
Local and global structure of connections on
nonarchimedean curves

Kiran S. Kedlaya

Compositio Math. 151 (2015), 1096–1156.

doi:10.1112/S0010437X14007830

https://doi.org/10.1112/S0010437X14007830 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X14007830
https://doi.org/10.1112/S0010437X14007830


Compositio Math. 151 (2015) 1096–1156

doi:10.1112/S0010437X14007830

Local and global structure of connections on
nonarchimedean curves

Kiran S. Kedlaya

Abstract

Consider a vector bundle with connection on a p-adic analytic curve in the sense of
Berkovich. We collect some improvements and refinements of recent results on the
structure of such connections, and on the convergence of local horizontal sections.
This builds on work from the author’s 2010 book and on subsequent improvements
by Baldassarri and by Poineau and Pulita. One key result exclusive to this paper is
that the convergence polygon of a connection is locally constant around every type 4
point.

Introduction

The theory of p-adic ordinary differential equations has been an active part of number theory
ever since the pioneering work of Dwork, starting with his p-adic analytic proof of the rationality
aspect of the Weil conjectures circa 1960 (predating the development of étale cohomology).
The subsequent half-century saw slow but substantial progress on the question of convergence
of solutions of p-adic differential equations; in that time, new spheres of application (rigid
cohomology, p-adic Hodge theory, numerical computation of zeta functions, p-adic dynamical
systems) have attracted additional attention to the area. A broad survey of the theory of p-adic
differential equations has been given recently by the author in the book [Ked10a].

At about the time that [Ked10a] was written, it was observed by Baldassarri [Bal10, BD07]
that the classical theory of p-adic differential equations could be rearticulated much more clearly
using Berkovich’s language of analytic geometry over complete nonarchimedean fields. That
is because the classical theory is heavily concerned with the convergence of local solutions of
p-adic differential equations around certain generic points, which appear naturally in Berkovich’s
framework on an equal footing with rigid analytic points. In this language, one can also naturally
treat general p-adic curves, not just subspaces of the affine line, by using semistable models to
obtain scaling parameters; Baldassarri demonstrated this in [Bal10] by establishing continuity of
the radius of convergence for a differential module over a semistable p-adic curve.

The radius of convergence function for a differential module over a curve measures only
the joint radius of convergence of all local horizontal sections around a point. A finer invariant
is the convergence polygon, a Newton polygon whose slopes record the extent to which there
exist subspaces of the local horizontal sections which converge on larger discs. Building on
the results of [Ked10a], it has been shown recently by Poineau and Pulita [PP12a, Pul14] that
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Structure of connections on nonarchimedean curves

the convergence polygon is again a continuous function which factors through the retraction onto

some finite skeleton (as in the work of Payne [Pay09]). Informally, this means that the convergence

of local horizontal sections is controlled by finitely many numerical invariants. Another proof is

included in this paper, while a simplified version of our proof will appear in [BK]. While formally

different, these proofs share many common ingredients; for instance, our key Lemma 4.3.12

is materially equivalent to [Pul14, Proposition 7.5]. In fact, the main difference between the

arguments here and those in [Pul14] is that the combinatorial argument there is replaced by a

compactness argument.

The purpose of this paper is to collect some results about differential modules on

nonarchimedean analytic curves over fields of characteristic 0 which refine and extend

the aforementioned results as well as some other results from [Ked10a]. Here is a partial list of

the new results of the present paper.

– We make a finer analysis of refined differential modules over a field of analytic functions

than is made in [Ked10a]; see § 2.3. This leads to results about refined differential modules

on open annuli; see § 3.7.

– We provide more detailed discussion of the theory of exponents for differential modules on

annuli satisfying the Robba condition (existence of horizontal sections over any open disc);

see § 3.2 and § 3.4.

– We generalize the p-adic local monodromy theorem to arbitrary differential modules over

an open annulus at one boundary, with no hypotheses on Frobenius structures or p-adic

exponents; see § 3.8.

– We show that the convergence polygon of a differential module on a curve is constant locally

around any point of type 4; see § 4.4. This strengthens the continuity theorem of [PP12a,

PP12b, Pul14].

– We show that every curve admits a triangulation such that locally at any interior point,

the connection decomposes into a particularly simple form; see § 5.4. Such triangulations

and decompositions can be used to give a global version of the Christol–Mebkhout index

formula; see [PP13a, PP13b] for some arguments along these lines.

As in [Ked10a], we have made an effort to maintain as much parity as possible between the

cases of zero and positive residual characteristic. One unavoidable complication in the latter case

is the existence of some pathologies in the theory of regular singularities caused by the existence

of p-adic Liouville numbers (numbers which are not integers but which admit extremely good

integer approximations). These complications generally emerge when considering cohomology; in

this paper, we primarily limit ourselves to statements of a ‘precohomological’ nature, for which

one can skirt these complications with some extra work.

Note that while many of the interesting applications of p-adic differential equations involve

spaces of dimension greater than one, in this paper we follow the model of [Ked10a] and confine

attention to ordinary p-adic differential equations. It is of course natural to consider also higher-

dimensional spaces; in so doing, one should be able to obtain a unification of some existing

work. Such work would include the study of good formal structures for formal flat meromorphic

connections [Ked10b, Ked11a] in the case of zero residual characteristic, and semistable reduction

for overconvergent F -isocrystals [Ked07, Ked08, Ked09, Ked11b] in the case of positive residual

characteristic.
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1. Preliminaries

We begin with some assorted preliminary definitions and arguments. This also provides an

opportunity to set running notation for the whole paper.

Notation 1.0.1. Throughout the paper, let K denote an analytic field (a field equipped with a

nonarchimedean multiplicative norm | · | with respect to which it is complete) of characteristic 0.

Let oK , mK , and κK denote the valuation subring, maximal ideal, and residue field of K,

respectively. Let p denote the characteristic of κK ; put ω = 1 if p = 0 and ω = p−1/(p−1) if

p > 0. Let C denote a completed algebraic closure of K.

1.1 A lemma on linear groups

We need a bit of elementary analysis of linear groups in the spirit of André’s abstract analysis of

filtrations [And09]. This will be used to analyze the structure of the automorphism groups

of certain Tannakian categories, especially those generated by refined differential modules over

fields (§ 2.3) and solvable differential modules over annuli (§ 3.8). For the formalism of Tannakian

categories, including the Tannaka–Krein duality theorem, see [Saa72].

Lemma 1.1.1. Let F be a field of characteristic 0. Fix a positive integer n and let

G0 ⊆ G1 ⊆ · · · be an increasing sequence of finite subgroups of GLn(F ) such that Gi is normal

in Gj whenever i 6 j.

(a) The union G =
⋃∞
i=0Gi contains an abelian normal subgroup H of finite index.

(b) There exists an index i such that G/Gi is isomorphic to a subgroup of (Q/Z)n and, in

particular, is abelian.

Proof. By Jordan’s theorem on finite linear groups [CR06, ch. 36], there exists a constant f(n)

such that each Gi contains an abelian normal subgroup of index at most f(n). Let Si be the set

of abelian normal subgroups of Gi of index at most f(n). For each Hj ∈ Sj and each i 6 j, the

map Gi/(Si ∩Hj) → Gj/Hj is injective, so Gi ∩Hj ∈ Si. We may thus assemble the sets Si into

an inverse system via restriction, and the inverse limit is necessarily nonempty by Tikhonov’s

theorem. This proves (a).

Given (a), let F be an algebraic closure of F . Then H is an abelian torsion group which

embeds into (F
∗
)n. This implies that H is isomorphic to a subgroup of (Q/Z)n, as then is any

quotient of H. Note also that since the group G/H is finite and is the union of its subgroups

Gi/(Gi∩H), there must exist an index i for which the inclusion Gi/(Gi∩H) → G/H is bijective.

The group G/Gi is then isomorphic to the abelian group H/(Gi ∩H). This proves (b). 2

Proposition 1.1.2. Let F be a field of characteristic 0. Let V be a finite-dimensional F -vector

space. Let G be an algebraic subgroup of GL(V ). Let {Gr}r∈R be a family of normal algebraic

subgroups of G. For r > −∞, put Gr+ =
⋃
s>rG

s. Assume also the following conditions.

(a) For every r, s ∈ R with r 6 s, Gs is a normal subgroup of Gr.

(b) For every s ∈ R, there exists r < s such that Gr = Gs.

(c) There exists r ∈ R such that Gr is the trivial group.

(d) For every r ∈ R for which Gr+ is finite and all nonnegative integers g, h, the Gr+-invariant

subspace of (V ∨)⊗g ⊗ V ⊗h admits a direct sum decomposition into G-stable subspaces, each of

which restricts to an isotypical representation of Gr/Gr+.

(e) In (d), the isotypical representations of Gr/Gr+ that occur all have finite image.
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Structure of connections on nonarchimedean curves

(f) For all nonnegative integers g, h and every one-dimensional G-stable subspace W of

(V ∨)⊗g ⊗ V ⊗h, the image of G−∞+ in GL(W ) is finite.

Then G−∞+ is itself finite.

Proof. Let S be the set of r ∈ R for which Gr is finite. By (a), the set S is up-closed. By (b),

the set S does not contain its infimum. By (c), the set S is nonempty.

Put r = inf S; by the previous paragraph, r /∈ S. Suppose by way of contradiction that Gr+

is infinite. By Lemma 1.1.1, there exists s0 > r such that Gr+/Gs0 embeds into a product of

finitely many copies of Q/Z. By Tannaka–Krein duality, we can choose g, h so that (V ∨)⊗g⊗V ⊗h
contains a G-stable subspace X on which Gs0 acts trivially but Gs acts nontrivially for some

s ∈ (r, s0). By applying (d) finitely many times (with r replaced by varying choices of s ∈ (r, s0)),

we can split X as a direct sum of G-stable summands, each of which is Gr+-isotypical. Since

Gr+ is not finite, we can choose a G-stable summand Y of X such that Gr+ has image in GL(Y )

isomorphic to an infinite subgroup of Q/Z. Put W = ∧dim(Y )Y ; this space occurs as a G-invariant

subspace of (V ∨)⊗g ⊗ V ⊗h for some possibly different values of g and h. However, the image of

Gr+ in GL(W ) is again isomorphic to an infinite subgroup of Q/Z, contradicting (f).

We conclude thatGr+ is finite. Suppose now that r ∈ R. By Tannaka–Krein duality, the action

of Gr on the direct sum of the Gr+-invariant subspaces of (V ∨)⊗g ⊗ V ⊗h over all nonnegative

integers g, h is a faithful representation of Gr/Gr+. However, by (e), the action on each individual

summand factors through a finite group; since Gr is algebraic, this implies that Gr is finite. But

then r ∈ S, a contradiction. We must thus have r = −∞, which yields the desired result. 2

We will apply Proposition 1.1.2 via the following Tannakian interpretation.

Remark 1.1.3. Let F be a field of characteristic 0. Let C be a Tannakian category equipped with

a fibre functor ω to the category of finite-dimensional F -vector spaces. Assign to each nonzero

element V ∈ C an element r = r(V ) ∈ R∪{−∞} depending only on the isomorphism class of V ,

subject to the following conditions.

(a) For any V ∈ C, r(V ∨) = r(V ).

(b) For any short exact sequence 0 → V1 → V → V2 → 0 in C, r(V ) = max{r(V1), r(V2)}.
(c) For any V1, V2 ∈ C, r(V1 ⊗ V2) 6 max{r(V1), r(V2)}.

For V ∈ C, let [V ] denote the Tannakian subcategory of C generated by V ; note that r(W ) 6 r(V )

for all W ∈ [V ]. Let G(V ) ⊆ GL(ω(V )) denote the automorphism group of the restriction of ω

to [V ]; this is an algebraic group over F , so all of its pro-algebraic quotients are also algebraic.

For r ∈ R, let Gr(V ) be the subgroup of G(V ) acting trivially on ω(W ) for all W ∈ [V ] with

r(W ) < r. For r ∈ R ∪ {−∞}, put Gr+(V ) =
⋃
s>rG

s(V ); if this group is finite, then it equals

the subgroup of G(V ) acting trivially on ω(W ) for all W ∈ [V ] with r(W ) 6 r (because there

exists s > r for which Gs(V ) = Gr+(V ) and hence r(W ) /∈ (r, s) for all W ∈ [V ]).

The groups Gr(V ) then satisfy conditions (a), (b), (c) of Proposition 1.1.2. This is evident

for (a) and (c). For (b), note that the objects W ∈ [V ] for which Gs(V ) acts trivially on ω(W )

form a Tannakian category which is finitely generated (because restricting ω gives a fibre functor

whose automorphism group G(V )/Gs(V ) is algebraic, not just pro-algebraic).

To enforce conditions (d), (e), (f) of Proposition 1.1.2, it would suffice to have the following

additional information about C.
(i) Every V ∈ C with r(V ) > −∞ admits a direct sum decomposition V =

⊕
i Vi in which

each summand Vi satisfies r(V ∨i ⊗ Vi) < r(V ). (This implies (d).)
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(ii) For every V ∈ C with r(V ∨ ⊗ V ) < r(V ), there exists a positive integer n such that
r(V ⊗n) < r(V ). (Given (i), this implies (e).)

(iii) For every V ∈ C with dimF ω(V ) = 1, there exists a positive integer n such that r(V ⊗n) =
−∞. (This implies (f).)

Note also that if in (ii) and (iii) the integer n can always be taken to be a power of a fixed prime
p, then the group G−∞+(V ) is forced to be not only finite but also a p-group.

Lemma 1.1.4. Suppose that the conditions of Remark 1.1.3 hold and that in (ii) and (iii), the
integer n can always be taken to be a power of a fixed prime p. Then for any V ∈ C with
r(V ) > −∞, there exists W ∈ C such that the action of G−∞+(V ) on W is τ -isotypical for some
character τ : G−∞+(V ) → GL1(F ) of order p.

Proof. By Remark 1.1.3, G−∞+(V ) is a finite p-group, which must be nontrivial since r(V ) >
−∞. The group G−∞+(V ) thus admits a character τ : G−∞+(V ) → GL1(F ) of order p. Let
r(τ) > −∞ be the smallest value of r for which Gr+(V ) ⊆ ker(τ), and choose τ to minimize
r(τ).

By Tannaka–Krein duality for G−∞+(V ), we may choose nonnegative integers g, h such that
τ occurs in the action of G−∞+(V ) on (V ∨)⊗g ⊗ V ⊗h. Then τ also occurs in the action of
G−∞+(V ) on some irreducible subquotient W of (V ∨)⊗g ⊗ V ⊗h.

Since G−∞+(V ) is a finite group, its action on W is completely reducible and thus admits an
isotypical decomposition. Since W is irreducible, all of its isotypical components must correspond
to conjugates of τ by the action of G(V ) on its normal subgroup G−∞+(V ). In particular, each
of these conjugates τ ′ is a character of order p with r(τ ′) = r(τ).

It follows that r(W ) = r(τ ′). By property (i) of Remark 1.1.3, we have r(W∨ ⊗ W ) <
r(W ); however, the irreducible representations of G−∞+(V ) appearing in W∨⊗W are characters
of order dividing p, so by our minimization of r(τ) these characters must be trivial. That is,
r(W∨ ⊗W ) = −∞, which implies that W is τ -isotypical. 2

1.2 A lemma on local fields
We introduce an auxiliary calculation concerning local fields in positive characteristic. This is
needed for the study of solvable differential modules at type 4 points (§ 4.4). We use without
comment some basic facts about higher ramification of local fields, for which see [Ked10a, ch. 3]
for a brief summary or [Ser79] for a complete treatment.

Hypothesis 1.2.1. Throughout this subsection, assume that p > 0 and let k be an algebraically
closed field of characteristic p.

Definition 1.2.2. Let N be the pro-unipotent pro-algebraic group over k whose k-points are
identified with the t-adically continuous k-linear automorphisms ψ of k((t)) fixing t modulo t2.
The group N is filtered by the pro-algebraic subgroups

Nm = ker(N → Aut(kJtK/tm+1)) (m = 1, 2, . . . )

for which N1 = N and each successive quotient Nm/Nm+1 is isomorphic to the additive group
(though not canonically). We will write Nt and Nm,t instead of N and Nm when it is necessary
to specify the series variable t in the notation. (The analogous construction with k = Fp is
sometimes called the Nottingham group.)

Hypothesis 1.2.3. For the remainder of this subsection, let m be a positive integer, and let Γm
be a copy of the additive group over k equipped with a homomorphism Γm →Nm of pro-algebraic
groups over k such that the composition Γm → Nm → Nm/Nm+1 is surjective and separable.
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Example 1.2.4. The key case of Hypothesis 1.2.3 for our intended applications is the one in
which m = 1 and Γm is the group of translations t−1 7→ t−1 + c. However, we will need the full
generality of Hypothesis 1.2.3 in order to make certain inductive arguments in towers of field
extensions.

Lemma 1.2.5. Let E be a Z/pZ-extension of k((t)) equipped with an extension of the action
of Γm.

(a) The ramification number e of E is a positive integer no greater than m and not divisible
by p.

(b) Put m′ = (m − e)p + e. For any k-linear homeomorphism E ∼= k((u)), the action of Γm
on E induces a homomorphism Γm → Nm′,u of pro-algebraic groups such that the composition
Γm → Nm′,u → Nm′,u/Nm′+1,u is surjective and separable.

Proof. Let ϕ denote the p-power Frobenius endomorphism of k((t)). Write E as an Artin–Schreier
extension k((t))[z]/(zp− z− x) with the t-adic valuation of x as large as possible. We then have
x = at−e + · · · for some nonzero a ∈ k, where e is the ramification number of E. In particular,
e is a positive integer not divisible by p (it cannot be 0 because k has been assumed to be
algebraically closed).

For each c ∈ k, the element ψc ∈ Γm corresponding to c has the property that ψc(x) defines
the same Artin–Schreier extension of k((t)) as does x, and so the elements x and ψc(x) must
generate the same Fp-subspace of coker(ϕ − 1, k((t))). Since x and ψc(x) both have the form
at−e + · · · and e is not divisible by p, the images of x and ψc(x) in coker(ϕ− 1, k((t))) must in
fact coincide.

Write ψc(t) = t +
∑∞

i=m+1 Pi(c)t
i for certain polynomials Pi(T ) ∈ k[T ]. Because Γm →

Nm/Nm+1 is separable, Pm+1 is not a pth power. Moreover, the map c 7→ Pm+1(c) must be
additive in order to come from a group action.

Suppose that e > m, and write x =
∑

j>−e ajt
j with a−e = a. We then have

ψc(x)− x ≡
−1∑

j=m−e
Qj(c)t

j (mod kJtK)

for certain polynomials Qj(T ) ∈ k[T ], and in particular Qm−e(T ) = −eaPm+1(T ). Since ψc(x)−
x ∈ coker(ϕ− 1, k((t))), we must have

∞∑
i=0

Q(m−e)/pi(c)
pi = 0 (c ∈ k). (1.2.5.1)

However, in the sum
∑∞

i=0Q(m−e)/pi(T )p
i
, the i = 0 term is not a pth power whereas all of the

other terms are. Consequently, (1.2.5.1) asserts that a nonzero polynomial over k vanishes at all
c ∈ k, a contradiction. We conclude that e 6 m, proving (a).

To prove (b), note that it is sufficient to check the claim for a single k-linear homeomorphism
E ∼= k((u)). We will check the claim with u = zrts for an arbitrary pair of integers r, s satisfying
−re+ps = 1 (which exist because e is not divisible by p). To begin with, we have z = Au−e+ · · · ,
t = Bup + · · · for some A,B ∈ k; using the equalities

u = zrts, zp = at−e + · · · ,
we can solve for A and B to obtain

z = asu−e + · · · , t = a−rup + · · · .
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By (a), we have m− e > 0. For c ∈ k, we thus have

(ψc(z)− z)p − (ψc(z)− z) = ψc(x)− x
= (ψc − 1)(at−e + · · · )
= −eaPm+1(c)t

m−e + · · · ∈ kJtK.

If e < m, this implies that ψc(z) = z + eaPm+1(c)t
m−e + · · · . Since the u-adic valuation of

(ψc(z)− z)/z is (m− e)p+ e = m′ while the valuation of (ψc(t)− t)/t is the strictly larger value
mp, we obtain

ψc(u) = ψc(z)
rψc(t)

s

= zrts + reaPm+1(c)t
m−e+szr−1 + · · ·

= u+ rePm+1(c)a
1−r(m−e)−sum

′+1 + · · · .

If e = m, we instead have ψc(z) = z + d + · · · for some d ∈ k satisfying d − dp = eaPm+1(c).
Computing as before, we obtain

ψc(u) = u+ rda−sum
′+1 + · · · .

In both cases, we obtain (b). 2

Proposition 1.2.6. Let E be a finite Galois extension of k((t)) equipped with an extension of
the action of Γm. Then the ramification breaks of E/k((t)) in the upper numbering are all less
than or equal to m.

Proof. Note that E is totally ramified because we assumed that k is algebraically closed. Also,
by replacing m by a multiple, we may reduce to the case where E is totally wildly ramified. In
this case, we induct on the degree of E, the case E = k((t)) serving as a trivial base case.

Suppose that E 6= k((t)). Let e be the least ramification break of E in the upper numbering,
and let Fe be the corresponding subfield of E. Since the definition of the ramification filtration
is invariant under automorphisms of k((t)), we obtain an action of Γm on Fe. Moreover, Γm acts
on H = Gal(Fe/k((t))) via a discrete quotient, but the additive group has no nontrivial discrete
quotients. Consequently, if we pick any Z/pZ-subextension F of Fe, then Γm acts on F .

By Lemma 1.2.5(a), we have e 6 m. In addition, if we put m′ = (m− e)p+ e and choose a
homeomorphism F ∼= k((u)), then by Lemma 1.2.5(b), we obtain a homomorphism Γm → Nm′,u

such that the composition Γm → Nm′,u → Nm′,u/Nm′+1,u is surjective and separable. This last
fact allows us to invoke the induction hypothesis, which implies that the ramification breaks of
E/F in the upper numbering are all less than or equal to m′. By Herbrand’s rule for transferring
ramification breaks from a group to a subgroup [Ser79, § IV.3], this in turn implies that the
ramification breaks of E/k((t)) for the upper numbering are all less than or equal to m, as
desired. 2

2. Differential modules over complete fields

We next recall some definitions and results from [Ked10a] concerning the spectral behavior of
differential modules over complete fields. We then make a few additional calculations leading to
a finiteness result concerning the Tannakian automorphism group of a differential module.

Convention 2.0.1. For a matrix over a ring equipped with a norm, we will always interpret the
norm of the matrix to be the supremum norm over entries of the matrix.
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2.1 Differential rings and modules

We need some general terminology concerning differential rings and modules.

Definition 2.1.1. By a differential ring, we will mean a pair (R, d) in which R is a commutative

unital ring and d is a derivation on R. By a differential module over (R, d), we will mean a pair

(M,D) in which M is a finite projective R-module and D is a differential operator on M with

respect to d. For example, for each nonnegative integer n, R⊕n may be viewed as a differential

operator by setting D(r1, . . . , rn) = (d(r1), . . . , d(rn)); any differential module isomorphic to one

of this form is said to be trivial. We will often omit mention of d and/or D when they may be

inferred from context.

Remark 2.1.2. Let M be a differential module over a differential ring R which is freely generated

by the basis e1, . . . , en. Then the action of D on M can be reconstructed from the matrix

N defined by D(ej) =
∑

iNijei (the matrix of action of D on the basis). Any other basis

e′1, . . . , e
′
n is uniquely determined by the invertible matrix U over R defined by e′j =

∑
i Uijei

(the change-of-basis matrix from the ei to the e′i); the matrix of action of D on this new basis

has the form U−1NU + U−1d(U).

Definition 2.1.3. The differential modules over a given differential ring form a tensor category.

For M a differential module, we write End(M) as shorthand for M∨ ⊗M ; there is a natural

composition morphism − ◦ − : End(M)⊗ End(M) → End(M).

Definition 2.1.4. Let (M,D) be a differential module of rank n over a differential ring (R, d).

A cyclic vector for M is an element v ∈ M such that v, D(v), . . . , Dn−1(v) form a basis of M

as an R-module.

Lemma 2.1.5 (Cyclic vector theorem). Let (R, d) be a differential ring such that R is a field of

characteristic 0 and d is nonzero. Then every differential module over R admits a cyclic vector.

Proof. See, for instance, [Ked10a, Theorem 5.4.2]. 2

Corollary 2.1.6. Let (R, d) be a differential ring such that R is a domain of characteristic 0

and d is nonzero. Then every differential module M over (R, d) contains a cyclic vector for

M ⊗R Frac(R).

Definition 2.1.7. For (M,D) a differential module, write H0(M) and H1(M) for ker(D) and

coker(D), respectively. Note that H1(M) may be interpreted as a Yoneda extension group.

2.2 Differential modules over fields

We next review some of the theory of differential modules over completed rational function fields

(also known as fields of analytic elements) as presented in [Ked10a, chs. 9–10].

