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Abstract

We propose a novel measure of the market return tail risk premium based on minimum-
distance state price densities recovered from high-frequency data. The tail risk premium
extracted from intra-day S&P 500 returns predicts the market equity and variance risk
premiums and expected excess returns on a cross section of characteristics-sorted portfolios.
Additionally, we describe the differential role of the quantity of tail risk, and of the tail
premium, in shaping the future distribution of index returns. Our results are robust to
controlling for established measures of variance and tail risk, and of risk premiums, in the
predictive models.

I. Introduction

Starting with Bollerslev, Tauchen, and Zhou (2009), extant empirical evidence
supports that the variance risk premium (VRP) helps predict future aggregate
market returns.1 This predictability has been rationalized under different theoretical
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1The VRP is defined as the difference between the conditional expected variance of market returns
over a given horizon under the physical and risk-neutral measures. It captures the compensation
demanded by investors for bearing variance risk.
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frameworks.2 Focusing on the properties of the VRP in a model-free manner,
Bollerslev and Todorov (2011) and Bollerslev, Todorov, and Xu (2015) demon-
strate how this premium reflects compensation for two different types of risk:
diffusive and jump risk. They show that a large part of the VRP and its predictive
power for the equity premium comes from the compensation demanded by inves-
tors for extreme negative events. Such asymmetric importance of losses relative to
gains has strong theoretical foundations, as in the case of loss aversion (Kahneman
and Tversky (1979)) and disappointment aversion (Gul (1991), Routledge and Zin
(2010)) preferences. These theories posit that agents are specially averse to down-
side losses, such that greater compensation (in the form of higher expected returns)
is demanded for assets with high downside risk.3

In this article, we introduce a new measure of the compensation that investors
demand for bearing systematic downside risk. We use it to shed light on the
predictability of aggregate and cross-sectional risk premiums that is due to aversion
to downside risk in a high-frequency environment. Themotivation of our analysis is
threefold. First, theory indicates that the VRP should predict market returns, where
most of the VRP arises directly from compensation for downside risk. Second,
theory also suggests that investorswill demand higher returnswhen their perception
of downside risk is high. Third, while the predictability literature focuses on
monthly to longer horizons, high-frequency evidence can provide new stylized
facts for economic theories to account for, and to be judged against.4

We compute the daily tail risk premium, denoted as Δℙ
ℚES, as the difference

between the expected shortfall calculated under the risk-neutral (ESℚ) and physical
(ESℙ) probabilitymeasures estimated from intra-day S&P 500 return data. The risk-
neutralization is based on a nonparametric adjustment of the raw market returns.
Motivated by Ait-Sahalia and Lo (1998), (2000), the risk adjustment puts a higher
probability weight on extreme negative returns, reflecting investors’ compensation
for “bad” states of the world. From an economic viewpoint, ESℚ (ESℙ) is the
expectation under the risk-neutral (physical) measure of the payoff of a hypothetical
out-of-the-money (OTM) put option on the market, which is naturally sensitive to
negative jumps in returns. In particular, ESℚ�ESℙ can be expressed as the
expected value of the difference between the put price and its payoff, which allows
us to interpretΔℙ

ℚES as the expected gain of selling the put. Therefore,Δ
ℙ
ℚESwill be

2Bollerslev et al. (2009) and Drechsler and Yaron (2011) extend the long-run risk model of Bansal
and Yaron (2004) to make the equity premium a function of time-varying volatility-of-volatility and
jump-intensity, respectively. In both cases, the VRP effectively isolates the relevant latent factor (vol-of-
vol or jump-intensity), justifying its predictive power for market returns. This is because the represen-
tative agent’s aversion to a shock in the latent factor makes the risk-neutral variance higher than the
physical one, i.e., the VRP increases (in absolute value) with the factor. Alternatively, Bonomo, Garcia,
Meddahi, and Tédongap (2015) show that the predictability afforded by the VRP can be generated by
incorporating generalized disappointment aversion preferences (Routledge and Zin (2010)) in the long-
run risk model. See also Bekaert and Engstrom (2017), who extend the habit formation preferences of
Campbell and Cochrane (1999) to show that the VRP can be interpreted as a proxy for aggregate risk
aversion.

3This prediction has been empirically confirmed for the cross section of stock returns by Ang et al.
(2006) and Farago and Tédongap (2018).

4For instance, Bonomo et al. (2015) develop a model to reproduce moments and predictability
patterns of risk and return across different frequencies.
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high when investors highly value protection against market downside risk
(i.e., when they are willing to pay a high premium relative to the expected put
payoff).

We investigate the predictive power of Δℙ
ℚES for risk premiums with a com-

prehensive set of empirical tests. We focus our predictive exercises on very short
horizons: daily, weekly, and monthly. This directly complements the longer-
horizon predictability results documented in the literature. In the predictive regres-
sions, we control for a number of established variance and tail risk measures.
Among these, three are particularly important: the physical expected shortfall
(ESℙ), the left tail variance (LTV) of Bollerslev, Todorov, and Xu (2015) and the
VRP of Bollerslev, Tauchen, and Zhou (2009). Including ESℙ, which is a measure
of realized downside risk, allows us to assess what better predicts risk premiums:
the tail risk premium or the quantity of tail risk itself. LTV, which estimates jump
risk from OTM options, is a natural benchmark to assess if options contain infor-
mation beyond that provided by our measure. The VRP is included given its
important role as a predictor of the equity premium (Bollerslev et al. (2009)).5

We complement these measures with the realized variance (RV) of market returns
computed from intra-day data and other measures of realized return variation.

We start with a predictive analysis of excess market returns. We find that our
measure Δℙ

ℚES has strong predictive power for 1-day ahead market returns, with a
positive coefficient that is highly statistically significant and a non-negligible R2.6

This provides new high-frequency evidence that investors require a higher com-
pensation to hold the market when aversion to downside risk increases. This
predictive power is robust to controlling for all the measures we consider, across
different regression specifications. In particular, the only other predictor that
appears as significant is the VRP. We show that the predictability afforded by
Δℙ
ℚES also holds out-of-sample across different starting dates and re-estimation

frequencies. This indicates that the predictive relation between the tail risk premium
and the equity premium is stable and persists under different economic conditions.
Such predictive power is both statistically and economically significant.

We further investigate whether Δℙ
ℚES is able to predict the variance risk

premium. Since the VRP reflects in large part compensation for extreme negative
events, we should expect that the tail risk premium is informative about the future
VRP. This is indeed what we find in the predictive regressions, where Δℙ

ℚES is a
highly significant predictor across different regression specifications and all hori-
zons. In particular, this predictability remains after including the lagged VRP,
which is also highly significant. It is worth noting that the LTV has no predictive
power for the equity and variance risk premiums. This can be rationalized by the
fact that it is computed from options with maturity between 6 and 31 trading days,
which reflect market expectations over relatively long horizons. In contrast, our tail
risk premium measure contains information completely conditional on day t.7

5We compute a daily version of the VRP that is analogous to the monthly VRP constructed by
Bollerslev et al. (2009).

6For the 1-week and 1-month ahead horizons, no predictor is significant.
7In Appendix A, we show that, similarly to LTV, our tail risk premium measure captures time-

variation in the risk-neutral and physical tail shape parameters of the market return distribution.
However, the two measures naturally differ in how they are estimated and what data are used.
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We also analyze the predictive relation between the tail risk premium and
1-day ahead excess returns on portfolios comprised of stocks sorted on various
characteristics: size, book-to-market (BM), profitability, investment, momentum,
reversal, and industry. These portfolios reflect compensation for risks beyond those
related to the market portfolio. Given the important role of downside risk factors in
explaining the cross section of returns (Ang, Chen, and Xing (2006), Farago and
Tédongap (2018)), Δℙ

ℚES can potentially be useful for predicting cross-sectional
risk premiums at high frequency. Our results show that the tail premium measure is
able to predict the returns on most of the portfolios with high t-statistics and
economically significant R2s. The same is not true for the other variables we
consider. In fact, adding each of them at a time to the predictive regressions does
not affect the predictive power of Δℙ

ℚES. This reinforces the role of aversion to
downside risk as captured by our measure as a fundamental determinant of risk
premiums at short horizons.

