p^{k} n-1}\left\{p^{r+1}\right\}
$$

and hence a map into the product

$$
\bar{L}: \Omega T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega \Pi_{r+1}
$$

We claim that the composition $\Omega \Pi_{r+1} \rightarrow \Omega T^{2 n+1}\left(p^{r}\right) \rightarrow \Omega \Pi_{r+1}$ is a homotopy equivalence, which as mentioned in Section 0 is equivalent to proving the product decomposition in (0.1).

Sections 1 and 2 imply that $\Omega H_{p^{k}}$ maps the transgression $\tau$ of $\tau_{k}$ in $H_{2 p^{k} n-2}\left(\Omega T^{2 n+1}\left(p^{r}\right)\right)$ to the generator $u\left(2 p^{k} n-2, r\right)$ of $H_{2 p^{k} n-2}\left(\Omega \mathrm{BD}\left(p^{k} n, r\right)\right)$. Then $\Omega \eta$ sends it to the generator $u\left(2 p^{k} n-2, r-1\right)$ of $H_{2 p^{k} n-2}\left(\Omega \mathrm{BD}\left(p^{k} n, r-1\right)\right)$. From the homological properties of the fibration in the middle column of (5.1), it follows that $L$ sends $\tau$ to the generator $v\left(2 p^{k} n-2, r+1\right)$ of $H_{2 p^{k} n-2}\left(\Omega S^{2 p^{k} n-1}\left\{p^{r+1}\right\}\right)$. From the proof of Theorem 6.1 in [10], we see that $v\left(2 p^{k} n-2, r+1\right)$ is the only primitive element in $H_{2 p^{k} n-2}\left(\Omega \Pi_{r+1}\right)$. It follows that $\bar{L}$ sends $\tau$ to $v\left(2 p^{k} n-2, r+1\right)$ in $H_{2 p^{k} n-2}\left(\Omega \Pi_{r+1}\right)$. From [4], [10], we see that $\Omega \Pi_{r+1} \rightarrow \Omega T^{2 n+1}\left(p^{r}\right)$ sends $v\left(2 p^{k} n-2, r+1\right)$ to $\tau$. Now Theorem 6.1 in [10], a generalization of an atomicity result in [12], says that any self map of $\Omega \Pi_{r+1}$ which sends $v\left(2 p^{k} n-2, r+1\right)$ to itself and hence its $(r+1)$-st Bockstein $u\left(2 p^{k} n-3, r+1\right)$ to itself is a homotopy equivalence. Thus, the composition in the preceding paragraph is a homotopy equivalence.

## References

[1] D. Anick, Differential Algebras in Topology. Res. Notes Math. 3, A. K. Peters Ltd., 1993.
[2] D. Anick and B. Gray, Small H spaces related to Moore spaces. Topology 43(1995), 859-881.
[3] F. R. Cohen and M. E. Mahowald, A remark on self-maps of $\Omega^{2} S^{2 n+1}$. Indiana Univ. Math J. 30(1981), 583588.
[4] F. R. Cohen, J. C. Moore and J. A. Neisendorfer, Torsion in homotopy groups. Ann. of Math. 109(1979), 121-168.
[5] The double suspension and exponents of the homotopy groups of spheres. Ann. of Math. 110(1979), 549-565.
[6] $\longrightarrow$, Exponents in homotopy theory. In: Algebraic Topology and Algebraic K-theory (ed. W. Browder), Princeton Univ. Press, 1987.
[7] I. M. James, Reduced product spaces. Ann. of Math. 62(1955), 170-197.
[8] $\longrightarrow$ On the suspension sequence. Ann. of Math. 65(1957), 74-107.
[9] J. A. Neisendorfer, Properties of certain H-spaces. Quart. J. Math. Oxford Ser. (2) 34(1983), 201-209.
[10] The exponent of a Moore space. In: Algebraic Topology and Algebraic K-theory (ed. W. Browder), Princeton Univ. Press, 1987.
[11] Product decompositions of the double loops on odd primary Moore spaces. Topology, to appear.
[12] P. S. Selick, Odd primary torsion in $\pi_{k}\left(S^{3}\right)$. Topology 17(1978), 407-412.
[13] S. D. Theriault, A reconstruction of Anick's fibration, University of Toronto Thesis, 1997.
[14] $\qquad$ Properties of Anick's Spaces. Preprint.

University of Rochester<br>Rochester, New York<br>U.S.A.


[^0]:    Received by the editors July 2, 1998; revised December 21, 1998.
    This work was supported in part by an NSF grant.
    AMS subject classification: 55Q52, 55P35.
    (C)Canadian Mathematical Society 2000.