Hypothesis 2.2.1. Throughout this subsection, choose ρ > 0, let Fρ be the completion of K(t)

for the ρ-Gauss norm, and let E be a finite tamely ramified extension of Fρ. View Fρ as a

differential field for the derivation d = d/dt, which extends uniquely to E.

Definition 2.2.2. Let (V,D) be a differential module over E. For V nonzero, let IR(V ) denote

the intrinsic radius of V in the sense of [Ked10a, Definition 9.4.7]. That is, ω/(ρIR(V )) equals the

spectral radius of D as a K-linear endomorphism of V for any E-Banach norm on V . The

following properties are easily derived (see [Ked10a, Lemma 6.2.8]).
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(a) For any V , IR(V ∨) = IR(V ).

(b) For any short exact sequence 0 → V1 → V → V2 → 0, IR(V ) = min{IR(V1), IR(V2)}.
(c) For any V1, V2, IR(V1 ⊗ V2) > min{IR(V1), IR(V2)}, with equality if IR(V1) 6= IR(V2).

As in [Ked10a, Definition 9.8.1], the multiset of intrinsic subsidiary radii of V is constructed
as follows: for each Jordan–Hölder constituent W of V , include IR(W ) with multiplicity
dimFρ(W ). This multiset is invariant under arbitrary extensions of the constant field and under
finite tamely ramified extensions of E [Ked10a, Proposition 10.6.6], and its maximum element
equals IR(V ).

Let s1 6 · · · 6 sn be the intrinsic subsidiary radii of V . The spectral polygon of V , denoted
P (V ), is then defined to be the convex polygonal curve starting at (−n, 0) and consisting of
segments of width one and slopes log s1, . . . , log sn in that order.

Definition 2.2.3. Let V be a nonzero differential module over E. We say that V is pure if
its intrinsic subsidiary radii are all equal. We say that V is refined if IR(End(V )) > IR(V );
this condition implies that IR(V ) < 1, and also that V is pure (using [Ked10a, Lemma 9.3.4]).
Consequently, this definition of refinedness agrees with that of [Ked10a, Definition 6.2.12].

We say that two refined differential modules V1, V2 over E are equivalent if IR(V1) = IR(V2) <
IR(V ∨1 ⊗V2). As the terminology suggests, this is an equivalence relation [Ked10a, Lemma 6.2.14].

Lemma 2.2.4. Let V1, V2 be nonzero differential modules over Fρ such that IR(V1), IR(V2) <
IR(V ∨1 ⊗ V2). Then IR(V1) = IR(V2) and

IR(End(V1)), IR(End(V2)) > IR(V ∨1 ⊗ V2);

consequently, V1 and V2 are both refined of the same intrinsic radius.

Proof. The first claim holds because V2 is a direct summand of V1⊗ (V ∨1 ⊗V2) and V1 is a direct
summand of V2 ⊗ (V ∨1 ⊗ V2)∨. The second claim holds because V ∨1 ⊗ V1 is a direct summand of
V ∨1 ⊗ V1 ⊗ V ∨2 ⊗ V2 ∼= (V ∨1 ⊗ V2)∨ ⊗ (V ∨1 ⊗ V2). 2

Remark 2.2.5. The intrinsic subsidiary radii of V behave for many purposes like the reciprocal
norms of the eigenvalues of some linear transformation associated to V . In this model, a refined
differential module (respectively two equivalent refined modules) over E corresponds to a linear
transformation (respectively two linear transformations) whose eigenvalues all have a single image
in the graded ring associated to an algebraic closure of Fρ.

For radii in the range (0, ω) (called the visible range in [Ked10a]), this intuition can be made
precise using cyclic vectors; see Proposition 2.2.6 below. When p > 0, one must use pullback and
pushforward along Frobenius to access radii in the range [ω, 1), as described in [Ked10a, ch. 10].
We will see these techniques in action in § 2.3.

Proposition 2.2.6 (Christol–Dwork). Let V be a differential module over E of rank n, let v be
a cyclic vector of V , and write Dn(v) = a0v + · · ·+ an−1D

n−1(v) with a0, . . . , an−1 ∈ E. Then
the multiset of slopes of the spectral polygon of V less than logω consists of logω− log ρ+ s for
s running over the multiset of slopes of the Newton polygon of the polynomial Tn−an−1Tn−1−
· · · − a0 ∈ E[T ] less than log ρ.

Proof. See [Ked10a, Corollary 6.5.4]. 2

Corollary 2.2.7. For any s < ω and any positive integers n1, n2,m, there exists δ ∈ (s, ω)
for which the following statements hold. For i = 1, 2, let Vi be a differential module over
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E of rank ni which is pure of intrinsic radius s. Let vi be a cyclic vector of Vi, write
Dni(vi) = a0,ivi + · · · + ani−1,iD

ni−1(vi) with a0,i, . . . , ani−1,i ∈ E, and define the polynomial
Pi(T ) = Tni − ani−1,iTni−1 − · · · − a0,i ∈ E[T ].

(a) Let P (T ) ∈ E[T ] be the monic polynomial of degree n1n2 with roots α2 − α1 where αi
runs over the roots of Pi. Then the multiset of slopes of the spectral polygon of V ∨1 ⊗ V2 less
than log δ consists of logω − log ρ + c for c running over the multiset of slopes of the Newton
polygon of P (T ) less than log δ − logω + log ρ.

(b) Let Q(T ) ∈ E[T ] be the monic polynomial of degree nm1 with roots α1 + · · ·+ αm where
αi runs over the roots of P1. Then the multiset of slopes of the spectral polygon of V ⊗m1 less
than logω consists of logω − log ρ + s for c running over the multiset of slopes of the Newton
polygon of Q(T ) less than log δ − logω + log ρ.

Proof. We describe only (a) in detail, as the proof of (b) is similar. Equip Vi with a norm as
in the proof of [Ked10a, Theorem 6.5.3]; by enlarging K if necessary, we may ensure that this
norm is the supremum norm defined by a basis. Equip V ∨1 with the dual basis, then equip
V ∨1 ⊗ V2 with the product basis and the resulting supremum norm. The claim then follows by
applying [Ked10a, Theorem 6.7.4]. 2

Definition 2.2.8. Let V be a differential module over E. A spectral decomposition of V is a
direct sum decomposition V =

⊕
s∈(0,1] Vs such that the intrinsic subsidiary radii of Vs are all

equal to s. A refined decomposition of V is a direct sum decomposition of V refining a spectral
decomposition in which V1 remains whole, but each Vs with s < 1 is split into inequivalent refined
summands.

Proposition 2.2.9. Let V be a differential module over E.

(a) There exists a unique spectral decomposition of V .

(b) A refined decomposition of V is unique if it exists. Moreover, there exists a finite tamely
ramified extension E′ of E such that V ⊗E E′ admits a refined decomposition.

Proof. By restriction of scalars, we may reduce to the case E = Fρ. In this case, see [Ked10a,
Theorems 10.6.2 and 10.6.7] for (a) and (b), respectively. 2

Corollary 2.2.10. Let V be a differential module over E such that IR(V ) < 1.

(a) If V is indecomposable, then V is pure.

(b) If V ⊗E E′ is indecomposable for every finite tamely ramified extension E′ of E, then V
is refined.

For p = 0, one can state an even stronger version of Corollary 2.2.10, closely related to the
classical Turrittin–Levelt–Hukuhara decomposition theorem for formal meromorphic connections
(see, for instance, [Ked10a, ch. 7]).

Proposition 2.2.11. Assume that p = 0. Let V be a differential module over E such that
IR(V ) < 1. If V ⊗EE′ is indecomposable for every finite tamely ramified extension E′ of E, then
there exists a differential module W over E of dimension 1 such that IR(W∨ ⊗ V ) = 1.

Proof. Put n = dimE(V ). Let v be a generator of ∧nV and define f ∈ E by the formula D(v) =
fv. Let W be the differential module of dimension 1 over E on the generator w for which
D(w) = (f/n)w; then W⊗n ∼= ∧nV , so ∧n(W∨ ⊗ V ) is trivial. If IR(W∨ ⊗ V ) < 1, then by
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Corollary 2.2.10, W∨ ⊗ V would be refined; however, [Ked10a, Proposition 6.8.4] would then
imply that IR(W∨ ⊗ V ) = IR(∧n(W∨ ⊗ V )) = 1, a contradiction. Hence IR(W∨ ⊗ V ) = 1 as
desired. 2

2.3 More on refined modules
Proposition 2.2.11 gives a fairly precise description of the indecomposable differential modules
over finite tamely ramified extensions of Fρ in the case p = 0. We next turn to the situation
where p > 0, in which case things are more complicated.

Hypothesis 2.3.1. Throughout this subsection retain Hypothesis 2.2.1, but assume in addition
that p > 0. Let µp denote the group of pth roots of unity in some algebraic closure of K.

We recall the basic formalism of Frobenius pullback and pushforward, as in [Ked10a, ch. 10].

Definition 2.3.2. For each ζ ∈ µp, the K-linear substitution t 7→ ζt induces a continuous
automorphism ζ∗ of E(µp). Let E′ be the fixed subfield of E(µp) under the group generated by
Gal(E(µp)/E) and the automorphisms ζ∗ for ζ ∈ µp; we may then view E′ as a differential field
for the derivation d = d/dtp, and thus define the intrinsic radius of a nonzero differential module
(V ′, D′) over E′ so that ρp/(ωIR(V ′)) equals the spectral radius of D′.

For m = 0, . . . , p − 1, let (Wm, D
′) denote the differential module over E′ on the single

generator v given by D′(v) = (m/p)t−pv. By Proposition 2.2.6, IR(Wm) = ωp for m 6= 0 (see
also [Ked10a, Definition 10.3.3]).

For (V ′, D′) a differential module over E′, define the differential module ϕ∗V ′ over E to have
underlying module V ′ ⊗E′ E and derivation given by D = D′ ⊗ ptp−1.

For (V,D) a differential module over E, define the differential module ϕ∗V over E′ to have
underlying module V and derivation given by D′ = p−1t1−pD.

Lemma 2.3.3. For any nonzero differential module V ′ over E′,

IR(ϕ∗V ′) > min{IR(V ′)1/p, pIR(V ′)}.

Proof. See [Ked10a, Lemma 10.3.2]. 2

Proposition 2.3.4. Let V be a nonzero differential module over E such that IR(V ) > ω. Then
there exists a unique differential module V ′ over E′ (called the Frobenius antecedent of V ) such
that IR(V ′) > ωp and ϕ∗V ′ ∼= V ; moreover, this module satisfies IR(V ′) = IR(V )p.

Proof. See [Ked10a, Theorem 10.4.2]. 2

Proposition 2.3.5. Let V be a differential module over E of rank n with intrinsic subsidiary
radii s1, . . . , sn. Then the intrinsic subsidiary radii of ϕ∗V (called the Frobenius descendant of
V ) comprise the multiset

n⋃
i=1

{
{spi } ∪ {ωp (p− 1 times)} if si > ω,

{p−1si (p times)} if si 6 ω.

Proof. See [Ked10a, Theorem 10.5.1]. 2

Lemma 2.3.6. (a) For V a differential module over E, there are canonical isomorphisms

ιm : (ϕ∗V )⊗Wm
∼= ϕ∗V (m = 0, . . . , p− 1).
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(b) For V a differential module over E, a submodule U of ϕ∗V has the form ϕ∗X for some
differential submodule X of V if and only if ιm(U ⊗Wm) = U for m = 0, . . . , p− 1.

(c) For V ′ a differential module over E′, there is a canonical isomorphism

ϕ∗ϕ
∗V ′ ∼=

p−1⊕
m=0

(V ′ ⊗Wm).

Proof. See [Ked10a, Lemma 10.3.6(a, b, c)]. 2

Lemma 2.3.7. Let V ′ be an indecomposable differential module over E′ of intrinsic radius ωp such
that IR(ϕ∗V ′) > ω. Then there exists a unique m ∈ {0, . . . , p− 1} such that IR(V ′⊗Wm) > ωp.

Proof. By Proposition 2.3.5, at least one of the intrinsic subsidiary radii of ϕ∗ϕ
∗V ′ is greater

than ωp. By Lemma 2.3.6(c), we have ϕ∗ϕ
∗V ′ ∼=

⊕p−1
m=0(V

′⊗Wm), so for some m, at least one of
the intrinsic subsidiary radii of V ′ ⊗Wm is greater than ωp. Since V ′ ⊗Wm is indecomposable,
this implies IR(V ′ ⊗Wm) > ωp by Corollary 2.2.10. This proves the existence of m; uniqueness
holds because IR(Wm) = ωp for m 6= 0. 2

Corollary 2.3.8. Let V ′ be a nonzero differential module over E′ of intrinsic radius ωp such
that IR(ϕ∗V ′) > ω. Then there exists a unique direct sum decomposition V ′ =

⊕p−1
m=0 V

′
m such

that IR(V ′m ⊗Wm) > ωp for m = 0, . . . , p− 1.

Lemma 2.3.9. Let V ′1 , V
′
2 be nonzero differential modules over E′ of intrinsic radius ωp such that

V ′1 is refined, V ′2 is indecomposable, and IR(ϕ∗((V ′1)∨ ⊗ V ′2)) > ω. Then there exists a unique
m ∈ {0, . . . , p− 1} such that IR((V ′1)∨ ⊗ V ′2 ⊗Wm) > ωp.

Proof. By Corollary 2.3.8, we have a decomposition (V ′1)∨⊗V ′2 =
⊕p−1

m=0Xm such that IR(Xm⊗
Wm) > ωp for m = 0, . . . , p−1. Contracting with V ′1 produces an inclusion V ′2 →

⊕p−1
m=0(V

′
1⊗Xm);

since V ′2 is indecomposable, we have V ′2 ⊆ V ′1 ⊗Xm for some m. Therefore

IR((V ′1)∨ ⊗ V ′2 ⊗Wm) > IR((V ′1)∨ ⊗ V ′1 ⊗Xm ⊗Wm)

> min{IR((V ′1)∨ ⊗ V ′1), IR(Xm ⊗Wm)}
> ωp.

Again, m is unique because IR(Wm) = ωp for m 6= 0. 2

Remark 2.3.10. Let V be a refined differential module over E of intrinsic radius ω such that ϕ∗V
admits a refined decomposition

⊕
iXi. By Lemma 2.3.6(a), there are canonical isomorphisms

ψm : (ϕ∗V )⊗Wm
∼= ϕ∗V for m = 0, . . . , p− 1; we may view these as an action of Z/pZ on ϕ∗V ,

which induces an action on the collection of the Xi. Since IR(Wm) = ωp for m 6= 0, any two
distinct Xi in the same orbit are refined and pairwise inequivalent. By Lemma 2.3.6(b), the Xi

in a single orbit constitute the pushforward of a direct summand of V .

Lemma 2.3.11. Let V be a refined differential module over E of intrinsic radius s > ω. Then for
some finite unramified extension E′1 of E′, there exists a refined differential module V ′ over E′1
of intrinsic radius sp such that ϕ∗V ′ ∼= V ⊗E′ E′1.

Proof. In the case s > ω, we may take V ′ to be the Frobenius antecedent of V (Proposition 2.3.4);
we thus assume that s = ω hereafter. Suppose first that V is indecomposable. By
Proposition 2.3.5, the intrinsic subsidiary radii of ϕ∗V are all equal to ωp. We may thus
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apply Proposition 2.2.9 to produce a finite Galois tamely ramified extension E′1 of E′ such
that ϕ∗V ⊗E′ E′1 admits a refined decomposition

⊕
iXi.

Define an action of Z/pZ on the collection of the Xi as in Remark 2.3.10. Since we assumed
that V is indecomposable, it follows that the Xi form a single orbit under Z/pZ.

The group G = Gal(E′1/E
′) also acts on the set of the Xi; since Wm is defined over E′, this

action defines a homomorphism G → Z/pZ. We may replace E′1 with the fixed field of the kernel
of this homomorphism; this field has tame degree over E′ dividing p and so must be unramified.

Let V ′ be any of the Xi. By adjunction, the inclusion V ′ → ϕ∗V ⊗E′ E′1 corresponds to
a map ϕ∗V ′ → V ⊗E′ E′1. Pushing forward gives a new map ϕ∗ϕ

∗V ′ → ϕ∗V ⊗E′ E′1; using
Lemma 2.3.6 again, we may rewrite the left-hand side as

⊕p−1
m=0(V

′ ⊗Wm) and match up the
actions of Z/pZ. This shows that each composition V ′⊗Wm → ϕ∗ϕ

∗V ′→ ϕ∗V ⊗E′E′1 is injective;
since distinct terms V ′⊗Wm cannot have isomorphic submodules (because they are refined and
inequivalent), the map ϕ∗ϕ

∗V ′ → ϕ∗V ⊗E′ E′1 must be injective. By counting dimensions, this
map is also surjective; hence ϕ∗V ′ → V ⊗E′ E′1 is also bijective. This proves the claim when V
is indecomposable.

For general V (still assuming that s = ω), we may split V as a direct sum
⊕r

i=0 Vi of
indecomposable summands. For some E′1, by the previous arguments there exist differential
modules V ′i over E′1 which are refined of intrinsic radius sp such that ϕ∗V ′i

∼= Vi ⊗E′ E′1. By
Lemma 2.3.9, for each i we can find mi ∈ {0, . . . , p− 1} such that IR((V ′0)∨ ⊗ V ′i ⊗Wmi) > ωp.
We may thus take V ′ =

⊕r
i=0 V

′
i ⊗Wmi . 2

Lemma 2.3.12. Let V be a pure differential module over E of intrinsic radius s> ω such that ϕ∗V
admits a refined decomposition. Group summands in this decomposition according to their Z/pZ-
orbit as per Remark 2.3.10. Then the resulting decomposition descends to a refined decomposition
of V .

Proof. We may use Proposition 2.3.4 to check the claim when s > ω, so we may assume that s= ω
hereafter. The claim may be checked after enlarging E, so by Proposition 2.2.9 we may ensure
that V itself admits a refined decomposition

⊕
i Vi. After enlarging E again, by Lemma 2.3.11 we

may ensure that each Vi can be written as ϕ∗V ′i for some refined differential module V ′i over E′. By

Lemma 2.3.6(c), we then have ϕ∗Vi ∼=
⊕p−1

m=0(V
′
i ⊗Wm). For i, j distinct and m ∈ {0, . . . , p−1}, we

cannot have IR((V ′i )∨⊗ V ′j ⊗Wm) > ωp or else Proposition 2.3.5 would imply IR(V ∨i ⊗ Vj) > ω.
It follows that the V ′i ⊗ Wm are refined and pairwise inequivalent, so they form the refined
decomposition of ϕ∗V . This proves the claim. 2

Proposition 2.3.13. Let V be a refined differential module over E. Then IR(V ⊗p) > IR(V ).

Proof. It is sufficient to prove that for each nonnegative integer h, the claim holds when
IR(V ) < ωp

−h
. For h = 0, this follows by Corollary 2.2.7(a, b) with the parameter m in (b)

taken to be p. Given this assertion for some h, we may check it for h + 1 by forming a module
V ′ as in Lemma 2.3.11, applying the known case to deduce that IR((V ′)⊗p) > IR(V ′) =
IR(V )p, then observing that ϕ∗((V ′)⊗p) = V ⊗p and invoking Lemma 2.3.3 to deduce that
IR(V ⊗p) > IR(V ). 2

When V has dimension 1, we can prove an even stronger assertion.

Lemma 2.3.14. Let V be a differential module over E of dimension 1. Then

min{ω, IR(V ⊗p)} = min{ω, pIR(V )}.
Proof. This is immediate from Proposition 2.2.6. 2
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Lemma 2.3.15. Let V be a differential module over E of dimension 1 such that ωp 6 IR(V ) 6 ω.

Then IR(V ⊗p) > IR(V )1/p.

Proof. By enlarging K and rescaling, we may reduce to the case ρ = 1. Put d = d/dt and

s = IR(V ). Choose a generator v of V and write D(v) = nv with n ∈ E. By Proposition 2.2.6,

|n| = ω/s. The differential module V ⊗p is generated by v⊗p and D(v⊗p) = pnv⊗p. Since |d|E = 1

and |pn| = p−1ω/s = ωp/s 6 1, for any a ∈ E we have Dp(av⊗p) = bv⊗p for some b ∈ E with

|b − dp(a)| 6 p−1(ω/s)|a|. Since |dp|E = p−1 6 p−1ω/s, we conclude that the operator norm of

Dp on V is at most p−1ω/s = ωp/s, so the spectral norm of D on V is at most ω/s1/p. This

implies the desired inequality. 2

Proposition 2.3.16. Let V be a differential module over E of dimension 1 such that IR(V ) < 1.

Then IR(V ⊗p) > min{IR(V )1/p, pIR(V )}.

Proof. The claim is trivial if IR(V ) = 1, so we may assume that IR(V ) < 1. If IR(V ) 6 ωp,

then min{IR(V )1/p, pIR(V )} = pIR(V ), and in this case the claim follows from Lemma 2.3.14.

To complete the proof, it suffices to check the claim when ωp
−h+1

6 IR(V ) < ωp
−h

for some

nonnegative integer h. We prove this by induction on h, with the base case h = 0 following from

Lemma 2.3.15. Given the claim for h − 1, we may deduce the claim for h by forming V ′ as in

Lemma 2.3.11 (after enlarging E if necessary), applying the induction hypothesis to V ′, and then

applying Lemma 2.3.3. 2

We are now ready to deduce a finiteness theorem for Tannakian automorphism groups.

Theorem 2.3.17. Let V be a differential module over E. Let [V ] be the Tannakian category of

differential modules over E generated by V . Let ω be the fibre functor on [V ] which extracts

underlying E-vector spaces. Let G be the automorphism group of ω. For s < 1, let Gs be the

subgroup of G acting trivially on ω(W ) for every W ∈ [V ] with IR(W ) > s. Then Gs is a finite

p-group.

Proof. Instead of working with differential modules over E, we work with the direct limit of

the categories of differential modules over all finite tamely ramified extensions of E; this does

not change the groups Gs except for a base extension. In this larger category, we may apply

Proposition 1.1.2 using Remark 1.1.3: conditions (i), (ii), (iii) of the remark may be verified

using Propositions 2.2.9(b), 2.3.13, 2.3.16, respectively. 2

Remark 2.3.18. The group
⋃
s<1G

s need not be finite in general. For example, if V is free on one

generator v and D(v) = λt−1v for some λ ∈ K\Qp, then IR(V ⊗n) < 1 for all positive integers

n [Ked10a, Example 9.5.2] and so
⋃
s<1G

s ∼= Qp/Zp.
In order to obtain finiteness for some class of differential modules, one must impose additional

hypotheses to ensure that when V is of dimension 1, there exists a nonnegative integer m for

which IR(V ⊗p
m

) = 1. For an example of such hypotheses, see Theorem 3.8.16.

Remark 2.3.19. If we assume that p = 0 but otherwise set notation as in Theorem 2.3.17, then

the group
⋃
s<1G

s becomes a torus, as one may deduce easily from Proposition 2.2.11.
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3. Differential modules over discs and annuli

We next continue in the vein of [Ked10a], treating differential modules on discs and annuli. In
this section, we maintain continuity with [Ked10a] by phrasing everything in the language of
modules over rings of convergent power series. Starting in § 4, we will switch to the language
of Berkovich spaces in order to articulate more precise and general results.

3.1 Rings of convergent power series
We first introduce the relevant rings of convergent power series on a disc or annulus, modifying
the notation somewhat from that used in [Ked10a, ch. 8].

Definition 3.1.1. For ρ ∈ [0,+∞), let | · |ρ denote the ρ-Gauss seminorm on K[t], defined by
the formula |∑n cnt

n|ρ = max{|cn|ρn}. For I a subinterval of [0,+∞), let RI denote the Fréchet
completion of K[t] (if 0 ∈ I) or K[t, t−1] (if 0 /∈ I) for the seminorms | · |ρ for ρ ∈ I. View RI as
a differential ring for the derivation d/dt. We will occasionally write RI,K instead of RI when it
is necessary to specify K.

Remark 3.1.2. Let us briefly recall how the rings RI appear in the notation of [Ked10a].

– If I = [0, β], then RI appears as K〈t/β〉, the ring of analytic functions on the closed disc
|t| 6 β.

– If I = [0, β), then RI appears as K{t/β}, the ring of analytic functions on the open disc
|t| < β.

– If I = [α, β] with α > 0, then RI appears as K〈α/t, t/β〉, the ring of analytic functions on
the closed annulus α 6 |t| 6 β.

– If I = (α, β) with α > 0, then RI appears as K{α/t, t/β}, the ring of analytic functions on
the open annulus α < |t| < β.

Remark 3.1.3. Suppose that I is a closed interval. Then RI is an affinoid algebra for the norm
| · |I = sup{| · |ρ : ρ ∈ I}. By the log-convexity of | · |ρ [Ked10a, Proposition 8.2.3] (see also
Lemma 3.1.5), one has | · |[0,β] = | · |β and | · |[α,β] = max{| · |α, | · |β} for α > 0. In addition, the
ring RI is a principal ideal domain [Ked10a, Proposition 8.3.2], so the underlying module of any
differential module over RI is automatically finite free.