Our analysis indicates that it is the tail risk premium (Δℙ
ℚES) rather than the

level of tail risk (ESℙ) that contains relevant predictive information about future
market returns.8 In order to shed light on the differential role of these variables for
explaining the equity premium, we investigate their predictive power for the
whole distribution of next-day market returns by estimating the quantile regres-
sion model of Koenker and Gilbert (1978). We find that an increase in risk (ESℙ)
leads to a larger probability of observing both extreme negative and positive
market returns, whereas an increase in the aversion to downside risk (Δℙ

ℚES)
shifts the quantiles around the median and the whole right tail toward more
positive values. That is, a positive shock in expected shortfall means a more
volatile market, such that it is usually followed by either a large decrease or
increase of the S&P 500 index. These extreme effects cancel out when predicting
directly the market returns. In contrast, a positive shock in the tail risk premium
signals that investors are more averse to extreme negative outcomes, requiring a
higher compensation to hold the market. This is reflected in the positive effect of
Δℙ
ℚES on essentially all quantiles of the market return distribution. Such unam-

biguous effect translates to the significant positive relation between Δℙ
ℚES and

future market returns.9

The rest of the article is organized as follows: We close the introduction with a
brief review of the related literature. Section II describes how we define and
estimate our tail risk premium measure based on high-frequency market returns.
Section III presents our empirical predictability results for risk premiums and
quantiles of the S&P 500 excess return distribution. Section IV contains several
robustness tests considering different specifications of our tail premium measure.
Section V concludes the article.

8This result is largely in line with Bollerslev et al. (2009), Bollerslev and Todorov (2011), Bollerslev
et al. (2015), and Andersen et al. (2017), among others, who study the risk-return trade-off concluding
that it is the variance risk premium rather than the quantity of risk that is informative of future risk
premiums.

9We then conduct a thorough out-of-sample evaluation of interval forecasts using all of the tests
prescribed byChristoffersen (1998), which confirms that the in-sample predictive power of the estimated
quantile model translates to out-of-sample performance.
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Related Literature

Our article is related to the rich and growing literature on the estimation of
tail risk and systematic risk measures and their use to predict the equity and
variance risk premiums. This includes, among others, Bali, Demirtas, and Levy
(2009), Allen, Bali, and Tang (2012), Siriwardane (2013), Kelly and Jiang (2014),
Adrian and Brunnermeier (2016), and Brownlees and Engle (2017). In particular,
Bollerslev et al. (2015) decompose the variance risk premium and examine the
importance of the diffusive and jump components for return predictability. Ander-
sen, Fusari, and Todorov (2017) estimate the variation in the left tail of the return
distribution from short-maturity optionswith significant predictive power for future
short-term returns. Andersen, Fusari, and Todorov (2020) extend this evidence to
international equity markets. Vilkov and Xiao (2013), Ghysels and Wang (2014),
and Huggenberger, Zhang, and Zhou (2018) use daily index options to model
forward looking tail risk based on value-at-risk (VaR) and expected shortfall
measures. In contrast to these articles, we are the first to provide a methodology
to compute the tail risk premium in high-frequency environments that is applicable
to virtually any set of returns.

To estimate the risk-neutral leg of our tail risk premium measure, we build on
Almeida, Ardison, and Garcia (2017), who compute a nonparametric risk-neutral
expected shortfall based on a cross section of daily portfolio or security returns.10 In
contrast to that article, we rely solely on returns on a broad market index and we use
high-frequency intra-day data to obtain more information about the tail. Moreover,
while in the aforementioned article, the authors propose the risk-neutral expected
shortfall as a new tail risk measure, we concentrate on measuring the tail risk
premium as the difference between expected shortfalls under the risk-neutral and
physical measures.11

Our article is close in spirit to Weller (2019), who develops a real-time tail
risk measure based on intra-day bid and ask quotes. While Weller (2019) focuses
on the natural relation between tail risk and jumps, providing substantial evi-
dence of jump realization predictability using intra-day data, we focus on the
broader relation between aversion to tail risk and aggregate and cross-sectional
risk premiums. Additionally, Weller (2019)’s measure considers a panel of 2,800
firms for its baseline 1-factor model, while our tail measure necessitates only
1 day of intra-daily observations on one stock index. In fact, the measure we
propose can be easily applied to different markets and assets for which intra-day
returns are available, avoiding the need to rely on option prices or bid–ask
spreads.

10Kelly and Jiang (2014) also use a large cross section of observed returns to compute a tail risk
measure by assuming that asset return tails follow a power law.With particular emphasis on the financial
sector, Allen et al. (2012) and Brownlees and Engle (2017) adoptedVaR and expected shortfall measures
to estimate systemic risks. In this literature, the estimated tail risk measures are calculated on a monthly
or weekly basis rather than daily.

11In addition, by focusing on high-frequency individual returns instead of cross-sectional returns,
supplementary economic restrictions like the non-negativity of the equity premium can be naturally
imposed on the Euler equations as advocated by Campbell and Thompson (2008) and Pettenuzzo,
Timmermann, and Valkanov (2014).
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Our article also complements the findings obtained with the use of high-
frequency factor models in Bollerslev, Todorov, and Li (2013), Bollerslev, Li,
and Todorov (2016), and Aït-Sahalia, Jacod, and Xiu (2020). Bollerslev et al.
(2013) use a large high-frequency data set on the cross section of stock returns to
measure the quantity of tail risk under the physical probability measure. In contrast,
we identify a measure of the high-frequency tail risk premium that captures the
wedge between the risk-neutral and physical worlds. Bollerslev et al. (2016)
consider an extension of the CAPM with separate betas for the jump component
and the continuous component of the market return. They find that only the jump
component beta entails significant premiums. We offer a new tail risk premium
measure that is not dependent on option data and does not rely on any parametric
dynamics for the market return. Aït-Sahalia et al. (2020) estimate a multi-factor
model at high frequency. They show that a large part of the market equity premium
is due to exposures to the market’s jump risk component and that jump risks in
Fama–French factors supersede their continuous counterparts. The predictive
power of our tail risk premium for the expected returns of the characteristic-based
portfolios is consistent with their findings.

II. The Nonparametric Tail Risk Premium

A. Background

Let Ω,F,ℙð Þ be a probability space (withℙ the physical probability measure),
where R and RF are random variables denoting, respectively, the return of a
primitive basis asset (the stock index), and a risk-free rate. An admissible risk-
neutral distribution (RND) ℚ is represented by a density q, a nonnegative random
variable with unitary mean satisfying the Euler pricing equation for the index
returns:12

Eℚ R�RF½ � �Eℙ q R�RFð Þ½ � ¼ 0,

with Eℙ q½ � ¼ 1, q≥ 0:

(1)

At each day t, we observe a sample Rt
i

� �
i¼1,…,T

of high-frequency stock index
returns (T > 1). We use this high-frequency time-series to identify a conditional
RND ℚt via its density qt and the empirical conditional physical distribution ℙt,
with density pti ¼ 1

T , i¼ 1,…,T, for all t.13

B. Definition

Our objective is to build a simple tail risk premium measure that depends
solely on the returns of the single stock index observed at a high frequency. To that
end, for each date t, we estimate daily expected shortfalls under the conditional
physical and risk-neutral measures:

12A RND is a probability distribution ℚ equivalent to the physical distribution ℙ, under which the
basis assets are correctly priced, i.e., it satisfies the Euler equation. It can be represented one-to-one with
its corresponding density q. In this article, we use these two definitions interchangeably.