Now let I be arbitrary. In this case, RI is a Fréchet–Stein algebra in the sense of [ST03, § 3];
this means that every coherent sheaf on the associated analytic space is generated by its module of
global sections. Moreover, any coherent locally free sheaf of rank n is uniformly finitely generated
(because exactly n generators are needed over any closed disc or annulus), and so corresponds
to a finite projective module over RI by [KPX14, Proposition 2.1.15] or [Bel13, Corollary 2.2.5].

Definition 3.1.4. For x ∈ R, let 〈x〉 denote the distance from x to the nearest integer, that is,
〈x〉 = min{x − bxc,−x − b−xc}. We will frequently use the fact that for m a positive integer,
m〈x/m〉 is the distance from x to the nearest multiple of m.

Lemma 3.1.5. Choose η > 1 and α, α′, β, β′ ∈ [0,+∞) such that

α′ < β′, α′ = αη, β′ = β/η.

Choose a positive integer m, an element h ∈ Z, and an element f ∈ R[α,β] whose terms all have
exponents congruent to h modulo m.

(a) Put h′ = m〈h/m〉. Then
|f |[α′,β′] 6 η−h

′ |f |[α,β].
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(b) Assume that h = 0. Let f0 be the constant coefficient of f . Then

|f − f0|[α′,β′] 6 η−m|f |[α,β].
Proof. Both assertions reduce at once to the case f = tn for some n ∈ h + mZ, for which the
claim is evident. 2

We will also need the construction of rings of analytic elements.

Definition 3.1.6. Let J be the closure of I. Let Ran
I be the Fréchet completion of the ring of

rational functions in K(t) with no poles in the region |t| ∈ I for the norms | · |ρ for ρ ∈ J . This is
called the ring of analytic elements in the region |t| ∈ I; it is a principal ideal domain [Ked10a,
Proposition 8.5.2].

– If I is closed, then Ran
I = RI .

– If I = [0, β), then Ran
I appears in [Ked10a] as KJt/βKan.

– If I = (α, β) with α > 0, then RI appears in [Ked10a] as KJα/t, t/βKan.

3.2 The Robba condition
We now introduce a special class of differential modules over annuli; this class is closely related
to the class of regular meromorphic differential modules on a Riemann surface.

Hypothesis 3.2.1. Throughout this subsection, let I be an open subinterval of [0,+∞) and let
M be a differential module of rank n over RI for the derivation t(d/dt). For ρ ∈ I\{0}, put
Mρ = M ⊗RI Fρ; for J a closed subinterval of I of positive length, put MJ = M ⊗RI RJ .

Definition 3.2.2. We say that M satisfies the Robba condition if IR(Mρ) = 1 for all ρ ∈ I−{0}.
In this case, we may define an action of the multiplicative group 1 + mK on M by the formula

λ(v) =
∞∑
i=0

(λ− 1)i
(
D

i

)
(v) (λ ∈ 1 + mK ,v ∈M),

since the Taylor series on the right is guaranteed to converge. (Note that this formula is given
incorrectly in [Ked10a, Definition 13.5.2]; it differs from the analogous formula in [Ked10a,
Definition 5.8.1] because the latter is adapted to differential modules for the derivation d/dt.)
We may also interpret the action of λ ∈ 1 +mK as an isomorphism λ∗(M) ∼= M , where λ∗ is the
pullback along the substitution t 7→ λt.

Example 3.2.3. For λ ∈ K, let Mλ denote the differential module over RI on a single generator
v satisfying D(v) = λ dv. If p = 0, then Mλ satisfies the Robba condition whenever |λ| 6 1, and
is trivial if and only if λ ∈ Z. By contrast, if p > 0, then Mλ satisfies the Robba condition if
and only if λ ∈ Zp [Ked10a, Example 9.5.2], and is again trivial if and only if λ ∈ Z [Ked10a,
Proposition 9.5.3].

Definition 3.2.4. For A a finite multisubset of oKalg , we say that A is prepared if no two
elements a1, a2 of A have the property that |a1 − a2 −m| < 1 for some nonzero integer m. For
A,B two finite multisubsets of oKalg of the same cardinality n, we say that A and B are equivalent
if there exist orderings a1, . . . , an and b1, . . . , bn of A and B respectively, such that ai − bi ∈ Z
for i = 1, . . . , n; this indeed defines an equivalence relation.

Definition 3.2.5. We say that M is of cyclic type if End(M) satisfies the Robba condition.
For example, if there exists a differential module N over RI of positive rank such that N∨ ⊗M
satisfies the Robba condition, then M is of cyclic type by Lemma 2.2.4. Note that the tensor
product of modules of cyclic type is again of cyclic type.
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Lemma 3.2.6. Suppose that M is of cyclic type. For each λ ∈ 1 + mK , view the Taylor
isomorphism Tλ : λ∗(End(M)) ∼= End(M) as a horizontal element of

λ∗(M∨ ⊗M)⊗ (M∨ ⊗M) ∼= λ∗(M∨)⊗ λ∗(M)⊗M∨ ⊗M
∼= λ∗(M)⊗M∨ ⊗ λ∗(M∨)⊗M
∼= (λ∗(M∨)⊗M)∨ ⊗ λ∗(M∨)⊗M
∼= End(λ∗(M∨)⊗M).

Then the corresponding endomorphism of λ∗(M∨)⊗M is a projector of rank 1.

Proof. The construction of the Taylor isomorphism on modules satisfying the Robba condition
is functorial, so the diagram

λ∗(End(M))⊗ λ∗(End(M))
−◦− //

Tλ⊗Tλ
��

λ∗(End(M))

Tλ
��

End(M)⊗ End(M)
−◦− // End(M)

commutes. From this, it follows formally that the endomorphism of λ∗(M∨)⊗M is a projector.
The trace of this projector is an analytic function of λ, but is also equal to the rank of the
projector and so always belongs to {0, . . . , rank(M)}. It is thus a constant function; moreover,
the constant value must equal 1 because for λ = 1, the endomorphism of λ∗(M∨)⊗M ∼= End(M)
in question is the projector onto the trace component. This proves the claim. 2

3.3 The Robba condition: residue characteristic 0
We continue to study the Robba condition in the case of residue characteristic 0. The methods
used are familiar, but the exact result seems to be inexplicably missing from the literature.

Hypothesis 3.3.1. Throughout this subsection, retain Hypothesis 3.2.1, but also assume that
p = 0 and that M satisfies the Robba condition.

Definition 3.3.2. An exponent for M is a finite multisubset of oKalg such that M [t−1]⊗K Kalg

admits a basis on which D acts via a matrix over oKalg with multiset of eigenvalues equal to A.

Lemma 3.3.3. Assume that 0 ∈ I and that the eigenvalues of D on M/tM belong to oKalg . Then
there exists a differential module M ′ over RI with M [t−1] ∼= M ′[t−1] such that the eigenvalues
of D on M ′/tM ′ belong to oKalg and are prepared.

Proof. This is an example of the use of shearing transformations [Ked10a, Proposition 7.3.10].
Split M/tM as a direct sum in which each summand consists of the generalized eigenspaces for
a single Galois orbit of eigenvalues for the action of D. If we consider the differential submodule
M ′ of M consisting of those elements whose images in M/tM project to zero in a particular
summand, the eigenvalues of D on M ′/tM ′ are the same as on M/tM except that one Galois
orbit has been shifted by one.

It thus suffices to establish the existence of a sequence of shifts having the desired property.
This follows from the following two observations (both of which require p = 0).

(a) If λ1, λ
′
1 ∈ κalgK are Galois conjugate, λ2, λ

′
2 ∈ κalgK are Galois conjugate, and λ1 − λ2,

λ′1 − λ′2 ∈ Z, then λ1 − λ2 = λ′1 − λ′2. (This follows by taking traces from some finite extension
of κK containing λ1, λ

′
1, λ2, λ

′
2.)

(b) If λ, λ′ ∈ κalgK are Galois conjugate and differ by an integer, then they are equal. (This
follows from (a) by taking λ1 = λ′1 = λ2 = λ, λ′2 = λ′.) 2
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Lemma 3.3.4. Assume that 0 ∈ I and the eigenvalues of D on M/tM belong to oKalg and are
prepared. Then there exists a basis of M on which D acts via a matrix over oK .

Proof. Let P (T ) ∈ oK [T ] be the characteristic polynomial of the action of D on M/tM . Since the
roots of P are prepared, for each positive integer j there exists a unique polynomialQj(T ) ∈ oK [T ]
of degree at most n− 1 such that P (T − j)Qj(T ) ≡ 1 (mod P (T )).

It is straightforward to check (see, for example, [Ked10a, Proposition 7.3.6]) that there exists
a basis of M ⊗RI KJtK on which D acts via a matrix over oK . We may reconstruct this basis by
starting with any elements e1, . . . , en ∈ M which lift a basis of M/tM and forming the t-adic
limits of the sequences

ei,m =

( m∏
j=1

P (D − j)Qj(D)

)
ei (i = 1, . . . , n;m = 1, 2, . . . ).

For any given ρ ∈ I − {0}, these sequences are bounded for the norm induced by | · |ρ using a
basis of M[0,ρ] (because M satisfies the Robba condition); since these sequences also converge
t-adically, they converge under | · |ρ′ for any ρ′ ∈ (0, ρ) by Lemma 3.1.5(b) (with m = 1). This
proves the existence of the desired basis. 2

Lemma 3.3.5. Assume that for some ρ ∈ I, M admits a basis e1, . . . , en on which D acts via a
matrix N =

∑
i∈ZNit

i with |N0| 6 1 and |N −N0|ρ < 1 for all ρ ∈ I. Then there exists a basis
of M on which D acts via a matrix over oK .

Proof. By applying Lemma 3.3.3 with K replaced by κK (equipped with the trivial norm)
and using the fact that κK [t±] is a principal ideal domain (so every invertible square matrix
over it factors as a product of elementary matrices), we may ensure that the eigenvalues of
N0 are prepared. In this case, for any nonzero i ∈ Z, the eigenvalues of the linear operator
X 7→ N0X−XN0 + iX on n×n matrices over κK are all nonzero (because each of them has the
form λ− λ′+ i for some eigenvalues λ, λ′ of N0). Consequently, this linear operator is invertible;
it follows that for any n×n matrix X over K and any nonzero i ∈ Z, |N0X −XN0 + iX| = |X|.

We next produce a sequence U0, U1, . . . of invertible matrices over RI such that |Ul−In|ρ < 1
for all l ∈ {0, 1, . . . } and ρ ∈ I. Start with U0 = In. Given Ul for some l, put Nl = U−1l NUl +
U−1l D(Ul). Write Nl =

∑
i∈ZNl,it

i and apply the previous paragraph to construct Xl so that
|Xl|ρ = |Nl −Nl,0|ρ for all ρ ∈ I and Nl,0 −Nl = XlN0 −N0Xl +D(Xl). Then put Vl = In +Xl

and Ul+1 = UlVl; note that Nl+1 = V −1l NlVl + V −1l D(Vl).
Suppose that for ρ ∈ I and ε > 0, we have |N −N0|ρ 6 ε and |Nl −Nl,0|ρ 6 εl+1. We then

have |Vl − In|ρ 6 εl+1, so

|Nl+1 −Nl +XlN0 −N0Xl −D(Xl)|ρ 6 εl+2.

However, the matrix on the left-hand side is exactlyNl+1−Nl,0, so we must have |Nl+1−Nl+1,0|ρ 6
εl+2.

From the previous paragraph, it follows that the Ul converge to an invertible matrix U over
RI . The elements e′1, . . . , e

′
n of M given by e′j =

∑
i Uijei then form a basis with the desired

property. 2

Theorem 3.3.6. Assume that p = 0 and that M satisfies the Robba condition.

(a) There exists a Galois-invariant exponent for M .

(b) Any two exponents of M are equivalent.
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Proof. Apply Corollary 2.1.6 to choose v ∈ M which is a cyclic vector for M ⊗RI Frac(RI).
For any closed subinterval J of I having positive length, the quotient of MJ by the span of
v, D(v), . . . , Dn−1(v) is killed by some nonzero element of RJ ; since the slopes of the Newton
polygon of this element form a discrete subset of J , we can shrink J so as to force this element
to become a unit. That is, we may choose J so that v, D(v), . . . , Dn−1(v) form a basis of MJ .

Let N be the matrix of action of D on the basis v, D(v), . . . , Dn−1(v) of MJ . By
Proposition 2.2.6, we have |N |J 6 1. In particular, if we write N =

∑
i∈ZNit

i, then |N0| 6 1.
Since J has positive length and |N − N0|J 6 1, by shrinking J and applying Lemma 3.1.5(b)
(with m = 1) we may ensure that |N −N0|J < 1. We may then apply Lemma 3.3.5 to obtain the
conclusion of (a) for MJ . We may then use Lemmas 3.3.3 and 3.3.4 to extend the convergence
from J to I. This yields (a). Given (a), (b) follows from the fact that Mλ is trivial if and only if
λ ∈ Z. 2

3.4 The Robba condition: residue characteristic p > 0
When p > 0, the structure of modules satisfying the Robba condition is more complicated; it is
best understood using the Christol–Mebkhout theory of p-adic exponents. Here we follow and
refine the exposition in [Ked10a, ch. 13].

Hypothesis 3.4.1. Throughout this subsection, retain Hypothesis 3.2.1, but also assume that
p > 0 and that M satisfies the Robba condition.

Definition 3.4.2. We say that a ∈ Zp is a p-adic Liouville number if a /∈ Z and

lim inf
m→∞

pm

m

〈
a

pm

〉
< +∞. (3.4.2.1)

Otherwise, we say that a is a p-adic non-Liouville number.
For A a multisubset of Zp, we say that A is p-adic non-Liouville if it contains no p-adic

non-Liouville number. We say thatA has p-adic non-Liouville differences if the difference multiset
of A, defined as

A−A = {a1 − a2 : a1, a2 ∈ A},
is p-adic non-Liouville.

Definition 3.4.3. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be two finite multisubsets of Zp
of the same cardinality n. We say that A and B are weakly equivalent if there exist a constant
c > 0 and a sequence σ1, σ2, . . . of permutations of {1, . . . , n} such that

pm
〈
aσm(i) − bi

pm

〉
6 cm (m = 1, 2, . . . ; i = 1, . . . , n).

This is evidently an equivalence relation. Note that A,B are weakly equivalent if they are
equivalent in the sense of Definition 3.2.4; the converse is false in general (see [Ked10a,
Example 13.4.6]) but is true for n = 1 (see Corollary 3.4.7 below).

All of the key properties of weak equivalence can be expressed in terms of the following
construction.

Definition 3.4.4. Let A,A1, . . . , Ak be multisubsets of Zp such that A is the multiset union of
A1, . . . , Ak. We say that A1, . . . , Ak form an integer partition (respectively a Liouville partition)
of A if there do not exist distinct values g, h ∈ {1, . . . , k} and elements ag ∈ Ag, ah ∈ Ah such
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that ag − ah is an integer (respectively an integer or a p-adic Liouville number). This implies in
particular that Ag and Ah are disjoint, so A1, . . . , Ak form a partition of A.

Note that A always admits a maximal integer partition, namely the partition into Z-cosets.
This partition is a Liouville partition if and only if A has p-adic non-Liouville differences.

Proposition 3.4.5. Let A be a finite multisubset of Zp and let A1, . . . , Ak be a Liouville partition
of A.

(a) Let B1, . . . , Bk be multisubsets of Zp such that Bg is weakly equivalent to Ag for g =
1, . . . , k. Then B1, . . . , Bk form a Liouville partition of B = B1∪· · ·∪Bk; in particular, B1, . . . , Bk
are pairwise disjoint.

(b) Suppose that B is a multisubset of Zp weakly equivalent to A. Then B admits a Liouville
partition B1, . . . , Bk such that Bg is weakly equivalent to Ag for g = 1, . . . , k.

Proof. By the conditions on A, for each c > 0, there exists m0 = m0(c) such that for all m >m0,
g, h ∈ {1, . . . , k} with g 6= h, ag ∈ Ag, ah ∈ Ah,

pm
〈
ag − ah
pm

〉
> (3c+ 1)m. (3.4.5.1)

Assume now the hypotheses of (a). Suppose by way of contradiction that there exist g, h ∈
{1, . . . , k} with g 6= h, bg ∈ Bg, bh ∈ Bh such that bg − bh is an integer or a p-adic Liouville
number. Then there exists c > 0 such that for each m, on the one hand

pm
〈
bg − bh
pm

〉
6 cm

and on the other hand there exist ag ∈ Ag, ah ∈ Ah such that

pm
〈
ag − bg
pm

〉
, pm

〈
ah − bh
pm

〉
6 cm.

But then

pm
〈
ag − ah
pm

〉
6 3cm,

which combined with (3.4.5.1) yields the desired contradiction.
Assume now the hypotheses of (b). Label the elements of A and B as a1, . . . , an and b1, . . . , bn,

respectively. Then there exists c > 0 such that for each m, there exists a permutation σm of
{1, . . . , n} such that

pm
〈
aσm(i) − bi

pm

〉
6 cm (i = 1, . . . , n).

In particular,

pm
〈
aσm(i) − aσm+1(i)

pm

〉
6 (2c+ 1)m (i = 1, . . . , n),

which by (3.4.5.1) yields that for m >m0(c), σ
−1
m ◦σm+1 must respect the partition of A. Define

B1, . . . , Bk so that Bg consists of those bi for which aσm)(i) ∈ Ag for m > m0(c); by the above

argument, Bg is weakly equivalent to Ag. By (a), B1, . . . , Bk is a Liouville partition of B, as
desired. 2

Corollary 3.4.6. Let A,B be two finite multisubsets of Zp which are weakly equivalent. Then
A contains an integer or a p-adic non-Liouville number if and only if B does.
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Proof. Note that A contains an integer or p-adic non-Liouville number if and only if {0} and A fail
to form a Liouville partition of {0}∪A. The claim thus follows by applying Proposition 3.4.5(a)
to {0} ∪A and {0} ∪B. 2

The following corollary reproduces [Ked10a, Lemma 13.4.3].

Corollary 3.4.7. For a, b ∈ Zp, the singleton multisets {a}, {b} are weakly equivalent if and
only if a− b ∈ Z.

Proof. By translating both a and b, we may assume that b = 0. If a ∈ Z, then {a} and {0} are
equivalent and hence weakly equivalent. Conversely, if {a} and {0} are weakly equivalent, then
a satisfies (3.4.2.1) and so must be either an integer or a p-adic Liouville number, but the latter
case is ruled out by Corollary 3.4.6. 2

The following corollary reproduces [Ked10a, Proposition 13.4.5].

Corollary 3.4.8. Let A,B be two finite multisubsets of Zp which are weakly equivalent.
Suppose that A has p-adic non-Liouville differences. Then A and B are equivalent.

Proof. By partitioning A into Z-cosets and applying Proposition 3.4.5(b), we may reduce to the
case where A is a multisubset of Z. In this case, for each b ∈ B, the singleton multisets {0} and
{b} are weakly equivalent, so Corollary 3.4.7 implies that b ∈ Z. This proves the claim. 2

Corollary 3.4.9. Let A,B be two finite multisubsets of Zp which are weakly equivalent.
Suppose that A is p-adic non-Liouville. Then there exist Liouville partitions A1, A2 of A and
B1, B2 of B satisfying the following conditions.

(a) The multisets A1, B1 consist entirely of integers.

(b) The multisets A2, B2 are weakly equivalent and contain no integers or p-adic Liouville
numbers.

In particular, B is also p-adic non-Liouville.

Proof. Partition A into two parts A1, A2 so that A1 consists precisely of the integers appearing in
A; by hypothesis, this is a Liouville partition of A. By Proposition 3.4.5(b), B admits a Liouville
partition B1, B2 in which Bi is weakly equivalent to Ai for i = 1, 2. Since A1 consists only
of integers, by Corollary 3.4.8, B1 also consists only of integers. Since A2 does not contain any
integer or p-adic Liouville number, neither does B2 by Corollary 3.4.6. This proves the desired
results. 2

Corollary 3.4.10. Let A be a finite multisubset of Zp such that A−A is weakly equivalent to
a p-adic non-Liouville multiset. Then A has p-adic non-Liouville differences.

Proof. By Corollary 3.4.9, A−A is p-adic non-Liouville. 2

Definition 3.4.11. Recall that we are assuming that M satisfies the Robba condition. Let J
be a closed subinterval of I of positive length. We say that the multisubset A = {a1, . . . , an} of
Zp is an exponent for M over J if there exist elements vm,A,j ∈ MJ [t−1] for m = 1, 2, . . . and
j = 1, . . . , n satisfying the following conditions. (For this definition, we fix an ordering of A, but
this choice is manifestly immaterial.)

(a) For all m, j, for all ζ ∈ Kalg with ζp
m

= 1, we have ζ∗(vm,A,j) = ζajvm,A,j as an equality
in MJ [t−1]⊗K K(ζ).
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(b) For some (and hence any) basis e1, . . . , en of MJ , there exists k > 0 such that the n× n
matrices Sm,A over RJ defined by vm,A,j =

∑
i(Sm,A)ijei are invertible and satisfy

|Sm,A|J , |S−1m,A|J 6 pkm (m = 1, 2, . . . ).

Note that if A is an exponent for M over J , then so is any multiset equivalent to A (but not
necessarily any multiset weakly equivalent to A).

Remark 3.4.12. In [Ked10a, Definition 13.5.2], the hypotheses on the matrix Sm,A are slightly
different: it is assumed that Sm,A is invertible and satisfies |Sm,A|J 6 pkm and |det(Sm,A)|J > 1.
It is easy to see that this hypothesis is equivalent to the one given in Definition 3.4.11 modulo
rescaling the vectors vm,A,j and rechoosing the constant k; we may thus safely quote results
from [Ked10a] in what follows.

Example 3.4.13. As noted in Example 3.2.3, for any λ ∈ Zp, the differential module Mλ generated
by a single element v satisfying D(v) = λv satisfies the Robba condition [Ked10a, Example 9.5.2].
This module admits the singleton multiset {λ} as an exponent.

Remark 3.4.14. If M1,M2 are two differential modules over RI for the derivation t d/dt admitting
respective exponents A1, A2 over some J , we then have the following:

(a) if there exists an exact sequence 0 → M1 → M → M2 → 0 of differential modules over RI ,
then M admits the multiset union A1 ∪A2 as an exponent over J ;

(b) the differential module M1⊗M2 admits the multiset A1 +A2 = {ai + aj : ai ∈ A1, aj ∈ A2}
as an exponent over J ;

(c) the differential module M∨1 admits the multiset −A1 = {−a : a ∈ A1} as an exponent over J .

Remark 3.4.15. If 0 ∈ I, then it is straightforward to check the following by imitating the proof
of [Ked10a, Theorem 13.2.2].

(a) Let A be the set of eigenvalues of D on M/tM . Then A belongs to Znp and is an exponent
for M .

(b) Any Liouville partition of A corresponds to a unique direct sum decomposition of M .

(c) If A is a multisubset of λ+ Z, then there exists another differential module M ′ over RI
with M [t−1] ∼= M ′[t−1] such that D acts on M ′/tM ′ via a matrix with all eigenvalues equal to λ.
(This again follows from the use of shearing transformations as in Lemma 3.3.3.)

(d) If A is a multisubset of {λ}, then there exists a basis of M on which D acts via a matrix
over K with all eigenvalues equal to λ.

We may thus safely assume that 0 /∈ I in what follows.

Theorem 3.4.16. (a) For any closed subinterval J of I of positive length not containing 0, there
exists an exponent for M over J .

(b) Any two exponents for M (possibly over different intervals) are weakly equivalent.

Proof. For (a), see [Ked10a, Theorem 13.5.5]. For (b), let J1, J2 be two closed subintervals of I
of positive length not containing 0. Let A1, A2 be exponents for M over J1, J2. If J1 = J2, we
may apply [Ked10a, Theorem 13.5.6] to deduce that A1 is weakly equivalent to A2. Otherwise,
let J be a third such interval containing both J1 and J2. By (a), there exists an exponent A
for M over J , which then restricts to an exponent for M over J1 and over J2. By [Ked10a,
Theorem 13.5.6] again, A is weakly equivalent to both A1 and A2, so A1 and A2 are weakly
equivalent to each other. 2
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Remark 3.4.17. If M admits a basis (e.g., if K is spherically complete), the proofs of [Ked10a,
Theorems 13.5.5, 13.5.6] show that the exponent A and the elements vm,A,j can be chosen
uniformly in J . We will not need to use this fact in this paper.

Definition 3.4.18. We say that M has p-adic non-Liouville exponents if for some closed
subinterval J of I of positive length not containing 0, M admits an exponent A over J which is
p-adic non-Liouville. By Theorem 3.4.16(b) and Corollary 3.4.9, this implies that every exponent
of M (over every J) is p-adic non-Liouville.

We say that M has p-adic non-Liouville exponent differences if End(M) has p-adic non-
Liouville exponents. For alternate characterizations, see Lemma 3.4.19 below.

Lemma 3.4.19. The following conditions are equivalent.

(a) The module M has p-adic non-Liouville exponent differences.

(b) Some exponent of M has p-adic non-Liouville differences.

(c) Every exponent of M has p-adic non-Liouville differences.

Moreover, when these conditions hold, then any two exponents of M are equivalent (not just
weakly equivalent).

Proof. By Theorem 3.4.16(a), (c) implies (b). By Remark 3.4.14, (b) implies (a).
Suppose now that (a) holds. Let A be any exponent for M , and let B be an exponent for

End(M) which is p-adic non-Liouville. By Remark 3.4.14, A−A is an exponent for End(M), so
by Theorem 3.4.16(b), A − A and B are weakly equivalent. By Corollary 3.4.10, A has p-adic
non-Liouville differences, yielding (c). Moreover, if A′ is another exponent for M , then A and A′

are weakly equivalent by Theorem 3.4.16(b), so A and A′ are equivalent by Corollary 3.4.8. 2

The primary structure theorem for differential modules satisfying the Robba condition is
the Christol–Mebkhout decomposition theorem; see, for instance, [Ked10a, Theorem 13.6.1] and
the errata to [Ked10a]. Here, we divide the statement into two parts in order to clarify the
exposition and strengthen one of the two parts. One of the two parts, which by itself is sufficient
for many applications, is the following structure theorem for modules admitting a singleton
exponent.

Theorem 3.4.20. Suppose that M admits an exponent identically equal to some λ ∈ Zp. Then
for any closed subinterval J of I of positive length, MJ admits a basis on which D acts via a
matrix over K whose eigenvalues are all equal to λ.

Proof. We may assume that 0 /∈ I thanks to Remark 3.4.15. By replacing M with its twist
M∨λ ⊗M , we may reduce the theorem to the special case λ = 0. Let J be any closed subinterval
of I of positive length; by Lemma 3.4.19, the zero n-tuple is an exponent for M over J . Choose
η > 1 and α, α′, β, β′ ∈ I such that α′ < β′, α′ = αη, β′ = β/η, and J ⊆ [α′, β′]. Fix a basis of
MJ and define the matrices Sm,A as in Definition 3.4.11 for A = {0, . . . , 0}. Choose λ ∈ (0, 1)
and c > 0 so that p10kη−c 6 λ, then choose m0 > 0 so that pm > cm for all m > m0. We will
construct invertible matrices Rm over K for m > m0 such that Rm0 = In and

|In −RmS−1m,ASm+1,AR
−1
m+1|ρ 6 λm (ρ ∈ [α′, β′],m > m0).

This will imply that for m > m0 and ρ ∈ [α′, β′],

|In − S−1m0,A
Sm,AR

−1
m |ρ < 1, |S−1m0,A

Sm,AR
−1
m − S−1m0,A

Sm+1,AR
−1
m+1|ρ 6 λm.
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Consequently, the sequence S−1m0,A
Sm,AR

−1
m for m = m0,m0 +1, . . . will converge to an invertible

matrix U over R[α′,β′] such that Sm0,AU is the change-of-basis matrix to a basis of M[α′,β′] of the

desired form. This will complete the proof.

The construction of the Rm proceeds recursively as follows. Given Rm0 , . . . , Rm, we first

verify that

|Rm|, |R−1m | 6 p2km.

This is clear for m = m0, so we may assume that m > m0. Choose any ρ ∈ [α′, β′]. As noted

above, we have |In−S−1m0,A
Sm,AR

−1
m |ρ < 1, so |S−1m0,A

Sm,AR
−1
m |ρ = |RmS−1m,ASm0,A|ρ = 1. We then

deduce the claim from the bound |Sm,A|ρ, |S−1m,A|ρ 6 pkm.

Next, put Tm = RmS
−1
m,ASm+1,A; we then have

|Tm|[α,β], |T−1m |[α,β] 6 p4km+k.

Let Tm,0 be the constant coefficient of Tm. Since Tm is a series in tp
m

, Lemma 3.1.5(b) implies

|Tm − Tm,0|[α′,β′] 6 p4km+kη−p
m
.

We may now take Rm+1 = Tm,0, because

|In −Rm+1T
−1
m |[α′,β′] 6 |T−1m |[α′,β′] · |Tm − Tm,0|[α′,β′]

6 p8km+2kη−p
m

< p10kmη−cm 6 λm < 1

and so |In − TmR
−1
m+1|[α′,β′] 6 λm. This completes the construction of the Rm and thus the

proof. 2

Remark 3.4.21. Theorem 3.4.20 is sufficient to recover the full Christol–Mebkhout decomposition

theorem in the case of a differential module admitting an exponent contained in Zp∩Q, by pulling

back along the map t 7→ tm for a suitably divisible integer m ∈ Z.

The second part is a splitting theorem for modules admitting an exponent with p-adic non-

Liouville differences. This may be generalized as follows.

Theorem 3.4.22. Suppose that M admits an exponent A admitting the Liouville partition

A1, . . . , Ak. Then for any closed subinterval J of I of positive length, there exists a unique direct

sum decomposition MJ = M1⊕· · ·⊕Mk such that for g = 1, . . . , k, Mg admits an exponent over

J weakly equivalent to Ag.

Proof. We may assume that 0 /∈ I thanks to Remark 3.4.15. We first verify uniqueness. Suppose

to the contrary that there is a second decomposition MJ = M ′1⊕· · ·⊕M ′k of the desired form for

which there exist g 6= h such that Mgh =Mg∩M ′h is nonzero. Apply Theorem 3.4.16(a) to produce

exponents B1, B2, B3 of Mgh, Mg/Mgh, M ′h/Mgh. By Remark 3.4.14 and Theorem 3.4.16(b),

B1 ∪B2 is weakly equivalent to Ag and B1 ∪B3 is weakly equivalent to Ah. We then obtain the

desired contradiction by applying Proposition 3.4.5(a).
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We next verify existence. To simplify notation, we may reduce to the case k = 2. Let J be
any closed subinterval of I of positive length; by Theorem 3.4.16(a, b) and Proposition 3.4.5(b),
M admits an exponent A over J of the specified form. Choose an ordering A = {a1, . . . , an}.
Choose η > 1 and α, α′, β, β′ ∈ I such that α′ < β′, α′ = αη, β′ = β/η, and J ⊆ [α′, β′]. Fix a
basis of MJ and define the matrices Sm,A as in Definition 3.4.11. Choose λ ∈ (0, 1) and c > 0 so
that p9kη−c 6 λ. By hypothesis, there exists m0 > 0 such that for m >m0, b1 ∈ A1, b2 ∈ A2, the
congruence h ≡ b1 − b2 (mod pm) forces |h| > cm.

Let Πm be the projector onto the submodule of MJ generated by vm,A,i for those i for which
ai ∈ A1; then

|Πm|[α,β] 6 p2km.

For those j for which aj ∈ A1, write (Πm −Πm+1)(vm,A,j) =
∑

i am,ivm+1,A,i, so that

|am,i|[α,β] 6 p4km+2k.

Since (Πm−Πm+1)(vm,A,j) = (1−Πm+1)(vm,A,j), we have am,i = 0 when ai ∈ A1. On the other
hand, when ai ∈ A2, the coefficient of th in am,i can only be nonzero if h ≡ ai − aj (mod pm);
this implies

|am,i|[α′,β′] 6 p4km+2kη−cm (m > m0)

by Lemma 3.1.5(a), and so

|(Πm −Πm+1)(vm,A,j)|[α′,β′] 6 p5km+2kη−cm (m > m0).

Similarly, for those j for which aj ∈ A2,

|(Πm −Πm+1)(vm,A,j)|[α′,β′] 6 p5km+3kη−cm (m > m0)

and so
|(Πm −Πm+1)|[α′,β′] 6 p6km+3kη−cm 6 λm (m > m0).

Therefore the Πm converge to an endomorphism of MJ , which is forced to be a projector defining
the desired splitting. 2

We may put Theorems 3.4.20 and 3.4.22 together to separate integer exponents from p-adic
non-Liouville exponents.

Corollary 3.4.23. Suppose that M has p-adic non-Liouville exponents. Then there exists a
unique direct sum decomposition M ∼= M1 ⊕M2 with the following properties.

(a) The module M1[t
−1] admits a basis on which D acts via a nilpotent matrix over K. In

particular, M1[t
−1] is unipotent (i.e., it is a successive extension of trivial differential modules

over RI [t
−1]).

(b) No exponent of M2 contains an integer or a p-adic Liouville number.

Proof. We obtain the splitting M ∼= M1 ⊕M2 using Theorem 3.4.22. We then obtain (a) using
Theorem 3.4.22 and (b) using Corollary 3.4.6. 2

We recover as a corollary the original decomposition theorem of Christol and Mebkhout, as
stated in [Ked10a, Theorem 13.6.1].

Corollary 3.4.24. Fix a set S of coset representatives of Z in Zp. Suppose that M has p-
adic non-Liouville exponent differences. Then there exists a unique direct sum decomposition
M ∼=

⊕
λ∈S Nλ in which Nλ admits a basis on which D acts via a matrix over K with all

eigenvalues equal to λ. In particular, Nλ is isomorphic to a successive extension of copies of Mλ.
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Proof. We induct on rank(M). By twisting, we can force M to admit an exponent containing 0.

We may then split M using Corollary 3.4.23 and continue. 2

Corollary 3.4.25. If M⊗p is unipotent (respectively trivial), then so is M .

Proof. We first prove the unipotent case. Apply Theorem 3.4.16(a) to construct an exponent A

for M . By Remark 3.4.14, the p-fold sum A+ · · ·+A is an exponent for M⊗p, as by assumption

is the zero tuple. Since the latter has p-adic non-Liouville differences, Lemma 3.4.19 implies that

A + · · · + A is equivalent (not just weakly equivalent) to zero. In particular, pa ∈ Z for each

a ∈ A; since a ∈ Zp, this is only possible when a ∈ Z for each a ∈ A. By Corollary 3.4.23, M is

unipotent.

Suppose now that M⊗p is trivial. By the previous paragraph, M admits a basis on which D

acts via a nilpotent matrix N over K; note that the conjugacy class of the matrix N is uniquely

determined by M because 1 is nonzero in the cokernel of t d/dt on RI . In particular, since M⊗p

is trivial, the pth tensor power of N must be zero, but this is only possible if N is itself zero.

Consequently, M itself must be trivial. 2

Remark 3.4.26. It is known that Theorem 3.4.22 does not extend to integer partitions. For

example, if λ is a p-adic Liouville number, then there exist nontrivial extensions of M0 by Mλ,

each of which admits {0, λ} as an exponent by Remark 3.4.14. In fact, we expect (although we

have no examples) that one can even find irreducible differential modules of rank greater than

one satisfying the Robba condition.

3.5 Frobenius antecedents and descendants

The construction of Frobenius antecedents and descendants can be generalized to differential

modules over power series. We record here some key facts from [Ked10a, ch. 10] which we will

use.

Hypothesis 3.5.1. Throughout § 3.5, assume that p > 0, fix a subinterval I of [0,+∞), and take

R = RI or R = Ran
I . Let (M,D) be a differential module of rank n over (R, d/dt).

Definition 3.5.2. Let Ip be the subinterval of [0,+∞) consisting of γp for all γ ∈ I. For R = RI
(respectively R = Ran

I ), let R′ be a copy of RIp (respectively Ran
Ip ) in the variable tp, identified

with a subring of R. We may then view (R′, d/dtp) as a differential ring.

If 0 /∈ I, we may form the Frobenius descendant ϕ∗M as in [Ked10a, Definition 10.3.4]; that

is, ϕ∗M is a copy of M viewed as an R′-module equipped with the derivation D′ = p−1t1−pD.

For any ρ ∈ I, (ϕ∗M)⊗R′ F ′ρ may be naturally identified with the Frobenius descendant of Mρ.

Proposition 3.5.3. Suppose that fi(M, r) < r − logω for all r ∈ −log I. Then there exists a

unique (up to unique isomorphism) differential module M ′ over (R′, d/dtp) such that for ρ ∈
I\{0}, M ′ ⊗R′ F ′ρ is the Frobenius antecedent of Mρ.

Proof. See [Ked10a, Theorem 10.4.4]. 2

We will also need to consider ‘off-center Frobenius descendants’ as in [Ked10a, § 10.8].

Definition 3.5.4. Suppose that R = Ran
[0,1]. Let R′′ be a copy of Ran

[0,1] in the variable u. For

ρ ∈ (0, 1], let F ′′ρ be a copy of Fρ in the variable u, so that R′′ maps to F ′′ρ . Choose λ ∈ K with

|λ| = 1, then identify R′′ with a subring of R by identifying u with (t+ λ)p − λp.
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Proposition 3.5.5. Suppose that R = Ran
[0,1]. Let ψ∗M be a copy of M viewed as a differential

module over (R′′, d/du). Then for ρ ∈ (ω, 1], the multiset consisting of the intrinsic subsidiary
radii of (ψ∗M)⊗R′′ F ′′ρp is the union of the multisets{

{sp} ∪ {ωpρ−p (p− 1 times)} if s > ωρ,

{p−1sρ1−p (p times)} if s 6 ω/ρ,

for s running over the intrinsic subsidiary radii of Mρ.

Proof. By rescaling t, we may reduce to the case where λ = 1. In this case, see [Ked10a,
Theorem 10.8.3]. 2

3.6 Variation of intrinsic radii
We now consider differential modules not necessarily satisfying the Robba condition, with an
eye toward the variation of the intrinsic subsidiary radii. The results we report here are taken
from [Ked10a, chs. 11–12]; starting in § 4, we will see how to make more definitive statements in
the language of Berkovich spaces. To facilitate this transition, we record a couple of important
direct corollaries of the results of [Ked10a].

Hypothesis 3.6.1. Throughout this subsection, fix a subinterval I of [0,+∞), and let M be a
differential module of rank n over (Ran

I , d/dt).

Definition 3.6.2. For ρ ∈ I\{0}, put Mρ = M ⊗Ran
I
Fρ. For r ∈ −log I and i = 1, . . . , n, define

fi(M, r) so that the list of intrinsic subsidiary radii of Me−r in increasing order is

exp(r − f1(M, r)), . . . , exp(r − fn(M, r)).

Put Fi(M, r) = f1(M, r) + · · · + fn(M, r). As observed in Definition 2.2.2, the functions fi and
Fi are invariant under enlargement of the constant field K.

Proposition 3.6.3. For i = 1, . . . , n, we have the following.

(a) (Linearity) The functions fi(M, r) and Fi(M, r) are continuous and piecewise affine.
Moreover, these functions assume only finitely many different slopes over any closed subinterval
of −log I (even if 0 ∈ I).

(b) (Integrality) If i = n or fi(M, r0) > fi+1(M, r0), then the slopes of Fi(M, r) in some
neighborhood of r0 belong to Z. Consequently, the slopes of each fi(M, r) and Fi(M, r) belong
to 1

1Z ∪ · · · ∪ 1
nZ.

(c) (Subharmonicity) Suppose that K is algebraically closed, α < 1 < β, and fi(M, 0) > 0.
Let s∞,i(M) and s0,i(M) be the left and right slopes of Fi(M, r) at r = 0. For µ ∈ κ×K , choose
any µ ∈ oK lifting µ, let Tµ denote the substitution t 7→ t+µ, and let sµ,i(M) be the right slope
of Fi(T

∗
µ(M), r) at r = 0. Then

s∞,i(M) 6
∑
µ∈κK

sµ,i(M),

with equality if either i = n and fn(M, 0) > 0, or i < n and fi(M, 0) > fi+1(M, 0).

(d) (Monotonicity) Suppose that 0 ∈ I. Then for any point r0 where fi(M, r0) > r0, the
slopes of Fi(M, r) are nonpositive in some neighborhood of r0.

(e) (Convexity) The function Fi(M, r) is convex.
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Proof. See [Ked10a, Theorem 11.3.2]. 2

Corollary 3.6.4. Suppose that 0 ∈ I and f1(M, r0) = r0 for some r0 ∈ −log I. Then
f1(M, r) = r for all r > r0.

Proof. By Proposition 3.6.3(a, d, e), the function f1(M, r) is piecewise affine and convex
everywhere, and nonincreasing wherever it is greater than r. Since f1(M, r0) = r0 and
f1(M, r) > r everywhere, all of the slopes of f1(M, r) for r > r0 must be at least one. However,
none of them can be strictly greater than one because this would force f1(M, r) > r for some r,
and then f1(M, r) would be forced to be nonincreasing. This proves the claim. 2

Corollary 3.6.5. Suppose that 0 ∈ I and for some r0 ∈ −log I, some r1 > r0, and some j ∈ {0,
. . . , n}, the functions f1(M, r), . . . , fj(M, r) are equal to some constant value c for r ∈ (r0, r1).
Then

fi(M, r) = max{r, c} (r > r0; i = 1, . . . , j).

Proof. We prove that the claim holds for f1, . . . , fi by induction on i, with base case i = 0.
Given the induction hypothesis for i − 1, note that since fi(M, r) > r for all r > r0, we must
have c > r0. By Proposition 3.6.3(d, e) and the induction hypothesis, the function fi(M, r) is
convex everywhere and nonincreasing wherever it is greater than r. It follows that fi(M, r) = c
for r ∈ (r0, c]. By Corollary 3.6.4, we then have fi(M, r) = r for r > c. 2

Proposition 3.6.6. For i = 1, . . . , n, on any interval where fi(M, r) is affine, it has the form
ar + b for some a ∈ Q and some b in the divisible closure of log |K×|.

Proof. See [Ked10a, Corollary 11.8.2]. 2

Proposition 3.6.7. Suppose that 0 ∈ I and that for some i ∈ {1, . . . , n−1} and some γ ∈ I\{0},
the following conditions hold.

(a) The function Fi(M, r) is constant for r < −log γ.

(b) We have fi(M, r) > fi+1(M, r) for r < −log γ.

Then M admits a unique direct sum decomposition separating the first i intrinsic subsidiary
radii of Mρ for all ρ > γ.

Proof. See [Ked10a, Theorem 12.5.1]. 2

Corollary 3.6.8. Suppose that I = [0, β] or I = [0, β) for some β > 0 and put r0 = −log β.
Suppose that for some i ∈ {0, . . . , n} and some r1 > r0, the following conditions hold.

(a) For j = 1, . . . , i, the function fj(M, r) is constant for r ∈ (r0, r1).

(b) If i < n, then lim infr→r+0
fi+1(M, r) = r0.

Then M admits a direct sum decomposition M0 ⊕M1 ⊕ · · · such that

f1(M0, r) = · · · = frank(M0)(M0, r) = r (r > r0)

and for each k > 0, there is a constant ck > r0 such that

f1(Mk, r) = · · · = frank(Mk)(Mk, r) = max{r, ck} (r > r0).

In particular, for j = i+ 1, . . . , n, fj(M, r) = r for r > r0.
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Proof. We induct on i. Suppose first that i = 0. In this case, we cannot have f1(M, r1) > r1
for any r1 > r0, as then Proposition 3.6.3(d) would imply f1(M, r) > r1 for all r ∈ (r0, r1) and
hence lim infr→r+0

f1(M, r) > r1, violating condition (b). Hence for all r > r0 and all j, we have

r = f1(M, r) > fj(M, r) > r, proving the claim with M = M0.
Suppose next that i > 0. Let c1 be the constant value of f1(M, r) for r ∈ (r0, r1). By

Corollary 3.6.5, we have f1(M, r) = max{r, c1} for r > r0. Let m be the largest value for which
f1(M, r) = fm(M, r) for r in some right neighborhood (r0, r1) of r0. Split M as M1 ⊕M2 as per
Proposition 3.6.7 so that M1 accounts for the first m intrinsic subsidiary radii of Mρ for ρ > e−r1 .
For r > c1, for all j we have r 6 fj(M1, r) 6 f1(M1, r) 6 f1(M, r) = r and so fj(M1, r) = r.
By Proposition 3.6.3(d), Frank(M1)(M1, r) is convex; since it agrees with the constant function
rank(M1)c1 for r ∈ (r0, r1) and for r = c1, we must have Frank(M1)(M1, r) = rank(M1)c1 for
r ∈ (r0, c1]. Since in addition fj(M1, r) 6 f1(M1, r) 6 f1(M, r) = max{r, c1}, we must have
fj(M1, r) = c1 for r ∈ (r0, c1]. Thus M1 has all of the desired properties, so we may apply the
induction hypothesis to M2 to prove the claim. 2

Proposition 3.6.9. Suppose that I = (α, β) for some α, β > 0 and that for some i ∈ {1, . . . ,
n− 1}, the following conditions hold.

(a) The function Fi(M, r) is affine for r ∈ −log I.

(b) We have fi(M, r) > fi+1(M, r) for r ∈ −log I.

Then M admits a unique direct sum decomposition separating the first i intrinsic subsidiary
radii of Mρ for every ρ ∈ I.

Proof. See [Ked10a, Theorem 12.4.2]. 2

3.7 Decompositions over open annuli
We now embark on a deeper analysis of differential modules over open annuli than is found
in [Ked10a], concentrating on spectral decompositions and on properties of refined modules. For
the latter, we incorporate some ideas of Xiao [Xia09, Xia12].

Hypothesis 3.7.1. Throughout this subsection, continue to retain Hypothesis 3.6.1, but assume
further that n > 0 and I = (α, β) for some α, β > 0.

Definition 3.7.2. We say that M is pure if the functions f1(M, r), . . . , fn(M, r) for r ∈ −log I
are all equal to a single affine function. A spectral decomposition of M is a direct sum
decomposition M =

⊕
iMi in which each summand Mi is pure and the values f1(Mi, r) are

all distinct for each r ∈ −log I. If such a decomposition exists, it specializes to the spectral
decomposition of Mρ for all ρ ∈ I; in particular, a spectral decomposition is unique if it exists.

Lemma 3.7.3. Consider the following conditions.

(a) The module M admits a spectral decomposition.

(b) For i = 1, . . . , n, the function fi(M, r) is affine for r ∈ −log I.

(c) The functions Fn(M, r) and Fn2(End(M), r) are affine for r ∈ −log I. (That is, M is
clean in the sense of [Ked10a, Definition 12.8.2].)

Then (a) and (b) are equivalent, and (c) implies both of them.

Proof. It is clear that (a) implies (b), and [Ked10a, Theorem 12.8.3] shows that (c) implies (b), so
it remains to check that (b) implies (a). Given (b), for i= 1, . . . , n−1, if there exists r0 ∈ −log I for
which fi(M, r0) = fi+1(M, r0), then we must have fi(M, r) = fi+1(M, r) identically; otherwise,
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since fi(M, r) and fi(M, r) are both affine, the inequality fi(M, r) > fi+1(M, r) would have to
be violated on one side of r0. In other words, for i = 1, . . . , n − 1, either fi(M, r) = fi+1(M, r)
for r ∈ −log I or fi(M, r) > fi+1(M, r) for r ∈ −log I. This allows us to apply Proposition 3.6.9
to obtain a spectral decomposition, yielding (a). 2

Definition 3.7.4. Suppose that M admits a spectral decomposition. By the Robba component
of M , we mean the summand M1 in the spectral decomposition of M for which f1(M1, r) = r
for each r ∈ −log I, or the zero submodule if no such summand exists.

Lemma 3.7.5. Suppose that M admits a spectral decomposition. Let M1 be the Robba
component of M . Then the natural maps H i(M1) → H i(M) are bijections for i = 0, 1.

Proof. Let M2 be the summand complementary to M1 in the spectral decomposition of M . It
is clear that H0((M2)ρ) = 0 for ρ ∈ I, proving the desired bijectivity for i = 0. For i = 1, note
that f1(M2, r) > r for each r ∈ −log I, so any extension 0 → RI → N → M2 → 0 splits by
Lemma 3.7.3. 2

Lemma 3.7.6. Suppose that M admits a spectral decomposition. Let M1 be the Robba
component of M . Assume either that p = 0 or that p > 0 and M1 has p-adic non-Liouville
exponents.

(a) Let M2 be the maximal unipotent submodule of M1. Then the natural maps H i(M2) →

H i(M) are bijections for i = 0, 1.

(b) The composition H0(M) ×H1(M∨) → H1(RI) → K in which the first map is induced
by the natural pairing M×M∨ → RI and the second map is the residue map is a perfect pairing
of finite-dimensional K-vector spaces.

(c) For any open subinterval J of I, the map

H i(M) → H i(MJ)

is a bijection for i = 0, 1.

Proof. To prove (a), we may replace M by M1 using Lemma 3.7.5. For p = 0, we may check the
claim after replacing K by a finite extension K ′, since M may be viewed as a direct summand of
M ⊗K K ′. After a suitable such extension, by Theorem 3.3.6 we may decompose M1 = M2⊕M3

in such a way that M3 becomes a successive extension of copies of Mλ for various λ ∈ oK\Z. To
see that H i(M3) = 0 for i = 0, 1, we may use the snake lemma to reduce to the case M = Mλ

for some λ ∈ oK\Z. In this case, vanishing of H0 follows from the nontriviality of Mλ, while
vanishing of H1 follows from Theorem 3.3.6 applied to an extension 0 → RI → N → Mλ → 0.