13We assume stationarity and ergodicity of the composite process qti ,R
t
i

� �
i¼1,…Tf g, such that it

satisfies a time-series version of the law of large numbers (Hansen and Richard (1987)).
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ESℙt
t ≔Eℙt sα�Rð Þ+� �

,(2)

ESℚt
t ≔Eℚt sα�Rð Þ+� �

:(3)

In equations (2) and (3), t is the estimation date, α is a confidence level, sα is the
α-quantile of R under the physical probability, and ℙt and ℚt indicate the physical
and risk-neutral conditional probability densities at time t, respectively. We adopt
ES to measure risk since it is a coherent measure of risk (Artzner, Delbaen, Eber,
and Heath (1999)), which overcomes the main deficiencies of the VaR measure. In
particular, while VaR completely ignores the behavior of returns in the tail beyond
its confidence level, ES takes an average of these tail returns, being thus highly
sensitive to what happens in the tail.14

Note that we use a version of ES that can also be interpreted as the expectation
of the payoff sα�Rð Þ+ of a put option with strike sα. ES

ℚt
t is then the option price

computed under the RND incorporating investors’ preferences. The put payoff is
positive in the states of nature whereR< sα, which for α < 0:5, at least for symmetric
distributions, occurs for returns R smaller than the risk-free rate (RF , i.e., negative
excess returns). The smaller the α, the more negative the sα and the farther we are in
the left tail of R. To strike a good balance between capturing behavior in the left tail
and guaranteeing enough return observations to extract information from, we set
α¼ 0:2.15 This essentiallymeans that sα�Rð Þ + is the payoff of anOTMput option,
whose price ESℚt

t reflects how protection against downside risk (the risk of large
negative returns below sα) is valued according to ℚt.

We define our tail risk premium measure as the difference between the
expected shortfalls under the risk-neutral and physical distributions:

Δℙ
ℚESt ¼ESℚt

t �ESℙt
t :(4)

Given a positive equity premium, negative market return states in which the
OTM put pays off are deemed more likely to happen underℚt than under ℙt due to
risk aversion. By keeping the same threshold sα for the two ES’s, the tail risk
premium depends only on how investors’ preferences encoded in risk-neutral
probabilities make ESℚt

t exceed its physical counterpart ESℙt
t . In particular,

Δℙ
ℚESt can be interpreted as the expected gain of selling the put option by noting

that ESℚt
t �ESℙt

t ¼Eℙt Eℚt sα�Rð Þ+� �� sα�Rð Þ+� �
is the expected value of the

difference between the put price and its payoff. Therefore, Δℙ
ℚESt is expected to

be high when investors highly value protection against market downside risk
(i.e., when they are willing to pay a high premium relative to the expected put
payoff).16

In our empirical application, we computeΔℙ
ℚESt at a daily frequency using the

intra-day stock index returns. Since there is no overlapping of data when calculating
our measure, it avoids spurious persistence and is able to quickly react to the arrival

14See Berkowitz and O’Brien (2002) and Jorion (2019) for examples in which VaR leads to over-
estimation of risks in calm periods, and underestimation during crises.

15In Section IV.C, we show that our results are very similar if we define α to be 0.1 instead.
16In Appendix A, we also show that our tail premium measure captures time-variation in the risk-

neutral and physical tail shape parameters of the market return distribution.
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of new information embedded in market returns. At this point, our main challenge
lies in finding a way of identifying the conditional risk-neutral probability distri-
butionℚt without using options in the estimation process. Following Almeida et al.
(2017), who compute risk-neutral probability distributions from a cross section of
portfolio returns, we obtainℚt at each date t by solving a specificminimumdistance
problem between the conditional physical probability distributionℙt and the family
of risk neutral distributions that correctly price the S&P 500 returns Rt

i

� �
i¼1,…T

within day t. The details of this procedure are developed in Section II.C.

C. Identifying Conditional Risk-Neutral Densities from S&P 500 Returns

We work with a sequence of repeated 1-period models indexed by time t,
characterized by the high-frequency returns Rt

i

� �
i¼1,…,T sampled at t.17 Since T > 1,

the market within each of these models is inherently incomplete and, under the
assumption of no-arbitrage, there exists an infinity of RNDs pricing the index
returns at each date t. Almeida and Garcia (2017) suggest identifying a subset of
RNDs by minimizing functions in the Cressie–Read family of discrepancies
ϕγ πð Þ¼ πγ + 1�1

γ γ+ 1ð Þ ,γ∈ℝ, that measure the distance between admissible RNDs ℚ with
density q and the physical probability distribution ℙ with density p. Each discrep-
ancy ϕγ πð Þ allows for the identification of a specific RNDbqγ with unique sensitivity
to higher-order moments of the stock index returns.18

The minimum-discrepancy (MD) problem, which was originally proposed by
Almeida and Garcia (2017) for SDFs and later adapted by Almeida and Freire
(2022) for RNDs, can be stated in its sample version for a single basis asset as
follows:

bqγ ¼ argmin
q1,…,qTf g

XT
i¼1

piϕ
γ qi

pi

� 	

subject to
XT
i¼1

qi R
t
i�RF

� �¼ 0

XT
i¼1

qi ¼ 1

qi ≥ 0 orqi > 0ð Þ∀i,

(5)

where the last inequality depends on the discrepancy ϕγ :ð Þ chosen to measure the
distance between the RND q and the physical density p: if γ> 0, then q≥ 0,
otherwise q > 0. We consider homogeneous empirical probabilities pi ¼ 1

T ,
i¼ 1,2,…,T , to represent the physical distribution, for all dates t.19 This allows
us to exchange the expectation Eℙ with its sample counterpart 1

T

PT
i¼1 �

PT
i¼1pi.

17We often omit the time t dependence for ease of notation.
18The original analysis in Almeida and Garcia (2017) is performed in terms of Stochastic Discount

Factors (SDFs). Almeida and Freire (2022) adapt it in details to consider RNDs instead. Most of the
technical details following below were originally derived in these two articles.

19For a set of empirically observed returns Rt
i

� �
i¼1,…T , where each R

t
i is independent and identically

distributed according to ℙ, pi ¼ 1
T is an optimal nonparametric estimator for the physical density p (or,

equivalently, the empirical measure ℙT ¼ 1
T

PT
i¼1δRt

i
is an optimal nonparametric estimator for ℙ, where
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The MD problem (5) is computationally simpler and faster to solve in its dual
formulation:

bλγ ¼ argsup
θ∈ℝ,λ∈Λ

θ +
XT
i¼1

piϕ
∗,γ θ + λ Rt

i�RF

� �� �
,(6)

whereΛ⊆ℝ and ϕ∗,γ denotes the convex conjugate of ϕγ, restricted to a subset of the
nonnegative real line:

ϕ∗,γ zð Þ¼ sup
w∈ 0,∞½ Þ∩domainϕγ

zw�ϕ wð Þ:(7)

In this dual problem, θ and λ are Lagrange multipliers arising from the
restrictions defining an admissible RND in (5). The multiplier θ determining that
q sums to 1 (i.e., that q is a discrete probability distribution) can be concentrated out
of the problem. On the other hand, the multiplier λ enforcing the Euler equation for
the returns is the main one completely characterizing the RND. More specifically,
for γ< 0, we can solve the following dual optimization problem to obtain λ:

bλγ ¼ argsup
λ∈Λ

�
XT
i¼1

pi
1

γ+ 1ð Þ 1 + γλ Rt
i�RF

� �� �γ + 1
γ ,(8)

where q can be recovered from the first-order condition of (8) with respect to λ:

bqγi ¼ 1 + γbλγ Rt
i�RF

� �
 �1
γ

PT
i¼1

pi 1 + γbλγ Rt
i�RF

� �
 �1
γ

:(9)