To prove (a) for p > 0, apply Corollary 3.4.23 to decompose M1 = M2⊕M3 where M3 has an
exponent containing no integer or p-adic Liouville number. On one hand, H0(M3) = 0 because
otherwise Remark 3.4.14 would force M to have an exponent containing 0. On the other hand,
H1(M3) = 0 because we may split any extension 0 → RI → N → M3 → 0 using Remark 3.4.14
and Theorem 3.4.22.

To prove (b) and (c), we may use (a) to reduce to the case M = M2. We may then use the
snake lemma to reduce to the case M = RI , for which both claims are easily verified. 2

Lemma 3.7.7. Suppose that M admits a spectral decomposition. Assume either that p = 0 or
that p > 0 and the Robba component of M has p-adic non-Liouville exponent differences. Then
for any ρ ∈ I, the map H0(M) → H0(Mρ) is a bijection.
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Proof. For p = 0, this is immediate from Lemma 3.7.6(a). For p > 0, apply Corollary 3.4.24
to reduce to the case M = Mλ for some λ ∈ Zp. The claim then holds because by [Ked10a,
Proposition 9.5.3], H0(Mλ,ρ) = 0 whenever λ /∈ Z. 2

Definition 3.7.8. We say that M is refined if M is pure and, moreover, f1(M, r) > f1(M
∨⊗M,

r) for all r ∈ −log I (that is, M is pure and Mρ is refined for all ρ ∈ I). If M1,M2 are refined,
we say that they are equivalent if f1(M

∨
1 ⊗M2, r) < f1(M1, r), f1(M2, r) for all r ∈ −log I. Note

that if M1 and M2 are inequivalent, then by convexity (Proposition 3.6.3(e)) we must have
f1(M

∨
1 ⊗M2, r) = max{f1(M1, r), f1(M2, r)} for all r ∈ −log I.

A refined decomposition ofM is a direct sum decomposition in which each summandMi either
is refined or satisfies the Robba condition, at most one summand satisfies the Robba condition,
and any two distinct refined summands Mi,Mj are inequivalent. Such a decomposition specializes
to a refined decomposition of Mρ for each ρ ∈ I, and hence is unique if it exists.

It is easiest to obtain refined decompositions using the following construction of test modules
(compare [Xia12, Example 1.3.20]).

Definition 3.7.9. For any finite tamely ramified extension K ′ of K, any λ ∈ K ′, any positive
integer m not divisible by p, any positive integer e which is a power of p (which must be
1 if p = 0), and any integer h coprime to em, let Nλ,h,e,m be the differential module over
(RI ⊗K[t] K

′[t1/m], d/dt1/m) on the generators v1, . . . ,ve given by

D(v1) = t−1/mv2, . . . , D(ve−1) = t−1/mve, D(ve) = λt−1/m+h/mv1.

Lemma 3.7.10. With notation as in Definition 3.7.9, for ρ > 0 we have

min{ω, IR((Nλ,h,e,m)ρ)} = min{ω, ω|λ|−1/eρ−h/(em)}.
Proof. This is immediate from Proposition 2.2.6. 2

Lemma 3.7.11. Suppose that M is pure and f1(M, r) > r−logω for r ∈ −log I. Then for any
ρ ∈ I, there exist a finite tamely ramified extension K ′ of K and a positive integer m not
divisible by p such that Mρ ⊗K[t] K

′[t1/m] admits a refined decomposition in which for each
summand V , there exist a scalar λ ∈ K ′, a positive integer e which is a power of p, and an
integer h coprime to em such that IR(Mσ) = IR((Nλ,h,e,m)σ) for σ in some neighborhood of ρ
and IR(V ∨ ⊗ (Nλ,h,e,m)ρ) > IR(V ).

Proof. We imitate the proof of [Ked10a, Lemma 6.8.1]. Apply Corollary 2.1.6 to produce v ∈M
which is a cyclic vector in M ⊗RI Frac(RI). Write Dn(v) = a0v + · · · + an−1D

n−1(v) with
a0, . . . , an−1 ∈ Frac(RI). Factor the polynomial P (T ) = Tn−an−1Tn−1−· · ·−a0 over an algebraic
closure of Frac(RI) within an algebraic closure of Fρ. For each root α, we can find λ, h, e,m such
that |α −m−1λ1/et−1+h/(em)|ρ < |α|ρ; by Corollary 2.2.7, IR(Mσ) = IR((Nλ,h,e,m)σ) for σ in a
neighborhood of ρ and one of the intrinsic subsidiary radii of M∨ρ ⊗ (Nλ,h,e,m)ρ is greater than
IR(Mρ). Apply Proposition 2.2.9 to construct a refined decomposition of Mρ ⊗Fρ E for some
finite tamely ramified extension E of Fρ; then each summand is equivalent to (Nλ,h,e,m)ρ for
some λ, h, e,m, and in particular is stable under Gal(E′/F ′) for F ′ = Fρ⊗K[t]K

′[t1/m] and E′ a

compositum of E, F ′, and K(µm). We thus obtain a refined decomposition of Mρ ⊗K[t]K
′[t1/m]

with the desired property. 2

Theorem 3.7.12. Suppose that M is pure. Then there exist a finite tamely ramified extension
K ′ of K and a positive integer m not divisible by p such that M ⊗K[t]K

′[t1/m] admits a refined
decomposition.
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Proof. By virtue of the uniqueness of refined decompositions, we may work locally in a

neighborhood of some ρ ∈ (α, β). Suppose first that IR(Mρ) < ω. To simplify notation, we

may assume that the conclusion of Lemma 3.7.11 holds with K ′ = K and m = 1, so that Mρ

admits a refined decomposition. In addition, for each summand V in the refined decomposition of

Mρ, we can find a differential module N over RI such that IR(V ∨⊗Nρ) > IR(V ). By continuity

(Proposition 3.6.3(a)), for σ in a neighborhood of ρ, M∨σ ⊗Nσ has an intrinsic subsidiary radius

strictly greater than IR(Mσ) = IR(Nσ). Apply Proposition 3.6.9 toN∨⊗M to pull off a summand

corresponding to the intrinsic subsidiary radii of N∨ρ ⊗Mρ less than IR(V ), then tensor with N

and project the decomposition from N ⊗N∨⊗M to M . Repeating this process gives the desired

decomposition.

Suppose next that p > 0 and IR(Mρ) = ω. Let M ′ be the global Frobenius descendant

of M (Definition 3.5.2). By Proposition 2.3.5, IR(ϕ∗Mρ) = ωp, so we may apply the previous

paragraph to exhibit a finite tamely ramified extension K ′ of K and a positive integer m not

divisible by p such that M ′⊗K[tp]K
′[tp/m] admits a refined decomposition. To simplify notation,

we may assume that K ′ = K and m = 1, i.e., that M ′ itself admits a refined decomposition. In

particular, ϕ∗Mρ admits a refined decomposition. By Remark 2.3.10, if we group summands of

ϕ∗M into Z/pZ-orbits, the resulting decomposition descends to a decomposition specializing to

a refined decomposition of M .

Suppose, finally, that p > 0 and IR(Mρ)> ω. Using Frobenius antecedents (Proposition 3.5.3),

we may reduce to one of the previous cases. 2

Theorem 3.7.13. Suppose that either:

(a) M is refined and rank(M) is not divisible by p; or

(b) p > 0 and M is of cyclic type.

Then the slopes of f1(M, r) are in Z.

Proof. Using Proposition 3.6.3(a), f1(M, r) is piecewise affine. It thus suffices to compute its

slope on a closed subinterval J of I on which f1(M, r) is affine. We may assume that this slope

is not equal to zero or one, as otherwise there is nothing left to check.

Suppose first that we are in case (a) with p = 0. Choose a generator v of ∧nMJ , define c ∈ RJ
by the formula D(v) = cv, and let N be the differential module over RJ on a single generator

v given by D(w) = (c/n)v. We then have N⊗n ∼= ∧nM and so f1(N
∨ ⊗M, r) < f1(M, r) for

r ∈ I by [Ked10a, Proposition 6.8.4]. In particular, in some range we have f1(M, r) = f1(N, r),

whereas f1(N, r) has integer slopes by Proposition 3.6.3(b). This proves the claim in this case.

Suppose next that we are in case (a) with p > 0. Since we assumed that the slope of f1(M, r)

is neither zero nor one, we may shrink J to ensure that f1(M, r) 6= r − p−j logω for all r ∈ J
and all nonnegative integers j. We may then use Frobenius antecedents (Proposition 3.5.3) to

reduce to the case where f1(M, r) > r − logω for all r ∈ J , and then argue as in (a).

Suppose finally that we are in case (b). We may again assume that f1(M, r) > r − logω

for all r ∈ J ; we may also assume that K is algebraically closed. Pick any r0 ∈ J and apply

Lemma 3.7.11 to construct λ, h, e,m for which IR(M∨ρ ⊗ (Nλ,h,e,m)ρ) > IR(Mρ) for ρ = e−r0 ;

by continuity (Proposition 3.6.3(a)), the same inequality holds for ρ in a neighborhood of e−r0 .

For µ ∈ 1 + mK , apply Corollary 2.2.7(a) to µ∗N∨λ,h,e,m ⊗ Nλ,h,e,m; it implies that there exists

a > 0 for which f1(µ
∗M∨ ⊗M, r) = f1(M, r) + a log |µ− 1| for |µ− 1| sufficiently close to 1 and

r sufficiently close to r0. By Lemma 3.2.6, there exists a rank 1 submodule Qµ of µ∗M∨ ⊗M .

Since µ∗M∨⊗M is of cyclic type, we have f1(Qµ, r) = f1(µ
∗M∨⊗M, r) = f1(M, r)+a log |µ−1|
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for suitable µ, r. Since f1(Qµ, r) has integer slopes by Proposition 3.6.3(b) again, so then does
M in a neighborhood of r0; this proves the claim in this case. 2

Remark 3.7.14. Theorem 3.7.13(b) is new to this paper. It was known previously that if p > 0,
M is of cyclic type, and End(M) has p-adic non-Liouville exponent differences, then M is a
successive extension of differential modules of rank 1 over RI ; namely, this is an easy consequence
of Corollary 3.4.24. That previous result figures in the proofs of the p-adic local monodromy
theorem given by André [And02] and Mebkhout [Meb02]; see Remark 3.8.26.

The following refinement of Lemma 3.7.11 will be used in the study of solvable modules
in § 3.8.

Lemma 3.7.15. Choose γ, δ with α < γ < δ < β. Suppose that p > 0, K is algebraically closed, M
is refined, and there exists a nonnegative integer b such that IR(Mρ) = (α/ρ)b < ω for ρ ∈ [γ, δ].
Then there exists a differential module N over RI which is free of rank 1 with IR(Nρ) = (α/ρ)b

for ρ ∈ (α, δ] and IR((N∨ ⊗M)ρ) < IR(Mρ) for ρ ∈ [γ, δ].

Proof. We may rescale to reduce to the case ρ = α = 1. Using Lemma 3.7.11, we may replace
M with Nλ,h,e,m; note that the fact that b ∈ Z forces e = m = 1. After making the substitution
t 7→ t−1, we may perform the construction from the proof of [Ked10a, Theorem 12.7.2] to obtain
the desired N . 2

3.8 Solvable modules
We continue in the vein of [Ked10a], next treating differential modules over rings of convergent
power series on an open annulus which are solvable at a boundary. This gives a uniform statement
of the classical Turrittin–Levelt–Hukuhara decomposition as well as a strong p-adic analogue.

Note that for differential modules on an open annulus, one can equally well discuss solvability
at the inner boundary or the outer boundary. In [Ked10a] and other literature, it is typical to
consider outer boundaries because one has in mind the boundary of a residue disc. However, in
this paper we will mostly need to consider inner boundaries (see § 4.4), so we will set notation
to address that case.

Hypothesis 3.8.1. Throughout this subsection, fix α > 0 and put

Rα =
⋃
β>α

R(α,β),

viewed as a differential ring for the derivation d = d/dt. Let M be a differential module over Rα
which is solvable at α in the sense of Definition 3.8.3 below.

Convention 3.8.2. The functions fi(M, r) and Fi(M, r) are not well defined for any particular
r < −logα; however, the germs of these functions in left neighborhoods of −logα may be
interpreted unambiguously. We will use these germs frequently in what follows.

Definition 3.8.3. The module M is solvable at α if

lim
r→(−logα)−

f1(M, r) = −logα.

By Proposition 3.6.3 plus an extra argument (see [Ked10a, Lemma 12.6.2]), this implies that
there exist nonnegative rational numbers b1(M) > · · · > bn(M) such that at the level of germs,
we have

fi(M, r) = r + bi(M)(−logα− r) (i = 1, . . . , n). (3.8.3.1)

We call the bi(M) the slopes of M .
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Definition 3.8.4. Suppose that M 6= 0. We say that M satisfies the Robba condition if

b1(M) = 0. We say that M is pure if b1(M) = · · · = brank(M)(M). We say that M is refined

if b1(M) > b1(End(M)); this implies that M is pure. We say that M is of cyclic type if

b1(End(M)) = 0; this implies that M either is refined or satisfies the Robba condition.

By (3.8.3.1) plus Lemma 3.7.3, M admits a unique decomposition
⊕

jMj into pure

summands of distinct slopes; we call this the spectral decomposition of M . By the Robba

component of M , we mean the summand of the spectral decomposition of slope 0, or the zero

submodule of M if no such summand exists.

Definition 3.8.5. Define a binary relation on irreducible solvable differential modules over Rα
by declaring that M ∼ N if at least one slope of M∨ ⊗N is nonzero. This relation is evidently

reflexive and symmetric; it is also transitive by Lemma 3.8.6 below.

Lemma 3.8.6. With notation as in Definition 3.8.5, the relation ∼ is transitive.

Proof. Suppose M ∼ N and N ∼ P . Let S, T be the Robba components of M∨ ⊗N , N∨ ⊗ P .

Since N is irreducible and S, T 6= 0, the images of the elements of S ⊆ HomRα(M,N) span N

and the kernels of the elements of T ⊆ HomRα(N,P ) have zero intersection in N . It follows that

the image of S ⊗ T under the contraction map M∨ ⊗N ⊗N∨ ⊗ P → M∨ ⊗ P is nonzero; this

image satisfies the Robba condition. This proves the claim. 2

Lemma 3.8.7. If brank(M)(M) > 0, then H1(M) = 0.

Proof. Each element of H1(M) corresponds to an extension 0 → M → N → Rα → 0 of

differential modules, but any such extension is split by the spectral decomposition of N . 2

Proposition 3.8.8. There exists a unique direct sum decomposition M =
⊕

iMi such that for

any irreducible subquotients P,Q of Mi,Mj , we have P ∼ Q in the sense of Definition 3.8.5 if

and only if i = j.

Proof. It suffices to check that if P,Q are inequivalent irreducible solvable differential modules

over Rα, then H1(P∨ ⊗Q) = 0. But this is immediate from Lemma 3.8.7. 2

Lemma 3.8.9. Suppose that either:

(a) p = 0 and M is refined; or

(b) p > 0, K is algebraically closed, M is refined, and dim(M) is not divisible by p; or

(c) p > 0, K is algebraically closed, M is of cyclic type, and b1(M) > 0.

Then there exists a differential module N over Rα which is free of rank 1, is solvable at α, and

satisfies b1(N
∨ ⊗M) < b1(M).

Proof. Realize M as a refined differential module over R(α,β) for some β > α. By Theorem 3.7.13,

b1(M) is a positive integer. We may thus imitate the proof of [Ked10a, Theorem 12.7.2] as follows.

In case (a), we may apply Lemma 3.7.11 to construct Nλ,h,e,m with IR((N∨λ,h,e,m ⊗M)ρ) <

IR(Mρ) for ρ in some interval; because b1(M) ∈ Z, we are forced to take e = m = 1. By

Lemma 3.7.10, Nλ,h,1,1 is solvable at α. It remains to check that we may take λ in K, not

just in a finite extension of K; for this, we argue as in Proposition 2.2.11. Put n = rank(M).

Choose a generator v of the restriction of ∧nM to RI for some closed interval I, and write

D(v) = av with a ∈ RI . Let M ′ be the differential module over RI on the single generator w
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with D(w) = (a/n)w; then (M ′)⊗n is isomorphic to the restriction of ∧nM to RI . It follows that
|a/n−λth−1|ρ < |a/n|ρ = |λth−1|ρ for ρ ∈ I, so there must exist λ′ ∈ K with |λ−λ′| < |λ| = |λ′|.
We may thus replace Nλ,h,1,1 with Nλ′,h,1,1 without affecting the preceding arguments.

In cases (b) and (c), by taking global Frobenius antecedents (Proposition 3.5.3) as needed,
we can ensure that there exist γ, δ with α < γ < δ < β such that IR(Mρ) > ω for ρ ∈ [γ, δ]. By
Lemma 3.7.15, we obtain the desired module N . 2

Corollary 3.8.10. Suppose that either:

(a) p = 0 and M is indecomposable and refined; or

(b) p = 0 and M is of cyclic type; or

(c) p > 0, K is algebraically closed, M is indecomposable and refined, and dim(M) is not
divisible by p; or

(d) p > 0, K is algebraically closed, M is of cyclic type, and b1(M) > 0.

Then there exists a factorization M ∼= N ⊗ P in which N is free of rank 1 and b1(P ) = 0. In
particular, M is of cyclic type.

Proof. This follows by repeated application of Lemma 3.8.9. Note that since b1(M) ∈ Z by
Theorem 3.7.13, only finitely many iterations are needed before b1(M) is reduced to zero. 2

When p = 0, the structure of solvable modules is relatively simple.

Theorem 3.8.11. Assume that p = 0. Then there exist a finite extension K ′ of K and a positive
integer m such that M⊗K[t]K

′[t1/m] admits a direct sum decomposition in which each summand
is of cyclic type.

Proof. This follows from Theorem 3.7.12 and Corollary 3.8.10. 2

Remark 3.8.12. By taking K = C with the trivial norm, we may deduce from Theorem 3.8.11
the usual Turrittin–Levelt–Hukuhara decomposition theorem for differential modules over
C((t)) [Ked10a, Theorem 7.5.1].

Definition 3.8.13. Put F = Frac(Rα). Let [M ] denote the Tannakian subcategory generated
by M within the category of differential modules over Rα, equipped with the fibre functor ω
taking each N ∈ [M ] to the F -vector space N⊗RαF . Note that the objects of [M ] are all solvable
at α.

Let G(M) be the automorphism group of ω. For r > 0, let Gr(M) denote the subgroup of
G(M) which acts trivially on ω(N) for each nonzero N ∈ [M ] for which b1(N) < r. Also put
Gr+(M) =

⋃
s>rG

s(M).

Remark 3.8.14. As in Remark 2.3.19, we may use Theorem 3.8.11 to deduce that when p = 0, the
group G0+(M) is a torus. The structure of G0+(M) for p > 0 will be clarified by Theorem 3.8.16
below; this will imply that for any p and any r > 0, Gr+(M) equals the subgroup of G(M) which
acts trivially on ω(N) for each nonzero N ∈ [M ] for which b1(N) 6 r.

Lemma 3.8.15. If p > 0 and M is of cyclic type, then there exists a nonnegative integer h such
that b1(M

⊗ph) = 0.

Proof. If b1(M) > 0, then by Proposition 2.3.13, we have b1(M
⊗p) < b1(M). Since b1(M) and

b1(M
⊗p) are nonnegative integers by Theorem 3.7.13, this proves the claim. 2
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Theorem 3.8.16. If p > 0, then G0+(M) is a finite p-group.

Proof. This follows from Proposition 1.1.2 using Remark 1.1.3 as follows. Replace the category
of differential modules over Rα with the direct limit of the categories of differential modules
over Rα⊗K[t]K

′[t1/m] over all finite extensions K ′ of K and all positive integers m not divisible
by p; this does not change the groups Gr(M) except for a base extension. We may then deduce
conditions (i), (ii), (iii) of Remark 1.1.3 using Theorem 3.7.12, Proposition 2.3.13, Lemma 3.8.15,
respectively. 2

Corollary 3.8.17. There exist a finite extension K ′ of K and a positive integer m such that
for all nonnegative integers g, h, (M∨)⊗g ⊗M⊗h ⊗K[t] K

′[t1/m] admits a refined decomposition.

Proof. This is apparent from Theorem 3.8.11 if p = 0. If p > 0, for each pair (g, h) we may
choose a suitable m by Theorem 3.7.12, so we need only check that m may be chosen uniformly.
But this follows from Theorem 3.8.16: it is enough to list each of the finitely many isomorphism
classes of irreducible representations τ of G0+(M) and, for each τ , ensure that m works for one
pair g, h such that τ appears in (M∨)⊗g ⊗M⊗h. 2

Corollary 3.8.18. If p > 0 and b1(M) > 0, then there exist a finite extension K ′ of K, a
positive integer m, and an object N ∈ [M ⊗K[t]K

′[t1/m]] of cyclic type such that b1(N) > 0 but
b1(N

⊗p) = 0.

Proof. This follows from Lemma 1.1.4 plus the proof of Theorem 3.8.16 (in which it is shown
that the conditions of Remark 1.1.3 are satisfied). 2

Lemma 3.8.19. Suppose that p > 0, K contains a primitive pth root of unity, M is free of rank 1,
and b1(M

⊗p) = 0. Then there exists another differential module N over Rα which is solvable on
α, is free on a single generator v such that D(v) = P ′(t) for some P (t) ∈ K[t] with |P (t)|α = ω,
and satisfies b1(N

∨ ⊗M) = 0.

Proof. This follows from [Ked10a, Theorem 17.1.6, Remark 17.1.7]. 2

Definition 3.8.20. Let Rbd
α be the subring of Rα consisting of germs of bounded analytic

functions. This ring is henselian but not complete for the α-Gauss norm; let Rint
α denote the

valuation subring.
If S is a connected finite étale cover, it makes sense to impose the Robba condition on

M ⊗Rint
α
S provided that S can be identified with a ring of the form Rint

α in a suitable power
series coordinate; the resulting condition will not depend on the choice of this identification.
Such an identification can always be made if κK is algebraically closed.

Theorem 3.8.21. If p > 0, then there exists a connected finite étale cover S of Rint
α such that

MS = M ⊗Rint
α
S satisfies the Robba condition in the sense of Definition 3.8.20.

Proof. Since G0+(M) is finite by Theorem 3.8.16 and is trivial if and only if M satisfies the
Robba condition, it suffices to produce a cover that decreases G0+(M). This may be achieved
as follows. We may assume from the outset that K contains an element π with πp−1 = −p; this
also forces K to contain a primitive pth root of unity. Pick out an object N ∈ [M ⊗K[t]K

′[t1/m]]
for some K ′,m as in Corollary 3.8.18. Apply Corollary 3.8.10 to produce a free rank 1 object
N ′ ∈ [M ⊗K[t] K

′[t1/m]] for some K ′,m such that N∨ ⊗ N ′ satisfies the Robba condition. By
Lemma 3.8.19, we may choose N ′ to be free on one generator v satisfying D(v) = P ′(t) for
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some P ∈ K[t] with |P (t)|α = ω. We may then trivialize N ′ by extending scalars from Rint
α to

Rint
α [z]/(zp − z − π−1P (t)) and recalling that the power series exp(π(zp − z)) in z has radius of

convergence strictly greater than 1 (see, for example, [Ked10a, Example 9.9.3]). 2

Corollary 3.8.22. Assume that p > 0, κK is algebraically closed, and α = 1.

(a) There is a unique minimal choice of S satisfying the conclusion of Theorem 3.8.21.

(b) The residue field of S is a finite Galois extension of κK((t)) whose highest ramification

break is equal to b1(M).

Proof. This follows from Theorem 3.8.21 as in the proof of [Ked05, Theorem 5.23] (see

also [Ked10a, Theorem 19.4.1]). 2

Corollary 3.8.23. Assume that p > 0, and decompose M =
⊕
Mi as in Proposition 3.8.8.

Then for each i, there exists an isomorphism Mi
∼= N ⊗P for some solvable differential modules

N,P over Rα such that N is irreducible, NS is trivial for some connected finite étale cover S of

Rint
α , and P satisfies the Robba condition.

Proof. Let Q be an irreducible subquotient of Mi. By Theorem 3.8.21, we may choose S so that

Mi ⊗Rint
α
S satisfies the Robba condition, as then does Q ⊗Rint

α
S. Let T be the restriction

of scalars of R ⊗Rint
α
S to R, viewed as a solvable differential module; then Q ⊗ T has a

nontrivial Robba component, so Q is equivalent to some irreducible subquotient N of T . Let P be

the Robba component of N∨⊗Mi; by construction, there is a natural map N⊗P →Mi factoring

through the contraction N∨ ⊗ N ⊗Mi → Mi. We may check that this map is an isomorphism

by induction on the length of a Jordan–Hölder filtration of Mi. 2

Corollary 3.8.24. Suppose that p > 0 and that the Robba component of End(M) has p-adic

non-Liouville exponents. Then for S as in Theorem 3.8.21, MS splits as a direct sum, each

summand of which is a successive extension of copies of Mλ for some λ ∈ Zp.