For each γ, the resulting MD RND is different. To help illustrate how bqγ
depends on γ, we replicate the Taylor expansion of the expected value of the
discrepancy ϕ πð Þ¼ πγ + 1�1

γ γ+ 1ð Þ around 1 executed in Almeida and Freire (2022):

E ϕγ πð Þð Þ¼ 1

2
E π�1ð Þ2 + γ�1

3!
E π�1ð Þ3 + γ�1ð Þ γ�2ð Þ

4!
E π�1ð Þ4 +…:(10)

As can be seen, minimizing the expected value of a given discrepancy amounts
to minimizing a particular combination of higher-order moments of the RND deter-
mined by γ. In particular, for γ< 1, the weight given by the discrepancy to the
skewness of the RND is negative, such that skewness is maximized, while the weight
assigned to kurtosis is positive, such that kurtosis isminimized.This is consistentwith
a “preference” for positive skewness and “aversion” to kurtosis of stock index returns,
characteristics that are in line with the findings of Kraus and Litzenberger (1976) and

δRt
i
denotes a unit mass atRt

i). SeeKitamura (2007) formore details. This essentially amounts to using the
histogram of returns as the empirical physical measure. Alternatively, one could use a kernel density
estimator to smooth the histogram and obtain the physical probabilities. This would again amount to
setting pi0 ¼ 1

T 0 but for T 0 returns drawn from the estimated kernel density, which does not bring any
further insights.
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Backus, Chernov, and Martin (2011). The lower the γ, the higher is the relative
importance of skewness and kurtosis in the estimation of the RND.

Since Cressie–Read discrepancies indexed by negative γs have higher sensitivity
to higher moments of basis assets returns, they constitute an adequate choice for our
goal of identifying an RND to calculate the tail risk premium. Almeida et al. (2017)
work with the Hellinger discrepancy (γ¼�1

2) to identify the RND from a cross
section of stock returns, due to the robustness of this estimator reported in former
econometric studies.We choose instead to conduct our baseline analysis using the γ¼
�3 estimator since it is more sensitive to the skewness and the kurtosis of returns.20 In
Section IV.A, we show that our results are robust to using the γ¼�1

2 estimator.
In Section II.D, we associate the dual problem (8) to an optimal portfolio

problemwhere a marginal investor in the S&P 500 market selects portfolio weights
on the risk-free rate and the risky asset. This provides further interpretation to our
approach.

D. Portfolio Interpretation

Consider a standard optimal portfolio problem for an investor with utility
function within the hyperbolic absolute risk aversion (HARA) class:

uγ Wð Þ¼� 1

γ+ 1
b�aγWð Þγ + 1γ ,(11)

where a> 0 and b�aγW > 0, which guarantees that the function uγ is well-defined,
concave and strictly increasing. The investor chooses how to allocate initial wealth
W 0 by investing ~λ units of wealth on the risky asset R and the remainingW 0�~λ in a
risk-free asset paying RF . The optimal allocation is such that the expected utility of
end-of-period wealth W ~λ

� �¼W 0RF +~λ R�RFð Þ is maximized:

~λ
γ ¼ max

~λ∈ℝ
E uγ W ~λ

� �� �� �
:(12)

Almeida and Freire (2022) show that there is a one-to-one mapping between
problem (12) and the population version of (8) for a given γ. This can be easily seen
via the first-order condition of (12):

E R�RFð Þ b�aγ W 0Rf +~λ
γ
R�RFð Þ


 �h i1
γ

� 
¼ 0

(E R�RFð Þ b�aγW 0Rf

� �
1 + γbλγ R�RFð Þ


 �h i1
γ

� 
¼ 0

( b�aγW 0Rf

� �1
γE R�RFð Þ 1 + γbλγ R�RFð Þ


 �1
γ

� 
¼ 0

(E R�RFð Þ 1 + γbλγ R�RFð Þ

 �1

γ

� 
¼ 0,

(13)

20Even though γ can in principle attain values in the whole real line, Almeida and Freire (2022) show
that the constrained optimization in the dual problem may not have a solution for extreme negative γs
(usually below�5). To guarantee an admissible RNDwith high sensitivity to downside risk for which a
solution exists, we choose to work with γ¼�3.
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where bλγ ¼�~λγa= b�aγW 0Rf

� �
. The above shows that the RND bqγ in (9) is pro-

portional to the marginal utility of the HARA investor with concavity parameter γ,
and that the optimal Lagrange multiplier bλγ is proportional (with opposite sign) to
the optimal portfolio weight ~λ

γ
in the risky asset.

Provided that the equity premium is positive (i.e., E R�RFð Þ> 0), the optimal
portfolio solution will contemplate buying a certain amount of the stock index
(i.e.,~λ

γ
> 0). In such case, the Lagrangemultiplierbλγ is negative and the RNDbqγ will

distort the original physical distribution p by putting higher (lower) probability
mass to any state of negative (positive) index excess return. Intuitively, themarginal
utility of the HARA investor is high (low) for negative (positive) realizations of the
optimal portfolio due to risk aversion. Since negative return states are the ones that
matter for the expected shortfall, this means that the risk-neutral leg of our tail risk
premium measure, ESℚ, is greater than the corresponding physical leg, ESℙ,
implying that Δℙ

ℚESt ≥ 0.
In practice, on a given day t, it may happen that the sample average of the high-

frequency excess market returns is negative. This would imply that the HARA
investor short-sells the stock index and has lowmarginal utility for negative market
return states, such that ESℚ would be actually below ESℙ. Arguably, this is not
economically sound, as the marginal investor selling the market would be incon-
sistent with a representative agent equilibrium model. In fact, the average intra-day
return on day t is a noisy estimate of the conditional equity premium, which is often
considered to be nonnegative (Campbell and Thompson (2008), Martin (2017)).
Therefore, in our baseline analysis, we restrict the equity premium to be nonneg-
ative, which guarantees that our tail risk premium will be a nonnegative measure.21

In Section IV.B, we consider the unrestricted case for robustness and show that this
restriction has no material impact on our empirical results.

III. Empirical Analysis

Our empirical analysis of the predictability of risk premiums associated with
the U.S. aggregate market, identified by the S&P 500 index, is composed of three
parts. The first part focuses on the predictive power of our tail risk premium (Δℙ

ℚES)
and tail risk realization (ESℙ) measures for the equity premium and the variance risk
premium. In part two, we extend the study to the cross-sectional predictive ability of
our measures. The third part examines the broader implications for the predictabil-
ity of different quantiles of the distribution of excess market returns.

A. Data Description

Our data set is compiled from a number of data sources and covers the period
from Jan. 2004 to Dec. 2018. First, we obtain high-frequency data on the S&P
500 index from www.tickdata.com, and downsample it to the 5-minute frequency
by registering the last observation in each 5-minute window. This data are used not
only to estimateΔℙ

ℚES and ES
ℙ, but also a number of high-frequency return variation

21That is, for each day t, if the average of the intra-day excess market returns Rt
i

� �
i¼1,…,T is negative,

we shift the mean of the return distribution to zero by transforming returns to ~R
t
i ¼Rt

i � 1
T

PT
i¼1R

t
i . Note

that this transformation does not affect the higher (centered) moments of the return distribution.
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measures, such as RV, integrated quadratic variation (IV) and jump quadratic vari-
ation (JV).22Data on theVIX index are obtained from theCBOEviaWRDS,whereas
the data on daily close-to-close S&P 500 returns, inclusive of dividends, are obtained
fromCRSP. Similarly to Bollerslev et al. (2009),we define the variance risk premium
as the RV minus the VIX squared. The risk-free rate and data on the cross-sectional
stock portfolios are obtained from the Kenneth French data library (https://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html). High-frequency data on
options on the S&P 500 index are sourced from the CBOE in the form of best
available bid and ask price quotes at the end of every 1-minute period, and then
downsampled to the 5-minute frequency (the procedure to calculate option returns is
described in Section IV.D).23 Finally, the daily time-series of the LTV is obtained
from www.tailindex.com. Appendix B collects all the variables’ definitions.

B. Properties of the Tail Risk Premium and Predictors

Our tail risk premiummeasure Δℙ
ℚES is based on the risk adjustment provided

by the RND methodology described in Section II.C. Figure 1 presents the time-
series of the physical expected shortfall ESℙ, the tail premium Δℙ

ℚES, and the
Lagrange multiplier (LM) for the S&P 500 returns coming from the dual problem
solved to obtain the RND on each day. A negative LM means that the marginal
investor is long in the index. Graph C shows that the investor is always long in the
index, which is a direct consequence of the economic restriction of a nonnegative
equity premium that we impose. This restriction also guarantees that our tail risk
premium is always above or equal to 0.24 Graphs A and B further reveal that both

FIGURE 1

Time Series of the Tail Measures Implied by the S&P 500 Intraday Data

Figure 1 shows the daily time series of Tail Risk, Tail Risk Premium, and LagrangeMultiplier for the baseline case with quantile
α=0.2 and Cressie Read γ=-3.

Graph A. ESP Graph B. ∆P
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22RV is estimated as in Andersen, Bollerslev, Diebold, and Labys (2003). IV is estimated as in
Mancini (2009). JV is estimated as max RV� IV,0f g.

23For each day, we use the options with maturity closest to 1 month, taking the shorter maturity as a
tie breaker. We remove all quotes with 0 bid prices and those where the ask price is more than five times
the bid price.

24We relax this restriction in Section IV.B and compare predictability results. In the unrestricted case,
for a significant number of days the average of intra-day S&P500 excess returns is negative. Nonethe-
less, this does not affect the predictive ability of our tail premium measure.
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ESℙ and Δℙ
ℚES achieve their peaks during the 2008–2009 subprime crisis. On the

other hand, the marginal investor’s position in the S&P 500 index, which is
proportional to minus the LM, is smaller during times of crisis as compared with
non-crisis periods. This is also intuitive and consistent with flight-to-safety: The
agent invests less in the risky asset during crises.

Table 1 reports the persistence of the tail risk premium and the predictor
variables and their correlations. Naturally, measures of risk such as ESℙ, LTV,
RV, IV, and JV are strongly persistent and can be predicted by many of their lags.
This is in contrast to risk premium measures. The VRP is only significantly pre-
dicted by its first lag, whereas the tail risk premium Δℙ

ℚES can only be predicted by
the sumof lags 11 through 22. As for the correlationmatrix in Panel B, it can be seen
that our tail risk premiummeasure is not strongly correlated with any other variable.
In particular, it has a 0.26 and 0.04 correlationwith ESℙ andVRP, respectively. This
suggests that our measure captures distinct information relative to the physical
expected shortfall and the variance risk premium. On the other hand, ESℙ has large
correlations with the volatility and jump risk variables. In what follows, we test the
ability of these measures to forecast risk premiums and the future distribution of
S&P 500 returns.

C. Predicting Risk Premiums

1. Equity Premium

Table 2 reports the forecasting results for 1-day ahead excess returns on the
S&P 500 index based on daily predictive regressions. Excess returns are obtained
over the 3-month risk-free rate reported on Kenneth French’s data website, appro-
priately pro-rated. We investigate the market return predictability afforded by our
tail risk premium while controlling for several sets of predictors. More specifically,
we include as controls the physical expected shortfall ESℙ, the variance risk
premiumVRP, the LTV of Bollerslev et al. (2015) and the RV (as is or decomposed
into JV and IV).

The first column of Table 2 shows that the physical expected shortfall does not
significantly predict 1 day-ahead excess market returns. When we include the tail
risk premium in the regression in column 2, ESℙ remains insignificant. In contrast,
Δℙ
ℚES has strong predictive power for the equity premium. This can be seen from a

regression coefficient that is statistically significant at the 1% level and an adjusted
R2 that is relatively high for the 1-day horizon. The positive coefficient indicates
that investors require a higher compensation to hold themarket (i.e., a higher excess
return) when the tail risk premium increases. These findings provide new high-
frequency evidence that aversion to downside risk (but not downside risk itself, as
captured by ESℙ) is an important determinant of the equity premium.

Column 3 of Table 2 further includes the VRP as control. The VRP is
statistically insignificant and only marginally increases the adjusted R2. Impor-
tantly, such inclusion does not affect the predictive power of Δℙ

ℚES for excess
market returns. Results are very similar in column 4 when the expected shortfall
is removed from the regression. This suggests that our tail risk premium reflects
distinct information from that contained in the VRP. In fact, the fifth column shows
that if we orthogonalize Δℙ

ℚES with respect to the VRP, it still retains most of its
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predictive power for the equity premium. While the variance risk premium is an
important predictor of future market returns at relatively low-frequency horizons
(Bollerslev et al. (2009)), we find that the same is not true in a high-frequency
environment.

Finally, in the last 2 columns of Table 2, we include realized and option-
implied measures of volatility and jump risk. The risk measures are all insignif-
icant, but increase substantially the R2. In particular, the LTV has no predictive
power. This can be rationalized by the fact that it is computed from options with
maturity between 6 and 31 trading days, which reflect market expectations over
relatively long horizons. When these additional variables are included, the VRP
becomes significant at the 5% level, with the expected sign: investors demand
higher market returns when they are more averse to volatility risk (i.e., when

TABLE 1

Persistence and Co-dependence of the Predictors of Risk Premia

Panel A of Table 1 presents the estimates of HAR-type (see Corsi (2009)) predictive models for each risk premium predictor.
The labels “lag 1” to “lag 5” denote the appropriately lagged regressand. The label “lag 1W” denotes the sumof lags 6 to 10 of
the regressand, and the label “lag 1M” denotes the sum of lags 11 to 22. All reported coefficients and standard errors are
rounded to 2 decimal places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01
level are additionally marked with a ⋆ . We report Andrews standard errors calculated with the use of the sandwich 3.0.0
package for R 4.0.3. Panel B presents the correlation matrix of the predictors. ESℙ is the nonparametric estimate of realized
(physical) expected shortfall of intra-day S&P 500 returns before the close, on the day when each return calculation
commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. The tail risk premium Δℙ
ℚES, is the difference between the risk-neutral and the

physical ES. VRP is the variance risk premium calculated as the difference between the day’s realized variance and the
(appropriately scaled) VIX2 index. LTV is the left tail variance of Bollerslev et al. (2015) obtained fromwww.tailindex.com. RV is
the realized variance of intra-day returns on the S&P 500 index. IV is an estimate of integrated quadratic variation, the
continuous component of realized variance, estimated as in Mancini and Gobbi (2012). JV is the jump component of
realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from return data sampled at the 5-minute
frequency.