Proof. We may assume that M is indecomposable. By Corollary 3.8.23, we may write M ∼=
N ⊗ P where N is irreducible, NS is trivial, and P satisfies the Robba condition. We then have

End(M) ∼= End(N)⊗End(P ) and hence End(MS) ∼= End(NS)⊗End(PS). Choose an exponent A

of P ; then A−A is an exponent of End(P ), and the multiset obtained from A−A by multiplying

each multiplicity by rank(N)2 is an exponent of End(MS). On the other hand, since End(N)

contains a nontrivial Robba component (namely the trace component), End(P ) is isomorphic to

a submodule of the Robba component of End(M). Therefore End(P ) has p-adic non-Liouville

exponents, as then does End(MS). By Corollary 3.4.24, M has the desired form. 2

Remark 3.8.25. In Corollary 3.8.24, it is not true in general that the differences between the

different values of λ are p-adic Liouville numbers. That is because if M splits nontrivially as in

Proposition 3.8.8, then M∨i ⊗Mj has no Robba component and thus imposes no restriction on

the exponents of (M∨i ⊗Mj)S . For instance, choose inequivalent irreducible solvable differential

modules Ni, Nj over Rα with Ni,S , Nj,S trivial, and choose λ, µ ∈ Zp which differ by a p-adic

Liouville number. Then

M = (Ni ⊗Mλ)⊕ (Nj ⊗Mµ)

satisfies the hypothesis of Corollary 3.8.24 but End(M) admits an exponent containing λ− µ.
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Remark 3.8.26. Theorem 3.8.21 includes a result variously known as the p-adic Turrittin
theorem (the implicit analogy being perhaps clearest from Corollary 3.8.23) and the p-adic
local monodromy theorem. That result, due to André [And02], Mebkhout [Meb02], and the
author [Ked04], assumes the existence of a Frobenius structure on M (see [Ked10a, ch. 17]);
in addition, K must be discretely valued and β must equal one.

The methods of André and Mebkhout can be used to derive Theorem 3.8.21 also in the
case where all of the objects in [M ] have p-adic non-Liouville exponent differences. In these
arguments, the non-Liouville condition is needed to ensure that irreducible objects satisfying the
Robba condition are all of rank 1. The proof of Theorem 3.8.21 provides a workaround in cases
where advance information about exponents is not available.

4. Berkovich discs

We are at last ready to shift language and perspective toward Berkovich’s nonarchimedean
analytic spaces. In this section, we introduce the topological spaces which play the role of discs
in Berkovich’s theory, and consider radii of convergence of local horizontal sections of differential
modules on such spaces. This draws heavily on the results of § 3, but some additional maneuvering
is needed. In addition, the behavior of differential modules around points of type 4 requires some
extra work.

4.1 Underlying topological spaces
We begin by defining the Gel’fand spectrum of a Banach ring. For now, we just consider the
resulting topological space; we postpone discussion of the analytic space structure to § 5.

Definition 4.1.1. For R a ring equipped with a submultiplicative norm (e.g., a commutative
Banach algebra over K), the Gel’fand spectrum M(R) is defined as the set of bounded (by the
given norm) multiplicative seminorms on R, topologized as a subset of the product RR. Note that
M(R) may also be viewed as a closed subset of a product of bounded closed intervals, and hence
is compact; it is also nonempty provided that R 6= 0 [Ber90, Theorem 1.2.1]. For x ∈M(R), let
H(x) denote the completion of Frac(R/ ker(x)) for the multiplicative norm induced by x.

Remark 4.1.2. Any bounded homomorphism R → S of commutative Banach algebras over K
defines a continuous restriction mapM(S) →M(R). If this map is surjective, then it is a quotient
map because the source and target are compact: the induced map from the quotient space is a
continuous bijection from a quasicompact space to a Hausdorff space, hence a bijection [Bou71,
§ 9, No. 4, Corollaire 2].

For example, suppose that R is a commutative Banach algebra over K and that K ′ is
a complete field extension of K. Then the completed tensor product R′ = R ⊗̂K K ′ is a
Banach algebra over K ′ and the restriction map M(R′) →M(R) is always surjective [Ked13,
Lemma 1.20].

In the previous paragraph, if K ′ is the completion of an algebraic Galois extension of K (such
as C), we can say more: not only is the restriction mapM(R′) →M(R) surjective, but the group
of continuous automorphisms of K ′ over K acts transitively on the fibres of the restriction map.
See [Ber90, Corollary 1.3.6].

Definition 4.1.3. Let R be a commutative Banach algebra over K, and put R′ = R ⊗̂K C. For
x ∈M(R), choose any lift x̃ ∈M(R′) of x, and define the signature of x as the triple

(dim(ker(x̃)), rank(|H(x)×|/|K×|), trdeg(κH(x)/κK)).

Note that one can have dim(ker(x̃)) > dim(ker(x)).
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4.2 Discs
We now specialize the previous discussion to rings of convergent power series on discs. Due to the
increasing prevalence of such rings and their associated Gel’fand spectra in various branches of
mathematics, numerous expositions of this material can be found in the literature; among these,
perhaps the most comprehensive is the book of Baker and Rumely [BR10, ch. 1]. However, that
treatment assumes that the ground field K is algebraically closed, which we prefer not to do
here; to avoid imposing this condition, we refer also to [Ked13, § 2].

Definition 4.2.1. For β > 0, the space M(R[0,β]) is called the Berkovich closed disc of radius
β with coordinate t over K, and also denoted Dβ,K . For z ∈ C with |z| 6 β and ρ ∈ [0, β], the
restriction to RI ∼= K〈t/β〉 of the ρ-Gauss norm on C〈(t− z)/β〉 defines a point ζz,ρ ∈ Dβ,K ; the
point ζ0,β is called the Gauss point of Dβ,K . For β′ > β, the natural map R[0,β′] → R[0,β] induces
an inclusion Dβ,K → Dβ′,K ; the direct limit of the Dβ,K along these maps is called the Berkovich
affine line over K.

Lemma 4.2.2. The restriction map Dβ,C → Dβ,K identifies Dβ,K with the quotient of Dβ,C by
the action of the group of continuous automorphisms of C over K.

Proof. See [Ber90, Proposition 1.3.5]. 2

Proposition 4.2.3. For β > 0, x ∈ Dβ,K and ρ ∈ [0, β], define

H(x, ρ)(f) = max

{
ρix

(
1

i!

di

dti
(f)

)
: i = 0, 1, . . .

}
(4.2.3.1)

with the interpretation that ρ0 = 1 even for ρ = 0.

(a) Formula (4.2.3.1) defines a continuous map

H : Dβ,K × [0, β] → Dβ,K .

(b) For x ∈ Dβ,K , H(x, 0) = x and H(x, β) = ζ0,β.

(c) For x ∈ Dβ,K and ρ, σ ∈ [0, β],

H(H(x, ρ), σ) = H(x,max{ρ, σ}).
(d) For z ∈ C with |z| 6 β and ρ ∈ [0, β], H(ζz,0, ρ) = ζz,ρ.

(e) For x, y ∈ Dβ,K , y dominates x (that is, y(f) > x(f) for all f ∈ RI) if and only if
y = H(x, ρ) for some ρ ∈ [0, β].

Proof. See [Ber90, Remark 6.1.3(ii)] or [Ked13, Lemma 2.3] for (a)–(d) and [Ked13,
Theorem 2.11] for (e). 2

Definition 4.2.4. For β > 0 and x ∈ Dβ,K , define the diameter of x, denoted ρ(x), to be the
maximum ρ ∈ [0, β] for which H(x, ρ) = x. Beware that the diameter is stable under base
extension from K to C (see Proposition 4.2.7), but not under general base extensions (see
Remark 4.2.5). It is also stable under increasing β.

Remark 4.2.5. For β > 0 and x ∈ Dβ,K , let tx ∈ H(x) be the image of t under the natural map
R[0,β] → H(x). We may then realize x as the restriction of the seminorm ζtx,0 ∈ M(RI,H(x)) of
radius zero.

At the other extreme, we have the following.

Lemma 4.2.6. For β > 0, x ∈ Dβ,K , and K ′ an analytic field containing K, there exists y ∈ Dβ,K′
lifting x with ρ(y) = ρ(x).
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Proof. For K ′ = C, this will follow from Proposition 4.2.7 below. For K = C, then the tensor
product norm on H(x)⊗K K ′ is itself multiplicative (see, for instance, [Poi13, 3.14]) and hence
defines a point y of the desired form.

In the general case, note that any lift y satisfies ρ(y) 6 ρ(x), so it suffices to check the claim
after enlarging K ′. We may thus ensure that C ⊆K ′ and then check the claim in two steps using
the previous paragraph. 2

In terms of the intrinsic radius function, Berkovich’s classification of points of M(RI) reads
as follows.

Proposition 4.2.7. For β > 0, every point of Dβ,K is of exactly one of the following types
(called types 1, 2, 3, 4 hereafter).

1. Points of signature (1, 0, 0). These are the points of the form ζz,0 for some z ∈ C. The
diameter of such a point is 0.

2. Points of signature (0, 1, 0). These are the points of the form ζz,ρ for some z ∈ C and
some ρ ∈ (0, β] ∩ |C×|. The diameter of such a point is ρ > 0.

3. Points of signature (0, 0, 1). These are the points of the form ζz,ρ for some z ∈ C and
some ρ ∈ (0, β]\|C×|. The diameter of such a point is ρ > 0.

4. Points of signature (0, 0, 0). The diameter of such a point x is the infimum of those values
of ρ for which the seminorm x is dominated by some ζz,ρ; it belongs to the interval (0, β).

Moreover, the points that are minimal under domination are precisely those of types 1 and 4.

Proof. For K = C, see [Ber90, 1.4.4]. For the general case, see [Ked13, Theorem 2.26]. 2

This can be used to recover a version of the Zariski–Abhyankar inequality. For a more
traditional variant, see, for instance, [Vaq00, Théorème 9.2].

Corollary 4.2.8. Let R be the completion of K[T1, . . . , Td] for the Gauss norm. Then the
signature of each point in M(R) consists of three nonnegative integers whose sum is at most d.

Proof. Choose x ∈ M(R) and let xi be the restriction of R to the completion of K[T1, . . . , Ti].
Then the difference between the signatures of xi+1 and xi is itself the signature of a point in
D1,H(xi). The claim thus follows from Proposition 4.2.7. 2

We next make the topology of Dβ,K more explicit.

Definition 4.2.9. For β > 0 and x ∈ Dβ,K , the root path of x is the subspace {H(x, ρ) : ρ ∈ [0, β]}
of Dβ,K . It is homeomorphic to the interval [ρ(x), β] via the map H(x, ·).

A rooted skeleton in Dβ,K is a subset of the form

m⋃
i=1

{H(xi, ρ) : ρ ∈ [ρ(xi), β]}

for some nonempty finite subset {x1, . . . , xm} ⊆ Dβ,K ; we sometimes say that this skeleton is
generated by x1, . . . , xm. A strict rooted skeleton is a rooted skeleton generated by a set of points
of type 2.

For any rooted skeleton S of Dβ,K , define the map πS : Dβ,K → S taking each x ∈ Dβ,K
to H(x, ρ) for ρ the least value in [0, β] for which H(x, ρ) ∈ S. By Proposition 4.2.3, πS is a
deformation retract.
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Proposition 4.2.10. Form the inverse system consisting of the rooted skeleta of Dβ,K with
morphisms given as follows: for every pair of rooted skeleta S, S′ with S ⊆ S′, include a morphism
S′ → S given by the restriction of πS . Define a map from Dβ,K to this inverse system whose
projection onto S is given by πS . Then this map is a homeomorphism of topological spaces.

Proof. The map is injective because every pair of points can be found in some rooted skeleton.
The map is surjective because Dβ,K is compact and surjects onto each rooted skeleton. The map
is a homeomorphism because any continuous bijection from a quasicompact space to a Hausdorff
space is a homeomorphism. (See also [BR10, Proposition 1.13] for an alternate treatment in the
case where K is algebraically closed and β = 1.) 2

Remark 4.2.11. Proposition 4.2.10 is a special case of the general phenomenon that Berkovich
analytic spaces can be described as inverse limits of tropical spaces (see, for example, [Pay09]).
For Berkovich curves, this inverse limit presentation is also closely related to semistable models;
we will return to this point in § 5.

Definition 4.2.12. For x ∈ Dβ,K , a branch of Dβ,K at x is a path-connected component of
Dβ,K\{x}. If x is not the Gauss point, then there is a branch containing the Gauss point, called
the upper branch of Dβ,K at x. By Proposition 4.2.10, additional branches (called lower branches)
exist according to the type of x as follows:

(i) no lower branches;

(ii) infinitely many lower branches;

(iii) exactly one lower branch;

(iv) no lower branches.

For S a rooted skeleton of Dβ,K and x ∈ S, a branch of S at x is a branch of X at x meeting S.
There are only finitely many such branches at any x.

Definition 4.2.13. Let S be a rooted skeleton of Dβ,K . By a subdivision of S, we will mean a
graph (in the combinatorial sense) with underlying topological space S.

We equip S with the piecewise linear structure characterized as follows: a function f : S → R
is piecewise affine (with integral slopes) if and only if for each x ∈ S, the function r 7→ f(H(x,
e−r)) is piecewise affine (with integral slopes) and constant for r sufficiently large. Then for any
piecewise affine function f : S → R, there exists a subdivision of S such the restriction of f to
any edge of the subdivision is affine. We call such a subdivision a controlling graph of f .

It is meaningful to refer to the slope of a piecewise affine function f : S → R along a branch of
S at a point x. Explicitly, the slope along the upper branch is the left slope of r 7→ f(H(x, e−r))
at r0 = −log ρ(x) (or 0 in case ρ(x) = 0), while the slope along the lower branch containing y ∈ S
is the right slope of r 7→ f(H(y, e−r)) at r0.

Definition 4.2.14. By the Berkovich open unit disc of radius β over K, denoted D◦β,K , we will
mean the branch of Dβ,K at the Gauss point containing ζ0,0.

4.3 Radii of convergence
We now define the radii of optimal convergence for differential modules on discs, following
Baldassarri [Bal10].

Hypothesis 4.3.1. Throughout this subsection, fix β > 0 and, except for within Definition 4.3.11
and Lemma 4.3.12, let M be a differential module of rank n > 0 over R[0,β].
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Definition 4.3.2. For x ∈ Dβ,K , put

Mx,0 = M ⊗R[0,β]
H(x)Jt− txK,

Mx,ρ = M ⊗R[0,β]
H(x)〈(t− tx)/ρ〉 (ρ ∈ (0, β);

these can be viewed as differential modules as well. By a standard argument (see, for
instance, [Ked10a, Theorem 7.2.1]), the natural map

MD=0
x,0 ⊗H(x) H(x)Jt− txK → Mx,0

is an isomorphism. Define the sequence si(M,x) of radii of optimal convergence of M at x as
follows: for i = 1, . . . , n, put

si(M,x) = sup{ρ ∈ [0, β) : dimH(x)(M
D=0
x,0 ∩Mx,ρ) > n− i+ 1}.

In other words, si(M,x) is the radius of the maximal open disc around tx on which there exist
n− i+ 1 linearly independent horizontal sections of M . For M 6= 0, we refer to s1(M,x) also as
the radius of convergence of M at x.

Lemma 4.3.3. Let K ′ be an analytic field containing K, and suppose that y ∈ Dβ,K′ restricts to
x ∈ Dβ,K . Then

si(M,x) = si(M ⊗R[0,β],K
R[0,β],K′ , y) (i = 1, . . . , n).

Proof. By replacing K with H(x), we may reduce to the case x = ζ0,0. The claim then comes
down to the fact that formation of the kernel of the bounded K-linear endomorphism of the
Banach space M ⊗R[0,β]

R[0,ρ] commutes with formation of the completed tensor product over K
with K ′. This in turn reduces formally to the case where K ′ is the completion of a countably
generated field extension of K, in which case the claim is clear because K ′ admits a Schauder
basis over K (see [BGR84, Proposition 2.7.2/3] or [Ked10a, Lemma 1.3.8]). 2

Remark 4.3.4. The intuition behind Definition 4.3.2 is that the elements of MD=0
x,0 are the formal

horizontal sections of M centered at x. In the language of [Ked10a] and preceding literature on
p-adic differential equations, one would think of x as the generic point of a certain subdisc of
Dβ,K .

Following this intuition, one observes that for y = H(x, σ) for some σ > ρ(x), the discs of
radius ρ centered at x and y coincide for all ρ ∈ (σ, β). Formally, for any field L containing both
H(x) and H(y), we obtain a natural isomorphism L〈(t− tx)/ρ〉 ∼= L〈(t− ty)/ρ〉. One consequence
is that for i ∈ {1, . . . , n}, if si(M,x) > ρ(x), then si(M,x) = si(M,H(x, ρ)) for all ρ < si(M,x).

The relationship between radii of optimal convergence and intrinsic subsidiary radii (due in
its original form to Young) is the following.

Definition 4.3.5. For x ∈ Dβ,K not of type 1, let Fx be a copy of H(x) viewed as a differential
field for the derivation d/dt.

Lemma 4.3.6. For any x ∈ Dβ,K not of type 1, any analytic field K ′ containing K, and any
y ∈ Dβ,K′ lifting x with ρ(y) = ρ(x) (which exists by Lemma 4.2.6), the spectral norms of d/dt
on Fx and Fy coincide.

Proof. Since Fx ⊆ Fy, the spectral norm of d/dt on Fx is no greater than that on Fy. To prove
the reverse inequality, by Lemma 4.2.6 we are free to enlarge K ′. We may thus reduce to the
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cases where K = C and where K ′ = C. In the former case, we have Fy = Fx ⊗̂K K ′ with the
tensor product norm (see the proof of Lemma 4.2.6), so the desired inequality is clear.

To treat the latter case, it is sufficient to instead consider the case where K ′ is a finite
extension of K. In this case, Fy is a direct summand of Fx ⊗K K ′, so the desired inequality is
again clear. 2

Proposition 4.3.7. For x ∈ Dβ,K not of type 1, the intrinsic subsidiary radii of M ⊗R[0,β]
Fx

are given by

min{1, si(M,x)/ρ(x)} (i = 1, . . . , n).

Proof. By Lemmas 4.3.3 and 4.3.6, we are free to lift x as long as we do not change its diameter.
This lifting being possible by Lemma 4.2.6, we may reduce to the case x = ζ0,ρ for some ρ ∈ (0, β].
In this case, the claim follows from [Ked10a, Theorem 11.9.2]. 2

One can also interpret Dwork’s transfer theorem in this language.

Proposition 4.3.8. For M nonzero, for all x ∈ Dβ,K and ρ ∈ [0, β],

s1(M,H(x, ρ)) 6 s1(M,x).

Proof. Using Lemma 4.3.3, we may reduce to the case where x = ζ0,0, in which case the claim
asserts that s1(M, ζ0,ρ) 6 s1(M, ζ0,0) for any ρ ∈ [0, β]. If s1(M, ζ0,ρ) > ρ, then this follows from
Remark 4.3.4. If s1(M, ζ0,ρ) 6 ρ, then by Proposition 4.3.7, ρ−1s1(M, ζ0,ρ) equals the intrinsic
radius of M ⊗R[0,β]

Fρ, so we may apply [Ked10a, Theorem 9.6.1] to conclude. 2

Remark 4.3.9. The radius of convergence of M at any x ∈ Dβ,K is always positive. This
can be deduced either from Proposition 4.3.8 or from Clark’s p-adic Fuchs theorem [Ked10a,
Theorem 13.2.3]; the latter also covers the case of a regular singularity with p-adic non-Liouville
exponent differences.

Remark 4.3.10. For M nonzero, the properties of the intrinsic radius described in Definition 2.2.2
carry over to the radius of convergence, as follows:

(a) we have s1(M
∨, x) = s1(M,x);

(b) for any short exact sequence 0 → M1 → M → M2 → 0,

s1(M,x) = min{s1(M1, x), s1(M2, x)};

(c) for any M1,M2,

s1(M1 ⊗M2, x) > min{s1(M1, x), s1(M2, x)},

with equality if s1(M1, x) 6= s1(M2, x).

However, unlike for intrinsic subsidiary radii, these properties do not propagate to radii of optimal
convergence despite the validity of Proposition 4.3.7. The difficulty already appears in (a): the
existence of a horizontal section of M on a large open disc does not imply the same for M∨. A
similar difficulty arises for (b) unless we restrict consideration to split exact sequences. No such
difficulty arises for (c).

So far we have considered only radii of convergence on closed discs, but one can make similar
definitions for open discs.
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Definition 4.3.11. For M a differential module over R[0,β), we may similarly define si(M,x)
for x ∈ D◦β,K . Then Proposition 4.3.8 implies that for M nonzero, for all x ∈ D◦β,K ,

lim sup
ρ→β−

s1(M,H(x, ρ)) 6 s1(M,x).

For open discs, we have the following key lemma.

Lemma 4.3.12. Let M be a differential module over R[0,β). Suppose that for some γ ∈ (0, β],
there exists m ∈ {0, . . . , n} satisfying the following conditions.

(a) For i = 1, . . . ,m, si(M, ζ0,ρ) is constant and less than γ for ρ in some punctured left
neighborhood of γ.

(b) For i = m+ 1, . . . , n, lim supρ→γ− si(M, ζ0,ρ) > γ.

Then the restrictions of the functions si(M, ·) to D◦γ,K are constant for i = 1, . . . , n.

Proof. Using Proposition 4.3.7 to see that the appropriate hypotheses are satisfied, we may
decompose M ⊗R[0,β)

R[0,γ) = M0 ⊕M1 ⊕ · · · as per Corollary 3.6.8.
Consider any k > 0. By Corollary 3.6.8 and Proposition 4.3.7, for i ∈ {1, . . . , rank(Mk)}, for

all y ∈ D◦γ,K we have min{ρ(y), si(Mk, y)} = min{ρ(y), e−ck}. For those y with ρ(y) > e−ck , we
have

e−ck = min{ρ(y), e−ck} = min{ρ(y), si(Mk, y)}
and the right-hand side cannot equal ρ(y), so we must have si(Mk, y) = e−ck . For those y
with ρ(y) 6 e−ck , we cannot have si(Mk, y) > e−ck : otherwise, we could choose δ ∈ (e−ck ,
si(Mk, y)) and apply Remark 4.3.4 to see that si(Mk, H(y, δ)) = si(Mk, y) > e−ck , contradicting
the previously established equality si(Mk, H(y, δ)) = e−ck . We thus have si(Mk, y) 6 e−ck ; on the
other hand, for any δ ∈ (e−ck , γ) we may apply Proposition 4.3.8 to obtain e−ck = s1(Mk,
H(y, δ)) 6 s1(Mk, y) 6 si(Mk, y). We conclude that si(Mk, y) is constant for y ∈ D◦γ,K .

For i = 1, . . . , n and y ∈ D◦γ,K , we have

si(M ⊗R[0,β)
R[0,γ), y) = min{si(M,y), γ}. (4.3.12.1)

For i = 1, . . . ,m, we must have si(M,y) < γ or else Remark 4.3.4 would lead to a violation
of hypothesis (a); moreover, from (4.3.12.1) and the previous paragraph, min{si(M,y), γ} is
constant on D◦γ,K . We are thus done in case m = n, so we may assume that m < n hereafter.

By Corollary 3.6.8, Proposition 4.3.7, and Proposition 4.3.8 (applied as in Definition 4.3.11),
we have s1(M0, y) > γ > ρ(y) for all y ∈ D◦γ,K . From this inequality plus (4.3.12.1), it follows
that for i = m + 1, . . . , n, we have si(M,y) > γ for all y ∈ D◦γ,K . If there exists y ∈ D◦γ,K for
which si(M,y) > γ, then by Remark 4.3.4, si(M,y) is constant on D◦γ,K ; otherwise, si(M,y) is
evidently equal to the constant value γ on D◦γ,K . This completes the proof.

2

4.4 Solvable modules
If one views solvability of a differential module on an annulus as a question about what happens
as one approaches the generic point of the inner boundary, one is then led to an analogous
concept in which one approaches an arbitrary point of a Berkovich disc. For points of type 2,
this amounts to a cosmetic revision of § 3.8, but at points of other types one has more precise
results. The case of type 4 points is especially critical in order to eliminate such points from the
controlling graph of M (see Theorem 4.5.15).
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Definition 4.4.1. Choose x ∈ Dβ,K with x 6= ζ0,β, so that ρ(x) < β. Put r0 = −log ρ(x).
For ρ ∈ (ρ(x), β], the points H(x, ρ) are all of types 2 and 3 (because they are not minimal).

Moreover, as ρ → ρ(x)+ these points form a net converging to x.
For any γ, δ with ρ(x) < γ 6 δ 6 β, the subset of Dβ,K consisting of points dominated by

H(x, ρ) for some ρ ∈ [γ, δ] has the form M(Rx,[γ,δ]) for some Banach algebra Rx,[γ,δ] over K.
More precisely, this subset is an affinoid subdomain of Dβ,K in the sense of Definition 5.1.1. Even
more precisely, if K = C and γ, δ ∈ |C×|, the set in question is an annulus.