Panel A. Persistence of the Predictors of Risk Premia

Δℙ
ℚES ESℙ VRP LTV RV IV JV

1 2 3 4 5 6 7

Lag 1 0.00 0.41⋆ 0.15⋆ 0.86⋆ 0.37⋆ 0.38⋆ 0.16⋆

(0.03) (0.04) (0.06) (0.05) (0.09) (0.10) (0.06)

Lag 2 0.01 0.29⋆ 0.36 0.05 0.42 0.45⋆ 0.22⋆

(0.11) (0.09) (0.20) (0.06) (0.18) (0.17) (0.08)

Lag 3 �0.01 0.05 0.05 0.28⋆ 0.03 �0.03 0.20⋆
(0.06) (0.07) (0.09) (0.10) (0.06) (0.07) (0.08)

Lag 4 0.05 0.10 0.27 0.01 0.36⋆ 0.35 0.03
(0.07) (0.10) (0.14) (0.09) (0.14) (0.19) (0.04)

Lag 5 �0.03 0.10 0.19 0.21⋆ 0.24 0.33 0.14
(0.08) (0.08) (0.14) (0.08) (0.14) (0.18) (0.05)

Lag 1W 0.08 �0.03 �0.10 �0.12⋆ �0.14 �0.14 �0.12⋆

(0.07) (0.05) (0.09) (0.04) (0.07) (0.10) (0.04)

Lag 1M 0.02⋆ 0.01⋆ 0.02 0.01⋆ 0.02 0.01 0.06⋆

(0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.02)

Constant 0.00⋆ 0.00 0.00 0.00⋆ 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj) 0.09 0.72 0.22 0.85 0.61 0.63 0.19
N 3748 3748 3748 3691 3748 3748 3748

Panel B. Correlation Matrix of the Predictors of Risk Premia

ESℙ VRP LTV RV IV JV

Δℙ
ℚES 0.26 0.04 0.31 0.30 0.28 0.26

ESℙ 0.41 0.70 0.88 0.88 0.51
VRP 0.05 0.67 0.64 0.56
LTV 0.71 0.71 0.35
RV 0.98 0.66
IV 0.51
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VRP¼RV�VIX2 is more negative). As for our tail premiummeasure, it remains
significant at the 1% level. In Table C.1, we report the market return predictability
results for 5- and 21-day horizons. For these horizons, no variable is able to
significantly predict market returns. This suggests that the primary effect of
Δℙ
ℚES on market returns is concentrated on the day following a shock in tail risk

premium.
We also investigate whether the market return predictability afforded byΔℙ

ℚES
is robust out-of-sample. According to a model update schedule, we estimate
1-day-ahead predictive regressions using only data available up to a specific date.
Then, keeping parameters unchanged until the next model update, we predict the
excess market return for day t + 1, based on predictor values for day t. We consider
different start dates for the out-of-sample period: Jan. 01, 2008, Jan. 01, 2012, and
Apr. 08, 2015 (i.e., we vary the initial sample length). We also vary the model
re-estimation frequency, ranging from every month (adding the most recent data) to
a single estimation that only uses the initial sample and keeps the parameters
unchanged until the end of our sample on Dec. 31, 2018. We provide context for
assessing the importance of our results using two additional predictive models: i) a
univariate model with VRP, the only relevant control in Table 2, and ii) a bivariate
model with bothΔℙ

ℚES andVRP. Finally, we benchmark the predictive power of the

TABLE 2

Predictive Regressions: S&P 500 Excess Returns

Table 2 reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-to-
close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to 2 decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlightedwith a⋆. We report Andrews (1991) standard errors calculatedwith the use of the sandwich3.0.0package forR
4.0.3 (Zeileis, Köll, and Graham (2020)). ESℙ is the nonparametric estimate of realized (physical) expected shortfall of intra-
day S&P 500 returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

.
Our tail risk premium measure, Δℙ

ℚES, is the difference between the risk-neutral and the physical ES. VRP is the variance risk
premium calculated as the difference between the day’s RV and the (appropriately scaled) VIX2 index. Δℙ

ℚES
⊥ is the

component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the left tail variance of Bollerslev
et al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P 500 index. IV is an
estimate of integrated quadratic variation, the continuous component of realized variance, estimated as inMancini andGobbi
(2012). JV is the jump component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from
return data sampled at the 5-minute frequency.

1 2 3 4 5 6 7

ESℙ 0.17 �0.16 �0.32 �2.04 �2.01
(0.77) (0.87) (0.58) (1.15) (1.13)

Δℙ
ℚES 7.50⋆ 7.65⋆ 7.19⋆ 8.83⋆ 8.75⋆

(2.90) (2.63) (2.68) (2.83) (2.66)

VRP 2.35 1.53 0.94 �15.90 �16.05
(8.79) (9.07) (9.25) (7.74) (7.79)

Δℙ
ℚES

⊥ 6.63
(2.76)

RV 15.25
(10.36)

LTV �0.10 �0.10
(0.07) (0.07)

JV 17.73
(14.14)

IV 14.79
(10.81)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 0.00 0.73 0.76 0.75 0.62 2.03 2.01
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three models against the historical mean of the market excess return, estimated
following the same update schedule, as commonly done in the literature (see, e.g.,
Campbell and Thompson (2008)).

Table 3 contains the results of the out-of-sample exercise. Panel A reports the
out-of-sample predictive R2 relative to the historical mean for each model, starting
date and update frequency.25 A positive value means that a predictor generates
better forecasts, in terms of lower mean-squared error, than the historical average
return. The univariate model based on our tail risk premiummeasure almost always
generates a positive R2, regardless of when the out-of-sample period starts and how
often we re-estimate the model. This indicates that the predictive relation between
Δℙ
ℚES and future excess market returns is stable and robust to different economic

conditions. Remarkably, these R2s for daily market returns are of similar magnitude
to (and often larger than) those documented by Campbell and Thompson (2008) for
monthly returns usingwell-known predictors of the equity premium. In contrast, the
VRP is unable to outperform the historical mean, leading to R2s that are generally
negative. As a result, the performance of the univariate tail premiummodel is nearly
always better than that of the bivariate model including both Δℙ

ℚES and VRP,
reinforcing the superiority of our measure for predicting the equity premium.

To assess the statistical significance of the superior out-of-sample predictive
ability of Δℙ

ℚES, we implement the commonly used Clark and West (2007)
statistic. In Panel B of Table 3, we test whether the forecasts based on the tail
risk premium decrease the mean-squared error relative to the historical mean
benchmark. For all starting dates and update frequencies, the null hypothesis of
equal predictive accuracy is rejected at the 1% significance level. The same is not
true when we consider the VRP instead of Δℙ

ℚES. In this case, improvements are
essentially never statistically significant. We further test whether the tail pre-
mium improves the predictive accuracy relative to the VRP. Again, the null
hypothesis is strongly rejected across all specifications. These results show that
the superior predictive ability of our tail premium measure is robust and statis-
tically significant.

Finally, we investigate the economic significance of the predictive power for
excess market returns afforded by Δℙ

ℚES. We follow Campbell and Thompson
(2008) in considering an investor with mean–variance preferences who optimally
chooses the portfolio weight on the market based on the return forecast. We impose
realistic portfolio constraints that prevent the investor from shorting the market or
takingmore than 100% leverage. Panel C of Table 3 reports the annualized certainty
equivalent return associated with each predictive model. As can be seen, the values
corresponding to Δℙ

ℚES are generally large and always positive. For instance,
starting in 2008, a mean–variance investor would require a certain return of
9.60% each year (in excess of the risk-free rate) to be indifferent with respect to
the risky strategy exploiting forecasts from the tail premium model updated every

25If the historical mean of market returns is a poor predictor of future returns, this could inflate this
measure of R2. In Table C.2, we report an alternative measure of predictive R2 without subtracting the
historical mean in the denominator, i.e., reflecting just the amount of variation explained by the tail risk
premium. While the predictive R2s calculated in this manner are actually slightly higher than these
reported in Table 3, the results are overall very similar.
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month. At the same time, this investor would require only 0.56% to not exploit
information from the historical mean, and would be willing to actually pay a certain
return of 5.78% to avoid adopting the VRP-based forecasts. Importantly, Δℙ

ℚES
outperforms the historical mean and the VRP in all cases, often by a large extent.
This confirms that the predictive power of the tail risk premium is not only
statistically, but also economically significant.