For δ ∈ (ρ(x), β], define

Rx,(ρ(x),δ] =
⋂

γ∈(ρ(x),δ]

Rx,[γ,δ];

it is equivalent to run the intersection over γ ∈ (ρ(x), δ] ∩ |C×|. Define the Robba ring at x as
the ring

Rx =
⋃

δ∈(ρ(x),β]

Rx,(ρ(x),δ];

it is equivalent to run the union over δ ∈ (ρ(x), β] ∩ |C×|. All of these rings may be viewed as
differential rings for the derivation d/dt.

Definition 4.4.2. For N a differential module of rank n > 0 over Rx, the germ of the function
−log si(N,H(x, e−r)) in a left neighborhood of r0 is well defined for i = 1, . . . , n. We may thus
say that N is solvable at x if

lim sup
r→r−0

−log s1(N,H(x, e−r))− r 6 0.

In this case, as in Definition 3.8.3, there exist nonnegative rational numbers b1(N, x) > · · · >
bn(N, x) such that for i = 1, . . . , n, at the level of germs we have

max{r,−log si(N,H(x, e−r))} = r + bi(N, x)(r0 − r).

Remark 4.4.3. For x of type 2, after making a finite extension of K to force K to be integrally
closed in H(x), we may obtain an isomorphism Rx ∼= Rα for α = ρ(x) by translating x to ζ0,α.
We may thus transfer statements about Rα, such as Theorem 3.8.21, directly to the setting of
solvable modules over Rx.

For x of other types, the behavior of a solvable module over Rx is much more restricted,
especially in the case of a module obtained by base extension from R[0,β]. It is most convenient to
postpone discussion of this point until after we have Theorem 4.5.15 in hand; see § 4.6. However,
one key case is needed for the proof of Theorem 4.5.15, so we include it here; see Lemma 4.4.5.

Lemma 4.4.4. Assume that p > 0. Let x ∈ Dβ,K be a point of type 4 for which ρ(x) ∈ |C×|. Let
N be a differential module over Rx of rank n which is solvable at x. Then bi(N, x) ∈ [0, 1] for
i = 1, . . . , n.

Proof. Using Lemma 4.3.3 and the fact that Berkovich’s classification is preserved by passage
from K to C (see Proposition 4.2.7), we may assume without loss of generality that K = C and
ρ(x) = 1. We may also assume that n > 0.

Let L1, L2 be two copies of H(x), and let L3 be a complete extension of both (obtained by
choosing an element of M(L1 ⊗̂K L2)). Let t1, t2 be the copies of tx in L1, L2. For i = 1, 2, let
R(i) be a copy of R1 (that is, the ring Rα with α = 1) over Li in the variable t− ti. Let R(3) be
a copy of R1 over L3 in the variable t− t1, and equip R(3) with the map from R(1) sending t− t1
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to t− t1 and the map from R(2) sending t− t2 to t− t1 + (t1 − t2). For i = 1, 2, we may identify
the residue field of R(i) with κK((ui)) for ui = (t − ti)−1, and then apply Theorem 3.8.21 and

Corollary 3.8.22 to produce the minimal finite étale extension Si of Rint
(i) over which N ⊗Rint

(i)
Si

satisfies the Robba condition. By the uniqueness in Corollary 3.8.22, we must then have an
isomorphism

S1 ⊗Rint
(1)
Rint

3
∼= S2 ⊗Rint

(2)
Rint

3 (4.4.4.1)

which commutes with the cocycle condition. This implies (e.g., by faithfully flat descent) that S1
admits an action of the group of κK-linear substitutions on κK((u1)) of the form t 7→ t+ c with
c ∈ κK . Let L be the residue field of S1; applying Proposition 1.2.6, we may deduce that the
highest upper numbering ramification break of L as a finite extension of κK((u1)) is at most 1.
By Corollary 3.8.22, this implies that b1(N, x) 6 1 and hence bi(N, x) 6 1 for i = 1, . . . , n. 2

Lemma 4.4.5. Assume that p > 0. Let M be a differential module over R[0,β] of rank n. Let x
be a point of type 4 for which ρ(x) ∈ |C×|. Put N = M ⊗R[0,β]

Rx. If N is solvable at x, then
bi(N, x) ∈ {0, 1} for i = 1, . . . , n.

Proof. Let j ∈ {0, . . . , n} be any index for which b1(N, x), . . . , bj(N, x) > 0. For r in some left
neighborhood of −log ρ(x), the function

j∑
i=1

−log si(M,H(x, e−r))

is affine with nonpositive slope by Proposition 3.6.3(a, d). However, this slope is equal to

j∑
i=1

(1− bi(N, x)),

each summand of which is nonnegative by Lemma 4.4.4. This proves the claim. 2

Remark 4.4.6. It is tempting to argue directly that the isomorphism (4.4.4.1) from the proof
of Lemma 4.4.5 implies by faithfully flat descent that S1 descends to a finite étale algebra over
Rint
x . One obstruction to this approach is that it is unclear whether the maps Rint

x → Rint
(i) are

flat.

4.5 Controlling graphs for radii of convergence
Using Proposition 4.3.7, we can give a partial translation of Proposition 3.6.3 into the language
of radii of optimal convergence. This reproduces and improves a result of Pulita [Pul14,
Theorem 4.7]; see Remark 4.5.16. Throughout this subsection, retain Hypothesis 4.3.1.

Definition 4.5.1. For x ∈ Dβ,K , put

fi(M,x) = −log si(M,x) (i ∈ {1, . . . , n})

and Fi(M,x) = f1(M,x) + · · ·+ fi(M,x). Note that unlike the functions fi(M, r) considered in
§ 3.6, the function fi(M,x) may take values less than −log ρ(x). We are thus led to define the
truncated functions

si(M,x) = min{ρ(x), si(M,x)}
f i(M,x) = −log si(M,x).
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Remark 4.5.2. By Proposition 4.3.7, the function fi(M, r) of § 3.6 coincides with the function
f i(M,H(ζ0,0, e

−r)). This will allow us to apply Proposition 3.6.3 to obtain information about
the functions fi.

Proposition 4.5.3. For any x ∈ Dβ,K , s1(M,x) belongs to the divisible closure of |H(x)×|.

Proof. By making the canonical base extension as in Remark 4.2.5, we may reduce to the case
where x is of type 1. By Lemma 4.3.3, we may further reduce to the case where K = C and
x = ζ0,0.

By Remark 4.5.2 and Proposition 3.6.6, the function f1(M,H(x, e−r)) is piecewise of the
form ar + b with a ∈ Q and b ∈ log |K×|. Put r0 = −log s1(M,x). By Proposition 4.3.8, r0 is
the smallest value for which f1(M,H(x, e−r)) = r for all r > r0. We thus have r0 = −b/a for
some a ∈ Q and b ∈ log |K×|, proving the claim. 2

Lemma 4.5.4. For i = 1, . . . , n, if si(M,x) > ρ(x) for some x, then si(M,x) is constant on some
neighborhood of x.

Proof. This is immediate from Remark 4.3.4. 2

Lemma 4.5.5. For i = 1, . . . , n, the restriction of fi(M, ·) to any skeleton of Dβ,K is piecewise
affine.

Proof. It suffices to check that for any x ∈ Dβ,K not of type 1, the function gi given by gi(r) =
fi(M,H(x, e−r)) is piecewise affine (the same then holds for points of type 1 by Lemma 4.5.4 and
Remark 4.3.9). We first verify that max{r, gi(r)} = f i(M,H(x, e−r)) is piecewise affine. Using
Lemma 4.3.3, we may reduce to the case where x = ζ0,α for some α > 0, in which case the claim
follows from Proposition 3.6.3(a).

Given that max{r, gi(r)} is piecewise affine, it follows that gi is piecewise affine at any r0
for which gi(r0) > r0. At a value r0 where gi(r0) < r0, by Lemma 4.5.4, gi is constant in a
neighborhood of r0. It thus suffices to check piecewise affinity at an arbitrary value r0 at which
gi(r0) = r0.

We first consider a right neighborhood of r0. If the values of r in this neighborhood for
which gi(r) < r fail to accumulate at r0, then in some smaller neighborhood we have gi(r) = r
identically. Otherwise, for each value r1 at which g1(r1) < r1, by the previous paragraph gi is
constant for r > r1. It follows that gi is constant for r > r0 and the constant value must be at
most r0. If it were strictly less than r0, we would have gi(r0) < r0 by Remark 4.3.4, contrary to
hypothesis; we thus have gi(r) = r0 for r > r0. This proves affinity to the right of r0.

We next consider a left neighborhood of r0. If there exists any r1 in this neighborhood for
which gi(r1) < r1, then as above, gi would be constant for r > r1. But then we would have
r0 = gi(r0) = gi(r1) < r1 < r0, a contradiction. Hence gi(r) = r identically in this neighborhood.
This proves affinity to the left of r0. 2

Remark 4.5.6. By Lemma 4.5.5, it makes sense to refer to the slopes of fi(M, ·) or f i(M, ·) along
any branch of Dβ,K .

Definition 4.5.7. For x ∈ Dβ,K , define the spectral cutoff of M at x to be the largest value
m(x) ∈ {0, . . . , n} such that si(M,x) < ρ(x) for i = 1, . . . ,m(x).

Lemma 4.5.8. Let U be a lower branch of Dβ,K at some point x. Suppose that for i= 1, . . . ,m(x),
the slope of f i(M, ·) along U (which exists by Lemma 4.5.5) is equal to zero. Then

si(M,x) = si(M,y) (y ∈ U ; i = 1, . . . , n).
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Proof. By Lemma 4.5.5, for any y ∈ U we have si(M,H(y, ρ)) → si(M,x) as ρ → ρ(x)−. This
implies that the conditions of Lemma 4.3.12 are satisfied, so si(M,y) is constant for y ∈ U , and
on the other hand that this constant value is equal to si(M,x). 2

Lemma 4.5.9. Let S be a rooted skeleton of Dβ,K . Let T be the interior of an edge in a subdivision
of S. Suppose that for i = 1, . . . , n, f i(M, ·) is affine on T . Then

si(M,y) = si(M,πS(y)) (i = 1, . . . , n; y ∈ π−1S (T )).

Proof. For x ∈ T and i = 1, . . . ,m(x), by Proposition 3.6.3(c, d) and Remark 4.5.2, the slope of
f i(M, ·) along any lower branch of x other than the one meeting T is equal to zero. The claim
thus follows from Lemma 4.5.8. 2

Lemma 4.5.10. For any x ∈ Dβ,K , along all but finitely many lower branches of Dβ,K at x, the
slope of f i(M, ·) is 0 for i = 1, . . . ,m(x).

Proof. This is immediate from Proposition 3.6.3(c). 2

Lemma 4.5.11. For any x ∈ Dβ,K , there exist a skeleton S of Dβ,K and an open neighborhood I of
πS(x) such that the restrictions of s1(M, ·), . . . , sn(M, ·) to π−1S (I) factor through πS . Moreover,
we may choose S to have no generators of type 3.

Proof. By Lemma 4.5.10, along all but finitely many lower branches of Dβ,K at x, the slope of
f i(M, ·) is 0 for i = 1, . . . ,m(x). Choose S to pass through x and meet each of the remaining
lower branches of X at x; this can always be done without using generators of type 3 because
any point of type 3 dominates some points of type 2 by Proposition 4.2.7. By Lemma 4.5.5,
we can find a subdivision of S such that for i = 1, . . . , n, f i(M, ·) is affine on each edge of the
subdivision meeting x. Let I be the union of the interiors of these edges, together with x. For
y ∈ π−1S (I), we have si(M,y) = si(M,πS(y)) by Lemma 4.5.8 (if πS(y) = x) or Lemma 4.5.9 (if
πS(y) 6= x). 2

Lemma 4.5.12. For x ∈ Dβ,K of type 4, for i = 1, . . . , n, in some left neighborhood of ρ(x), the
function

ρ 7→ min{ωρ, si(M,H(x, ρ))}
is either constant or identically equal to ωρ.

Proof. Apply Corollary 2.1.6 to construct v ∈M which is a cyclic vector in M⊗R[0,β]
Frac(R[0,β]),

and write Dn(v) = a0v + · · · + an−1D
n−1(v) for some a0, . . . , an−1 ∈ Frac(R[0,β]). Since x is of

type 4, for i = 0, . . . , n − 1, the function y 7→ y(ai) is constant in some neighborhood of x. By
Proposition 2.2.6, this yields the desired result. 2

Lemma 4.5.13. For x ∈ Dβ,K of type 4, for i = 1, . . . , n, in some left neighborhood of ρ(x), the
function ρ 7→ si(M,H(x, ρ)) is either constant or identically equal to ρ.

Proof. This is immediate from Lemma 4.5.12 if p = 0, so we may assume that p > 0; we may also
assume that K = C. Let h be the smallest nonnegative integer for which si(M,x) /∈ (ωp

−h−1
ρ(x),

ρ(x)) for i = 1, . . . , n. We proceed by induction on h.
Put r0 = −log ρ(x); since x is of type 4, we have r0 > −log β. Let j ∈ {0, . . . , n} be the largest

value for which si(M,x) 6 ωρ(x) for i = 1, . . . , j. Since the functions r 7→ f i(M,H(x, e−r)) are
continuous by Lemma 4.5.5, we may apply Lemma 4.5.12 to produce r1 ∈ (−log β, r0) such that
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for i = 1, . . . , j, the function r 7→ fi(M,H(x, e−r)) is constant for r ∈ [r1, r0]. By moving r1
toward r0, we may also ensure that ρ(x) > ωe−r1 and si(M,H(x, e−r1)) > ωe−r1 for i > j. By
rescaling t, we may further ensure that r1 < 0 < r0.

By Proposition 4.2.7, we can find z ∈ C such that H(x, 1) = ζz,1. There is no harm in
applying a translation on the disc to reduce to the case z = 0. If we put β′ = e−r1 , then by
Proposition 3.6.7, the restriction of M to D◦β′,K splits as a direct sum M1⊕M2 with rank(M1) = j

and fi(M, e−r) = fi(M1, e
−r) for i = 1, . . . , j and r ∈ (r1, 0]. By Corollary 3.6.5, the original claim

holds with M replaced by the restriction of M1 to D1,K .
Let N be the restriction of M2 to D1,K ; it now suffices to prove the original claim with M

replaced by N . We may assume that j < n, as otherwise there is nothing to check. We first check
the claim for N in case si+1(M,x) > ρ(x), which in particular will cover the base case h = 0
of the induction. If ρ(x) /∈ |C×|, then Proposition 4.5.3 implies that si(N, x) > ρ(x) for all i, so
the desired result follows by Lemma 4.5.4. If instead ρ(x) ∈ |C×|, then the desired result follows
by Lemma 4.4.5.

We next check the claim forN when si+1(M,x)< ρ(x); note that by construction we also have
ωρ(x) < si+1(M,x). Let ψ : D◦1,K → D◦1,K be the map for which ψ∗(t) = (t+1)p−1. Put y = ψ(x);
it is a point of type 4 with ρ(y) = ρ(x)p. Let N ′ be the off-center Frobenius descendant of N in
the sense of Proposition 3.5.5 with λ = 1. By that proposition, s(p−1)(n−j)+i(N

′, z) = si(N, z)
p

for i = 1, . . . , n − j and z ∈ D1,K with ρ(z) > ω. Since we assumed that ρ(x) > ωβ′ > ω, we
have s(p−1)(n−j)+i(N

′, H(y, ρp)) = si(N,H(x, ρ))p for i = 1, . . . , n− j and ρ ∈ [ρ(x), 1]. We may
thus deduce the claim for N from the corresponding claim for N ′, to which we may apply the
induction hypothesis because we have decreased the value of h. 2

Lemma 4.5.14. For x ∈ Dβ,K of type 1 or 4, for i = 1, . . . , n, the function si(M, ·) is constant on
some neighborhood of x.

Proof. For x of type 1, the claim follows from Remarks 4.3.4 and 4.3.9. For x of type 4,
Lemma 4.5.13 implies that the hypothesis of Lemma 4.5.8 holds for some open disc containing
x, yielding the claim in this case. 2

Theorem 4.5.15. (a) There exists a strict skeleton S of Dβ,K such that s1(M, ·), . . . , sn(M, ·)
factor through πS .

(b) For i = 1, . . . , n, fi(M, ·) is piecewise affine with slopes in 1
1Z ∪ · · · ∪ (1/n)Z. Moreover,

Fn(M, ·) has integral slopes.
(c) There is a unique minimal graph G in Dβ,K which is a controlling graph for all of

the functions fi(M, ·). Moreover, the vertices of G are all of type 2 or 3. (We call G the
controlling graph of M .)

Proof. For each x ∈ Dβ,K , apply Lemma 4.5.11 to construct a skeleton Sx of Dβ,K and an
open neighborhood Ix of πS(x) such that the restrictions of s1(M, ·), . . . , sn(M, ·) to π−1Sx (Ix)

factor through πSx . Since π−1Sx (Ix) is open in the compact space Dβ,K , we can choose finitely

many points xi ∈ Dβ,K such that, if we relabel Sx, Ix as Si, Ii, then the open sets π−1Si (Ii)

cover Dβ,K . Let S be the union of the Si; for y ∈ π−1Si (Ii), we have πSi(y) = πSi(πS(y)) and
so si(M,y) = si(M,πSi(y)) = si(M,πS(y)). This proves (a) except that S might include some
generators of types 1 or 4 (generators of type 3 are excluded by Lemma 4.5.11). However, by
Lemma 4.5.14, if x is a generator of type 1 or 4, then the functions si(M, ·) are constant in
a neighborhood of x, so we may replace x with a point of type 2 in this neighborhood which
dominates x. We thus deduce (a).
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From (a), we deduce piecewise affinity using Lemma 4.5.5. To deduce integrality of slopes,
we apply Proposition 3.6.3(b) at points x where si(M,x) < ρ(x) and Lemma 4.5.4 at points x
where si(M,x) > ρ(x). This fails to account for segments where si(M,x) = ρ(x) identically, but
on any such segment fi(M,x) has slope one. We thus deduce (b).

Using (a) and (b), we deduce the existence of the minimal controlling graph G and the fact
that none of its vertices is of type 1 or 4. This yields (c). 2

Remark 4.5.16. The weaker form of Theorem 4.5.15 in which strictness of the skeleton is not
asserted is the essential content of [Pul14, Theorem 4.7] applied to a disc: more precisely, parts
(i) (finiteness) and (ii) (integrality) of that result are included in Theorem 4.5.15. The proof in
[Pul14] is a bit different, making use of a combinatorial criterion for piecewise affinity. A proof
in terms of p-adic potential theory is given in [PP12b]. Another proof, essentially a streamlined
version of the above arguments, is given in [BK]. None of the analyses in [BK, PP12b, Pul14]
includes any special study of type 4 points, as these are treated by base extension to convert
them into other types. Consequently, the techniques of those papers cannot by themselves exclude
vertices of type 4 from the controlling graph, which here is made possible by the analysis in § 4.4.

Note that [Pul14, Theorem 4.7] gives a finer description of the controlling graph than
appears here. It also includes weak analogues of the convexity, subharmonicity, and monotonicity
assertions from Proposition 3.6.3 (although with a change of sign convention, so convexity
becomes concavity and subharmonicity becomes superharmonicity). In [Pul14, Theorem 4.7]
these statements are used in an essential way to prove finiteness; however, given Theorem 4.5.15,
they can be deduced directly from Proposition 3.6.3.

Note also that [BK, PP12a, PP12b, Pul14] consider not just discs but more general curves.
We will return to this more general case in § 5.

4.6 More on solvable modules
With Theorem 4.5.15 in hand, we can now fill out the discussion of solvable modules over Rx
initiated in § 4.4. We also point out a link with our previous work on semistable reduction for
overconvergent F -isocrystals [Ked11b].

Hypothesis 4.6.1. Throughout this subsection, let M be a differential module over R[0,β] of
rank n, choose x ∈ Dβ,K , put Mx = M ⊗R[0,β]

Rx, and let N be a subquotient of Mx which is
solvable at x.

Remark 4.6.2. For x of type 3, Theorem 4.5.15 forces N to satisfy the Robba condition; if
N = Mx, then N is forced to be trivial by Proposition 4.3.8. For x of type 1, we can say even
more: Proposition 4.3.8 and Theorem 4.5.15 together imply that Mx itself is a trivial differential
module, as then is N .

For x of type 4, we have the following refinements of Lemma 4.4.5.

Proposition 4.6.3. Suppose that x is of type 4:

(a) if ρ(x) ∈ |C×|, then bi(N, x) ∈ {0, 1} for all i;

(b) if ρ(x) /∈ |C×|, then N is trivial, so bi(N, x) = 0 for all i.

Proof. By Theorem 4.5.15 (or Lemma 4.5.14), the functions si(M, ·) are constant in a
neighborhood of x. This immediately implies (a). To deduce (b), note that we must have
s1(M,x) 6= ρ(x) by Proposition 4.5.3. Since the si(M, ·) are constant, we may apply
Proposition 3.6.7 to decompose M in a neighborhood of x as a direct sum M ′ ⊕ M ′′ with
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si(M
′, x) < ρ(x) for all i and si(M

′′, x) > ρ(x) for all i; by applying Proposition 4.5.3 again,
we see that in fact si(M

′′, x) > ρ(x) for all i. In particular, M ′′ is trivial on some neighborhood
of x; moreover, the projection of N onto M ′ ⊗ Rx must be zero. It follows that N is trivial,
yielding (b). 2

Theorem 4.6.4. Assume that K = C, x is of type 4, and ρ(x) = 1. For each c ∈ κK , choose a
lift c̃ of c to oK , and let Qc be the differential module over Rx free on one generator v such that
D(v) = c̃v.

(a) For each irreducible subquotient P of N , there exists c ∈ κK such that P ⊗Qc satisfies
the Robba condition.

(b) There exists a finite étale extension S of Rx of the form

S = Rx[z1, . . . , zm]/(zp1 − z1 − a1t, . . . , zpm − zm − amt)

for some nonnegative integer m and some a1, . . . , am ∈ o×K such that N ⊗Rx S is trivial.

Proof. By Proposition 4.6.3 we have b1(P ) ∈ {0, 1}. If b1(P ) = 0 we take c = 0; otherwise,
by [Ked10a, Theorem 12.7.2], we can choose c so that b1(P ⊗ Qc) < 1, and then by
Proposition 4.6.3 again we have b1(P ⊗Qc) = 0. This proves (a).

Given (a), to prove (b), Theorem 4.5.15 and Proposition 3.6.7 allow us to reduce to the case
where Mx itself is solvable at x; we may then further reduce to the case where N = Mx. In this
case, the proof of Theorem 3.8.21 provides S such that N ⊗Rx S satisfies the Robba condition.
However, by induction on m, we see that there is an isomorphism

R
[0,βp−m ]

∼= R[0,β][z1, . . . , zm]/(zp1 − z1 − a1t, . . . , zpm − zm − amt) (4.6.4.1)

sending t to zm. This isomorphism gives rise to a map ψ : D
βp−m ,K → Dβ,K by mapping R[0,β]

into the right-hand side of (4.6.4.1) and then crossing to the left-hand side. The inverse image
of x under this map is a single point y. By construction, N ⊗Rx S ∼= ψ∗M ⊗R

[0,βp
−m

]
Ry satisfies

the Robba condition. By Proposition 4.3.8, ψ∗M is trivial in a neighborhood of y, so N ⊗Rx S
is also trivial. 2

Corollary 4.6.5. Assume that x is of type 4. Then any subquotient of N satisfying the Robba
condition is trivial, and hence admits the zero tuple as an exponent.

Proof. If ρ(x) /∈ |C×|, then N is trivial by Proposition 4.6.3(b), so any subquotient of N satisfying
the Robba condition is also trivial and hence admits the zero tuple as an exponent. If ρ(x) ∈ |C×|,
we may assume that K = C and ρ(x) = 1. Set notation as in the proof of Theorem 4.6.4(b),
again reducing to the case where N = Mx. In this case, the Tannakian category of differential
modules over Rx generated by N admits a fibre functor computing horizontal sections over S,
for which the automorphism group is an elementary abelian p-group. In particular, N splits as a
direct sum of irreducible submodules whose pth tensor powers are trivial. Consequently, to check
that a subquotient of N satisfying the Robba condition is trivial, it suffices to check the case of
a irreducible submodule P for which P⊗p is trivial; this case follows from Corollary 3.4.25. 2

Remark 4.6.6. Note that the isomorphism in (4.6.4.1) depends critically on having linear powers
of t on the right-hand side; otherwise, we would end up with something other than a disc, so
Dwork’s transfer theorem (Proposition 4.3.8) would not apply. This is why it is necessary to
invest the hard work to first prove bi(N, x) ∈ {0, 1} in order to deduce Corollary 4.6.5.
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Remark 4.6.7. The above arguments, including the proof of Lemma 4.4.5, are loosely inspired by
the arguments made in [Ked11b, § 5]. However, the correspondence turns out to be somewhat less
close than we had originally expected, primarily because the process of transposing the arguments
exposed an error in [Ked11b]. We now describe this error and how it may be remedied using
results from this paper.