TABLE 3

Out-of-Sample Predictive Power for S&P 500 Excess Returns

Table 3 contains results on the out-of-sample predictive performance of linear predictive models for S&P 500 excess returns.
The following model specifications are considered: i) Δℙ

ℚES, our measure of the tail risk premium; ii) bμ (constant) (i.e., the
historical average excess return); iii) VRP, the variance risk premium; and iv) “both,” containing Δℙ

ℚES and VRP. In Panel A,
we report the predictive R2, calculated against the benchmark of bμ as in Campbell and Thompson (2008),
R2 ¼ 1�P

t R t � bRt


 �2
=
P

t Rt �bμð Þ2, where bRt is the model’s predicted return in period t. In Panel B, we report the Clark
andWest (2007) statistic for the test of forecast accuracy. Univariate models in columns 1, 2, 4, 5, 7, and 8 are tested against
the benchmark of bμ while the bivariate model in columns 3, 6, and 9 is tested against the benchmark of VRP. The CW test
statistic is approximately normally distributed under the null that the additional regressors do not have predictive power. The
test is 1-sided (i.e., the alternative hypothesis is that the more complex model has better predictive power). The critical values
are 1.28, 1.64, and 2.33 at the 10%, 5%, and 1% confidence levels. In Panel C, we report the certainty equivalent (CE) of a
quadratic utility investor with relative risk aversion of 3. The CE is reported in excess of the risk-free rate, in percent, and
annualized. FollowingCampbell and Thompson (2008), the investor allocates the fraction αt ¼ bRt= γσRð Þ to the S&P 500,where
σR is the historical volatility of the returns at last model update; the remaining wealth is allocated to the risk-free asset. The risky
asset weight is constrained to lie between 0 and 2 (i.e., we restrict short sales and excessive leverage). Predictive regressions
are estimated on expanding samples starting in Jan. 2008 (columns 1–3), Jan. 2012 (columns 4–6), and Apr. 2015 (columns
7–9). In Panels A and B, in the first 2 columns of each sub-panel, we consider univariate predictive models, and in each
respective third column, a model containing both predictors. In Panel C, we focus on univariate models. Across the rows of
each panel, we consider different parameter update frequencies, from every month in the top row to no updates (i.e., the
parameters are estimated on data prior to the starting date and never updated) in the final row.

Panel A. Out-of-Sample Predictive R2 (%)

Update Freq.

OOS from 2008-01-01 OOS from 2012-01-01 OOS from 2015-04-08

VRP Δℙ
ℚES Both VRP Δℙ

ℚES Both VRP Δℙ
ℚES Both

1 2 3 4 5 6 7 8 9

1 months �1.14 0.10 �0.35 �0.10 0.70 0.61 �0.05 1.40 1.34
3 months �1.40 �0.01 �0.34 0.00 0.52 0.52 �0.02 1.47 1.45
6 months 0.00 0.64 0.60 0.00 0.52 0.53 �0.02 1.46 1.44
12 months �0.14 0.60 0.32 �0.05 0.28 0.26 �0.03 1.51 1.48
24 months �0.04 0.64 0.48 �0.05 0.26 0.24 �0.15 1.53 1.40
Never 0.04 0.76 0.79 �0.08 0.59 0.52 �0.17 1.56 1.39

Panel B. Clark and West (2007) Test

Update Freq.

OOS from 2008-01-01 OOS from 2012-01-01 OOS from 2015-04-08

vs. bμ vs. VRP vs. bμ vs. VRP vs. bμ vs. VRP

VRP Δℙ
ℚES Both VRP Δℙ

ℚES Both VRP Δℙ
ℚES Both

1 2 3 4 5 6 7 8 9

1 months 1.42 4.43 5.52 �1.56 5.07 5.09 �0.66 4.95 4.97
3 months 1.30 3.89 4.68 0.41 4.20 4.23 0.05 4.80 4.83
6 months 0.94 6.01 5.61 0.40 4.13 4.17 0.04 4.83 4.86
12 months 0.01 5.71 4.72 �1.23 3.06 3.13 �0.22 4.59 4.62
24 months 0.34 5.81 4.92 �1.16 2.98 3.05 �2.09 3.85 3.90
Never 0.66 6.75 5.95 �1.29 4.21 4.25 �1.87 5.04 5.06

Panel C. Certainty Equivalent (annualized, %)

Update Freq.

OOS from 2008-01-01 OOS from 2012-01-01 OOS from 2015-04-08

bμ VRP Δℙ
ℚES bμ VRP Δℙ

ℚES bμ VRP Δℙ
ℚES

1 2 3 4 5 6 7 8 9

1 months 0.56 �5.78 9.60 2.53 1.81 4.43 1.95 2.62 7.17
3 months 1.47 �4.49 12.08 4.39 5.58 7.31 4.10 5.74 8.19
6 months 0.91 �4.91 11.93 3.99 5.29 6.94 4.17 5.81 8.22
12 months �2.77 �6.79 12.61 4.08 4.71 7.10 3.15 4.72 6.73
24 months �1.96 �7.48 10.14 3.54 4.10 6.82 2.74 2.89 8.28
Never 0.75 �7.50 5.35 1.23 1.22 3.05 1.53 �0.13 3.56
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In sum,we document that our tail risk premiummeasure is a strong predictor of
future excess market returns at the 1-day horizon. This predictability is robust to
controlling for the expected shortfall, variance risk premium and several volatility
and jump risk variables. Our findings are consistent with the idea that investors
require a higher compensation to hold the market following an increase in aversion
to downside risk as captured by Δℙ

ℚES. The predictive power of the tail premium
also holds out-of-sample, with strong statistical and economic significance, above
and beyond different benchmarks.

2. Variance Risk Premium

Table 4 reports the forecasting results for the 1-day ahead market variance risk
premium based on daily predictive regressions. We consider the same controls as in
Table 2. The first 2 columns show that, while downside risk as captured by ESℙ has
no predictive power for the variance risk premium, aversion to downside risk
reflected in Δℙ

ℚES appears as a statistically significant predictor associated with a
high R2. This provides new evidence in a high-frequency environment that part of
the variance risk premium can be explained by aversion to left tail risk. As can be
seen from columns 3 and 4, the lagged VRP also affords strong predictive power.

TABLE 4

Predictive Regressions: Short-Term Variance Risk Premium

Table 4 reports regression coefficients and their standard deviations (in parentheses) for predictive regressions of the
variance risk premium at the 1-day horizon. All reported coefficients and standard errors are rounded to 2 decimal places.
Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlightedwith a⋆. We report Andrews (1991) standard errors calculatedwith the use of thesandwich3.0.0 package forR
4.0.3 (Zeileis et al. (2020)). ESℙ is the nonparametric estimate of realized (physical) expected shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail risk
premium measure, Δℙ

ℚES, is the difference between the risk-neutral and the physical ES. VRP is the variance risk premium
calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. Δℙ

ℚES
⊥ is the

component of the tail riskmeasure that is orthogonal to the variance risk premium. LTV is the left tail variance of Bollerslev et al.
(2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P 500 index. IV is an
estimate of integrated quadratic variation, the continuous component of realized variance, estimated as inMancini andGobbi
(2012). JV is the jump component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from
return data sampled at the 5-minute frequency.