The error appears in the second sentence of the proof of [Ked11b, Lemma 5.6.2]: it is not
the case that the property of being terminally presented is stable under tame alterations. That
is because the tame alteration x 7→ xm is ramified along the segment joining zero to the Gauss
point; consequently, after pulling back a terminally presented module along a tame alteration,
one encounters a change of slope at the point where one branches off from the ramification locus.
In the continuation of the proof, the tame alteration is erroneously used to force the group τ(I1),
which initially is the semidirect product of the p-group τ(W ′1) with a cyclic group of order prime
to p, to become equal to τ(W ′1).

To correct the proof, it suffices to establish that the equality τ(I1) = τ(W ′1) holds initially,
so that no tame alteration is needed and the rest of the argument may proceed unchanged. To
verify this, choose ρ as in [Ked10a, Lemma 4.7.4]; by that lemma, | · |ρα,s0 defines a point of
M(`〈x〉) of type 4. We may thus apply Corollary 4.6.5 to deduce that any subquotient of the
cross-section Mρ which satisfies the Robba condition admits the zero tuple as an exponent. This
implies that τ(W ′1) has no nontrivial quotient of prime-to-p order, and so τ(I1) = τ(W ′1) as
desired.

One might prefer to incorporate some of the intermediate arguments from this paper into
the proof method of [Ked11b], but this seems difficult. The plan of attack in [Ked11b] is to
pick out an Artin–Schreier extension that reduces the image of the monodromy representation,
which requires tame ramification to be ruled out first. By contrast, the method here is to use
Artin–Schreier extensions only to lower the ramification numbers; only when this stops being
possible is the presence of tame ramification ruled out.

A more satisfying resolution would be to use additional results of this paper, especially
Theorem 4.6.4, to shortcut many of the complicated proofs in [Ked11b, § 5]. We leave this as an
exercise for the interested reader.

5. Berkovich curves

To conclude, we globalize our setup to include more general Berkovich curves. We now adopt
the full language of Berkovich analytic spaces, as in [Ber90, Ber93].

5.1 Analytic spaces
Definition 5.1.1. A strictly affinoid algebra (respectively an affinoid algebra) over K is a
commutative Banach algebra over K isomorphic to a quotient of the completion of some
polynomial ring K[T1, . . . , Tn] for the Gauss norm (respectively the (r1, . . . , rn)-Gauss norm
for some r1, . . . , rn > 0).

Let A be a (strictly) affinoid algebra over K. A (strictly) affinoid subdomain of M(A) is a
closed subset U for which the category of bounded K-linear homomorphisms A → B of (strictly)
affinoid algebras whose restriction maps carry M(B) into U has an initial element. Any such
initial homomorphism A → B is then flat and induces a homeomorphism M(B) ∼= U [Ber90,
Proposition 2.2.4]; in particular, a strictly affinoid subdomain is also an affinoid subdomain.

Note that M(A) admits a neighborhood basis of affinoid subdomains, because any rational
subdomain is an affinoid subdomain. For x ∈M(A), define the local A-algebra Ax as the direct
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limit of the representing homomorphisms A → B over all affinoid subdomains of M(A) which
are neighborhoods of x. We define the structure sheaf O onM(A) so that for U an open subset
of M(A), O(U) consists of the functions f : U 7→ ∐

x∈M(A)Ax such that for each x ∈ U , there
exist a homomorphism A → B and an element g ∈ B such that:

– the map A → B represents an affinoid subdomain of M(A) contained in U and containing
a neighborhood of x;

– for each y ∈ U , f(y) is the image of g in Ay.

By Tate’s theorem, the natural mapA→ Γ(M(A),O) is a bijection. By Kiehl’s theorem, coherent
sheaves over O correspond to finite A-modules via the functor of global sections.

Definition 5.1.2. A good (strictly) K-analytic space is a locally ringed space which is locally
isomorphic to an open subspace of the Gel’fand spectrum of a (strictly) affinoid algebra over K.
These are the analytic spaces considered in [Ber90]; they have the property that any point has
a neighborhood basis consisting of affinoid spaces.

Remark 5.1.3. In [Ber93], the more general notion of a (strictly) K-analytic space is considered,
in which it is only required that each point have a neighborhood basis consisting of a finite union
of affinoid spaces (glued in a suitable way). In this paper, we can get away with considering only
good spaces because any curve over K is good [deJ95, Corollary 3.4].

5.2 Curves and triangulations
We next introduce some of the the combinatorial structure of a Berkovich analytic curve over K.
One way to explain this is using semistable models, as in [Bal10, BK]. Here, we take an alternate
approach using triangulations introduced by Ducros [Duc14], so as to avoid leaving the realm
of analytic spaces; this follows the example of [Pul14, PP12a, PP12b]. There is also a link to
tropicalization; see Remark 5.2.7.

Definition 5.2.1. For K ′ an analytic field containing K and X a good K-analytic space, let
XK′ denote the base extension of K to K ′. For X =M(A), we have XK′ =M(A ⊗̂K K ′).

Let ΩX denote the sheaf of continuous Kähler differentials on X. We say that X is rig-smooth
of pure dimension n if for every analytic field K ′ containing K, ΩXK′ is locally free of rank n.

By a curve over K, we will mean a good K-analytic space X which is separated (i.e., the
diagonal morphism is a closed immersion) and rig-smooth of pure dimension 1. In particular, X
is paracompact.

Definition 5.2.2. Let X be a curve over K. For x ∈ X, we declare x to be of type 1, 2,
3, 4 if the signature of x is respectively (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0). These cases are
exhaustive by Proposition 4.2.7 plus Noether normalization for strictly affinoid algebras [BGR84,
Corollary 6.1.2/2].

Definition 5.2.3. An open disc over K is a K-analytic space isomorphic to
⋃
γ∈(0,β]

M(R[0,γ]) for some β > 0. An open annulus over K is a K-analytic space isomorphic to⋃
α<γ6δ<βM(R[γ,δ]) for some 0 < α < β.

A virtual open disc (respectively virtual open annulus) is a connected K-analytic space whose
base extension to C is a disjoint union of open discs (respectively open annuli). By the skeleton
of a virtual open annulus over K, we mean the set of points not contained in a virtual open
disc. For the standard open annulus

⋃
α<γ6δ<βM(R[γ,δ]) within Dβ,K , the skeleton is the set

{ζ0,ρ : ρ ∈ (α, β)}; in general, the skeleton of a virtual open annulus is an open segment.
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Definition 5.2.4. Let X be a curve over K. A weak strict triangulation (respectively weak
triangulation) of X is a locally finite subset S of X consisting of points of type 4 (respectively
of types 2 or 3) such that any connected component of X\S is a virtual open disc or
a virtual open annulus. The union of the skeleta of the connected components of X\S which are
virtual open annuli forms a locally finite graph ΓS , called the skeleton of the weak triangulation.
The points of ΓS are all of types 2 or 3.

Remark 5.2.5. The definition of weak triangulation used here is the same as in [Pul14] but
is somewhat more permissive than the one used in [Duc14], in which it is required that X\S
be relatively compact. Omitting this condition makes it possible for ΓS to fail to meet some
connected components of X, e.g., if there is a component which is itself a virtual open disc. If
ΓS does meet every connected component of X, then there is a natural continuous retraction
πS : X → ΓS taking any x ∈ ΓS to itself and taking any x ∈ X\ΓS to the unique point of ΓS in
the closure of the connected component of X\ΓS containing x.

Theorem 5.2.6. Any (strictly) analytic curve over K admits a weak (strict) triangulation.

Proof. See [Duc14, Théorème 5.1.14]. 2

Remark 5.2.7. There is also an approach to the structure theory of analytic curves via
tropicalization, i.e., consideration of the projections defined by evaluation at finitely many
functions on the curve. For discussion of the case K = C, including a proof of Theorem 5.2.6 in
that context, see [BPR12, § 5].

Definition 5.2.8. Let X be a curve and let x ∈ X be a point of type 2. Then the residue field
κH(x) is the function field of an algebraic curve over κK ; we denote the genus of this function
field by g(x) and call it the genus of x. For any weak triangulation S of X, the type 2 points of
X\S are all of genus zero; by Theorem 5.2.6, it follows that the type 2 points of X of positive
genus form a locally finite set.

Definition 5.2.9. Let X be a curve. By a branch of X at a point x ∈ X, we mean a local
path-connected component of X\{x} at x. Depending on the type of x, branches exist as follows:

(a) exactly one branch;

(b) infinitely many branches, corresponding to all but finitely many places of the function field
κH(x);

(c) either zero, one, or two branches;

(d) exactly one branch.

Given a weak triangulation S of X, we say that a branch U of X at x is skeletal (or S-skeletal
in case of ambiguity) if the closure of U ∩ΓS contains x; such branches can only exist if x ∈ ΓS .

We say that x ∈ X is external if it is of type 2 and its branches do not correspond to all of
the places of κH(x) or if it is type 3 and it has fewer than two branches; otherwise, we say that x
is internal. For any weak triangulation S of X, every point of X\ΓS is internal, as is every point
of ΓS lying in the interior of an edge; by Theorem 5.2.6, it follows that the external points of X
form a locally finite set.

Example 5.2.10. For X an affinoid space, the external points of X are precisely the points of the
Shilov boundary, the minimal subset of X for which the maximal modulus principle holds.

Remark 5.2.11. If X is a strictly affinoid space, then the points of the Shilov boundary are all of
type 2. Consequently, for any strictly analytic curve X, the external points of X are all of type 2,
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so every point of type 3 has exactly two branches. However, for more general analytic spaces,
a point of type 3 may have one or even zero branches. For instance, take X to be the annulus
M(R[α,β]) for some α, β ∈ (0,+∞)\|C×|. If α < β, then ζ0,α and ζ0,β are points of type 3 each
with only one branch. If α = β, then M(R[α,α]) consists only of a single point ζ0,α of type 3,
which in particular has zero branches.

5.3 Convergence of local horizontal sections
We next study the convergence of local horizontal sections on analytic curves. As in the case of
discs, we end up with a global statement about the behavior of radii of convergence of differential
modules on analytic curves; this statement recovers the main results of [Pul14, PP12a, PP12b].

Hypothesis 5.3.1. For the remainder of the paper, let X be a curve over K equipped with a
weak triangulation S and let M be a vector bundle over X of constant rank n > 0 equipped with
a connection. (Since X is of dimension 1, the connection is automatically integrable.)

Remark 5.3.2. One interesting case excluded by our hypotheses is that where X is an affine line
and S is empty. In this case, the radii of convergence should be allowed to be infinite, but we do
not want to worry about this. For a more comprehensive treatment, see, for instance, [BK].

In order to define analogues of the radii of optimal convergence, one must make reference to
the chosen triangulation. This has the same effect as the choice of a semistable model in [Bal10].

Definition 5.3.3. For x ∈ ΓS , define s1(M,S, x), . . . , sn(M,S, x) as the intrinsic subsidiary radii
of M in order, and put ρS(x) = 1.

For x ∈ X\ΓS , lift x to a point y ∈ XC, identify the connected component of (X\ΓS)C
containing x with an open disc of some radius R, then define s1(M,S, x), . . . , sn(M,S, x) as
the functions s1(M,y)/R, . . . , sn(M,y)/R as in Definition 4.3.11. We use the same identification
(again dividing by R) to define the diameter ρS(x). These definitions do not depend on the choice
of y or R, and are stable under enlarging K.

For x ∈ X, define the spectral cutoff of M as the largest m(x) ∈ {0, . . . , n} such that si(M,
S, x) < ρS(x) for i = 1, . . . ,m(x).

In order to analyze these functions, it will be useful to consider them first along individual
branches.

Definition 5.3.4. Choose x ∈ ΓS of type 2, let U be a branch of X at x, and let v be the
corresponding place of κH(x). Choose t ∈ OX,x with x(t) = 1 whose image t in κH(x) is a
uniformizer of v (i.e., its v-valuation is the positive generator of the value group). Then for
β ∈ (0, 1) sufficiently close to one, t defines an isomorphism between the space of y ∈ U with
y(t) ∈ (β, 1) and the open annulus β < |t| < 1 in the t-line. We can use this isomorphism to
define the class of functions f : X → R which are affine along U in a neighborhood of x, and
to associate to each such function a slope (in the direction away from x); neither of these
definitions depends on the choice of t.

Lemma 5.3.5. Set notation as in Definition 5.3.4. Then for i = 1, . . . ,m(x), the function
log si(M,S, ·) is affine along U and its limit at x (approached from within U) equals log si(M,
S, x).

Proof. For x /∈ S this is immediate from Proposition 3.6.3(a). For x ∈ S with g(x) = 0, we
may also apply Proposition 3.6.3(a) over the ring Ran

(α,1). For x ∈ S with g(x) 6= 0, we obtain
a differential module over a ring S which can be written as a finite étale algebra over Ran

(α,1) of

1150

https://doi.org/10.1112/S0010437X14007830 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007830


Structure of connections on nonarchimedean curves

some degree d > 0 such that S ⊗Ran
(α,1)

F1
∼= H(x) is a finite unramified extension of F1. If we

restrict scalars from S to Ran
(α,1), the multiset of intrinsic subsidiary radii does not change except

that each multiplicity gets multiplied by d. We may thus apply Proposition 3.6.3(a) in this case

also. 2

We have the following analogue of Proposition 3.6.3(c). A more detailed exposition of the

geometry used in this argument will be given in [BK].

Theorem 5.3.6. Choose x ∈ X of type 2. Let c(x) be the number of skeletal branches of X at

x. (Note that if x /∈ ΓS , then g(x) = c(x) = 0.)

(a) For i = 1, . . . ,m(x), the function log si(M,S, ·) is affine of slope 0 along all but finitely

many branches of X at x. In particular, we may form the sum µi of the slopes of the function∑i
j=1 log sj(M,S, ·) along all of the branches of X at x (in the directions away from x).

(b) If x /∈ ΓS , then µi 6 0 for i = 1, . . . ,m(x).

(c) If x ∈ ΓS is internal, then µi 6 (2g(x)− 2 + c(x))i for i = 1, . . . ,m(x).

(d) In (b) and (c), equality holds if i = m(x). Equality also holds if i < n and si(M,S, x)

< si+1(M,S, x).

Proof. We may assume that K = C, so that κK is algebraically closed. If x /∈ ΓS , by rescaling

we may reduce the claims to an instance of Proposition 3.6.3(c), so we may assume hereafter

that x ∈ ΓS .

Suppose first that X is contained in the affine line; in this case, we may follow the proof

of [Ked10a, Theorem 11.3.2(c)]. Namely, using Frobenius pushforwards as in Definition 3.5.2

(and using Propositions 2.3.5 and 3.5.5), we may reduce to the case where si(M,S, x) < ωρS(x).

In this case, the claims follow by first using Corollary 2.1.6 to choose an element of Mx which is

a cyclic vector for Mx⊗OX,x Frac(OX,x) for the derivation d/dt, then applying Proposition 2.2.6.

We now treat the case of general X. Let C be a smooth projective connected curve over κK
with function field κH(x). Choose a nonconstant f ∈ κH(x) of degree d > 0, then choose f ∈ OX,x
with x(f) = 1 lifting f which is unramified at each point corresponding to a branch named in

(a). Note that removing part of X contained in a branch adds i to both sides of the desired

inequality and is thus harmless; we can thus ensure that f defines a finite étale map X → X ′

for X ′ a subspace of the affine line. Put x′ = f(x′) and let S′ be the image of S. For each branch

U ′ of X ′ at x, the slope of
∑di

j=1 log sj(f∗M,S′, U ′) can be computed as follows. Let P ′ be the

point of C corresponding to U ′. For each point P ∈ f−1(P ′) with multiplicity m and ramification

number e (so that e = m if the ramification at P is tame), let U be the corresponding branch

of X at x; we then get a contribution of 1 − e plus the slope of
∑i

j=1 log sj(M,S,U) (as may

be verified using Frobenius descendants). We thus deduce the claim from the previous case plus

the Riemann–Hurwitz formula. 2

To show that the functions si(M,S, ·) can be computed using some triangulation, we use the

following criterion.

Lemma 5.3.7. Let T be a triangulation containing S with the following properties.

(a) The set ΓT meets every connected component of X\ΓS . In particular, the retraction πT
exists (see Remark 5.2.5).
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(b) Along each edge of ΓT , the functions log si(M,S, ·) are affine for i = 1, . . . , n.

(c) For each x ∈ T , for i = 1, . . . ,m(x), the slope of log si(M,S, ·) along any nonskeletal
branch of X at x is 0.

Then for i = 1, . . . , n, log si(M,S, ·) factors as the retraction πT followed by a piecewise affine
function on ΓT .

Proof. Note that (b) implies that (c) holds also for x ∈ ΓT by Proposition 3.6.3(c, d). We may
thus deduce the claim using Lemma 4.3.12 (applied after enlarging K to turn a virtual open disc
into a true open disc) and Lemma 5.3.5. 2

We then obtain the following generalization of Theorem 4.5.15, which recovers the main
results of [PP12a, PP12b, Pul14].

Theorem 5.3.8. There exists a triangulation T containing S such that ΓT meets every connected
component of X\ΓS (so the retraction πT exists by Remark 5.2.5) and each function log si(M,
S, ·) factors as πT followed by a piecewise affine function on ΓT . In particular, the functions
s1(M,S, x), . . . , sn(M,S, x) on X are continuous.

Proof. Since X is locally compact, it suffices to check the claim locally around some x ∈X. If x /∈
ΓS , the claim follows from Theorem 4.5.15, so we need only consider x ∈ ΓS . By Theorem 5.3.6(a),
we can choose T so that for i = 1, . . . ,m(x), the slope of log si(M,S, ·) is zero along each
T -nonskeletal branch of X at x. By Proposition 3.6.3(a), we may draw an open star in ΓT
around x such that on each edge, the functions log si(M,S, ·) are affine for i = 1, . . . , n. On this
star, the conditions of Lemma 5.3.7 are satisfied, so the desired result follows. 2

One can also change the functions to match the new triangulation without disturbing the
conclusion.

Definition 5.3.9. We say that a triangulation T is controlling for M if the functions si(M,T, ·)
also factor as the retraction πT followed by some piecewise affine functions on ΓT . That is, we
must be able to take T = S in the conclusion of Theorem 5.3.8.

Corollary 5.3.10. In the notation of Theorem 5.3.8, the triangulation T is controlling.

Proof. This follows from Theorem 5.3.8 and the fact that conditions (a, b) of Lemma 5.3.7 can
be stated in terms of intrinsic subsidiary radii, and so remain valid if we replace S by T . 2

Corollary 5.3.11. Let T be a triangulation containing S with the following properties.

(a) The set ΓT meets every connected component of X\ΓS .

(b) Along each edge of ΓT , the functions
∑n

i=1 log si(M,S, ·) and
∑n2

i=1 log si(End(M), S, ·)
are affine for i = 1, . . . , n.

(c) For each x ∈ T , the slope of
∑m(x)

i=1 log si(M,S, ·) along any nonskeletal branch of X at
x is zero.

Then for i = 1, . . . , n, log si(M,S, ·) factors as the retraction πT followed by a piecewise affine
function on ΓT . In particular, by Corollary 5.3.10, T is controlling.

Proof. It suffices to verify the conditions of Lemma 5.3.7. Condition (a) is true by hypothesis.
Condition (b) holds by Lemma 3.7.3. To check condition (c), note that for i = 1, . . . ,m(x), the
slope of log si(M,S, ·) at x is nonnegative by Proposition 4.3.8, but the sum of these slopes is
zero so each slope individually must equal zero. 2
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Corollary 5.3.12. There exists a strict triangulation T which is controlling for M .

Proof. We construct an increasing sequence of triangulations T0, . . . , Tn such that for i= 0, . . . , n,

the retraction πTi exists and for j = 1, . . . , i, the functions log sj(M,Ti, ·) factor as πTi followed

by a piecewise affine function on ΓTi . To begin, let T0 be any strict triangulation of M for which

the retraction πT0 exists. Given Ti for some i ∈ {0, . . . , n − 1}, by Theorem 5.3.8 there exists a

triangulation Ti+1 containing Ti such that log si+1(S, Ti, ·) factors as πT followed by a piecewise

affine function on ΓT . If i = 0, then Proposition 4.5.3 ensures that Ti+1 can be chosen to be

strict. If i > 0, we may make the same argument after applying Proposition 3.6.7 to separate the

first i− 1 radii in each disc. 2

Remark 5.3.13. The methods of [BK, PP12a, PP12b, Pul14], when considered without reference

to this paper, can only prove a weaker version of Theorem 5.3.8: they only provide a controlling

triangulation over a sufficiently large analytic field K ′ containing K. As in Remark 4.5.16, the

problem is that this triangulation may involve vertices which project to type 4 points of the

original curve, which our methods are able to rule out. In the language of [Bal10], we are able to

exhibit a controlling strictly semistable model already over C, whereas the methods of [PP12a,

PP12b, Pul14] provide such a model only over a possibly larger algebraically closed analytic field

containing C.

Remark 5.3.14. One can also give a variant of Theorem 5.3.8 for meromorphic (possibly irregular)

connections; in this case, one must allow triangulations to have vertices at type 1 points (namely

the poles of the connection). This result is described in [BK].

5.4 Clean decompositions

One has an analogue of the spectral decomposition for the stalk of M at a point x ∈ X. Using

Theorem 5.3.8, we can extend this decomposition to specific subspaces of X.

Lemma 5.4.1. Choose x ∈ X of type 2 or 3.

(a) There exists a unique direct sum decomposition Mx =
⊕

iNi whose base extension to

H(x) is the spectral decomposition.

(b) There exists a finite étale extension S of OX,x such that Mx⊗OX,x S admits a direct sum

decomposition whose base extension to H(x)⊗OX,x S is a refined decomposition.

Proof. Part (a) follows by using the pushforward argument from the proof of Theorem 5.3.6 to

reduce to the case where X is contained in the affine line over K; this case is the Dwork–Robba

decomposition theorem [DR77, § 4, Theorem, p. 20], or can alternatively be derived by following

the proof of [Ked10a, Theorem 12.3.2]. Part (b) follows similarly upon noting that the local ring

OX,x is henselian. 2

Theorem 5.4.2. Let T be a controlling triangulation for M .

(a) For x /∈ ΓT , let U be the branch of πT (x) containing x. Then the restriction of M to U

splits as a direct sum in which for each summand N , there exists a constant c > 0 such that

si(N,T, y) = c for i = 1, . . . , rank(N) and y ∈ U .

(b) For x ∈ ΓT , let E be the open star around x (i.e., the union of x with the interiors of

the edges of ΓT incident upon x) and put U = π−1T (E). Then there exists a unique direct sum

decomposition of M whose base extension to H(x) is the spectral decomposition.
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Proof. Part (a) is immediate from Proposition 3.6.7. To obtain (b), first apply Lemma 5.4.1 to
obtain a decomposition over an uncontrolled open neighborhood V of x. Note that V already
contains all but finitely many branches of X at x. For each remaining branch W , it remains
to construct a second decomposition which agrees with the first one on V ∩ W . If W is
T -nonskeletal, this is immediate from (a). If W is T -skeletal, we may apply Lemma 3.7.3 to
obtain a decomposition in which each summand has a unique spectral radius along E ∩W . Each
summand has a unique limiting spectral radius at x. If we group summands by limiting spectral
radius, the resulting decomposition agrees with the original one on V ∩W , as desired. 2

Remark 5.4.3. The conclusion of Theorem 5.4.2(b) is best possible in certain senses. For one, one
cannot ensure that the base extension of the decomposition to H(y) is the spectral decomposition
at any y ∈ E\{x}, because of the coarsening step in the proof of Theorem 5.4.2. Similarly, one
cannot extend the decomposition to another vertex of ΓT .

Remark 5.4.4. The decompositions appearing in Theorem 5.4.2 are analogues of the good
formal structures for formal meromorphic connections described in [Ked10b, Ked11a]. Additional
analogues in the p-adic setting also appear in [KX10]. The decompositions given here can be used
to obtain a global index formula for connections on analytic curves, in the style of the work of
Robba [Rob75, Rob76, Rob84, Rob85] and Christol and Mebkhout [CM93, CM97, CM00, CM01].
Such a formula will appear in a forthcoming paper of Baldassarri and the author.

Remark 5.4.5. Using these results, it is tempting to look for a more global version of
Theorem 3.8.21. When p > 0, one might even guess that every connection étale-locally satisfies
the Robba condition. However, this guess is incorrect as shown by Remark 2.3.18, and it is not
immediately obvious to us how to salvage the statement.

One motivation for doing so would be to show that the behavior of radii of convergence for
connections arising from discrete representations of the geometric fundamental group, which can
be explained in terms of Faber’s Berkovich-theoretic ramification locus [Fab13a, Fab13b], is in
fact completely representative of the general case.
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