1 2 3 4 5 6 7

ESℙ 0.02 0.00 �0.02⋆ �0.03 �0.03
(0.01) (0.01) (0.01) (0.02) (0.01)

Δℙ
ℚES 0.38⋆ 0.40⋆ 0.36⋆ 0.22⋆ 0.22⋆

(0.14) (0.14) (0.13) (0.06) (0.06)

VRP 0.32⋆ 0.26⋆ 0.23⋆ 0.38⋆ 0.39⋆

(0.07) (0.06) (0.07) (0.10) (0.10)

Δℙ
ℚES

⊥ 0.38⋆

(0.14)

RV 0.01
(0.11)

LTV 0.00 0.00
(0.00) (0.00)

JV �0.09
(0.26)

IV 0.01
(0.10)

Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 9.24 23.31 30.93 29.56 30.34 29.91 29.95
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Importantly, the significance at the 1% level of our tail risk premium measure is
robust to the inclusion of the laggedVRP, evenwhenwe consider its orthogonalized
version in the fifth column. In fact, both the Δℙ

ℚES and lagged VRP are relevant to
forecast the variance risk premium, having a similar contribution to theR2s. The last
2 columns reveal that the volatility and jump risk measures are insignificant and
have no impact in the previous results. In Table C.3, we further report the VRP
predictability for 5- and 21-day horizons. Results are very similar to those of
Table 4, where Δℙ

ℚES robustly predicts the variance risk premium across virtually
all horizons and regression specifications.

3. The Cross Section of Characteristic-Sorted Portfolio Returns

Subsections IIIC.1 and IIIC.2 show that our tail risk premium is an impor-
tant determinant of aggregate market risk premiums at high frequency. In this
subsection, we investigate whether aversion to downside risk, as captured by
Δℙ
ℚES, also commands risk premium in a cross section of characteristic-sorted

portfolios. Portfolios sorted by specific characteristics reflect compensation for
different types of risk beyond those related to the market portfolio. More
specifically, we consider several sets of portfolios sorted according to the
often-used characteristics of size, BM, profitability, investment, momentum,
reversal, and industry. Most of these characteristics form the basis of factor
pricing models such as those of Fama and French (1993), (2015) and Hou, Xue,
and Zhang (2014).

In Figure 2, we report the results of 1-day ahead predictive regressions of
characteristic-sorted portfolios. We forecast the daily excess returns for each decile
portfolio obtained from sorting stocks on a given characteristic. We consider five
sets of daily predictors: i)Δℙ

ℚES, ii)Δ
ℙ
ℚES and ES

ℙ, iii)Δℙ
ℚES and RV, iv)Δ

ℙ
ℚES and

LTV, and v) Δℙ
ℚES and VRP. For each decile portfolio, we plot a corresponding

group of five t-statistics on Δℙ
ℚES calculated with Andrews (1991) standard errors

and the adjusted R2 of the regression. For comparison, Figure 3 shows the same
results for univariate predictive regressions based on each alternative predictor
(ESℙ, RV, LTV, and VRP).

Across all sets of predictors and characteristics, the (absolute value of the)
t-statistics on Δℙ

ℚES reported in Graph A of Figure 2 are mostly above 2 and often
above 3. This indicates that our tail risk premium measure has strong predictive
power for cross-sectional risk premiums at high frequency. Such predictive power
cannot be explained by the different controls we consider. In fact, the reported
t-statistics are very similar across the different sets of predictors. Graph B further
shows that nearly all of the R2s are between 0.5% and 1.3%, which is of the same
order of magnitude of those obtained for market returns in Table 2. The alternative
predictors also do not affect the R2, with the exception of VRP which usually leads
to a slight improvement. In Figure 3, we can see that the alternative predictors are
individually statistically insignificant for predicting characteristic-sorted portfolios,
yieldingmostly negligible R2s. This reinforces that our tail risk premiummeasure is
the only predictor of characteristic-portfolios at high frequency among the variables
we consider.
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D. Predicting the Distribution of Market Returns

Section III.C demonstrates that it is the aversion to downside risk
(as captured by Δℙ

ℚES) rather than the level of downside risk itself (as captured
by ESℙ) that contains relevant predictive information for risk premiums at high

FIGURE 2

Predictive Regressions: Fama–French Portfolios

Figure 2 presents a summary of predictive regressions of the 1-day ahead excess return on Fama–French portfolios of stocks
sorted on size, book/market, profitability, investment, momentum, reversal, and the 10 industry portfolios. Five regression
specifications are considered, using the following regressors: i)Δℙ

ℚES, ii)Δ
ℙ
ℚES andESℙ , iii)Δℙ

ℚESandRV, iv)Δℙ
ℚESandLTV, v)

Δℙ
ℚES and VRP. We report Andrews (1991) standard errors calculated with the use of the sandwich 3.0.0 package for R 4.0.3

(Zeileis et al. (2020)).
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frequency. In this section, we turn to an analysis of the predictive power of Δℙ
ℚES

and ESℙ for the whole distribution of future excess market returns in order to
shed light on the differential role of these variables for explaining the equity
premium.

FIGURE 3

Predictive Regressions: Fama–French Portfolios, Alternative Predictors

Figure 3 shows a summary of predictive regressions of the 1-day ahead excess return on Fama–French portfolios of stocks
sorted on size, book/market, profitability, investment, momentum, reversal, and the 10 industry portfolios. Four regression
specifications are considered, using the following regressors: i) ESℙ , ii) RV, iii) LTV, and iv) VRP. We report Andrews (1991)
standard errors calculatedwith the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al. (2020)). In order to facilitate the
comparison with the main predictability results for Fama–French portfolios, the axis scales are set the same as in Figure 2.
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1. Quantiles of the Distribution of Market Returns

To understand how different variables affect the distribution of future S&P
500 returns, we adopt the conditional quantile regression framework introduced by
Koenker and Gilbert (1978). The conditional quantile model for S&P 500 daily
excess returns rtf gt¼1,…,Tq

, reads as follows:

Qrt + h τjptð Þ¼ θ0 τð Þ+ θ1 τð ÞΔℙ
ℚESt + θ2 τð ÞESt + θ3 τð ÞVRPt + θ4 τð ÞRVt,(14)

where pt ¼ 1,Δℙ
ℚESt,ES

ℙ
t ,

�
VRPt,RVtg and the θjs are functions mapping τ ∈ 0,1½ �

into ℝ. This equation states that the conditional τ-quantile of the daily S&P
500 excess return distribution at time t + h is a linear function of the tail risk
premium and control variables at time t. In the quantile regression of rt + h on the
variables in pt, the regression coefficients θτ are estimated by minimizing the
quantile-weighted absolute value of errors:

bθτ ¼ arg min
θτ ∈ℝ5

XTq�h

t¼1

τ �1 rt + h ≥ ptθτð Þjrt + h�ptθτ j+ 1� τð Þ �1 rt + h < ptθτð Þjrt + h�ptθτ jð Þ,

(15)

where 1 :ð Þ is the indicator function. The predicted quantile conditional on pt is:
bQrt + h τjptð Þ¼ ptbθτ:(16)

We estimate predictive quantile regressions for the 1-day ahead (h¼ 1) dis-
tribution of S&P 500 excess returns over the full sample from Jan. 2, 2004 to Dec.
31, 2018. The regressions are estimated for the 5th through the 95th percentiles in
10-percentage-point increments, and for the median. We report the estimated
coefficients and their standard deviations for all quantiles in Table 5.

We first focus on the differential contribution of Δℙ
ℚES and ESℙ for predicting

the distribution of excess market returns. The statistical significance of the esti-
mated coefficients indicates that an increase in risk (ESℙ) leads to a larger proba-
bility of observing both extreme negative and positive market returns, whereas an
increase in the aversion to downside risk (Δℙ

ℚES) shifts the quantiles around the
median and the whole right tail toward more positive values. These findings can be
interpreted as follows: A positive shock in expected shortfall means a more volatile
market, such that it is usually followed by either a large decrease or increase of the
S&P 500 index. These extreme effects cancel out when predicting directly the
market returns, such that ESℙ is insignificant in Table 2. In contrast, a positive
shock in the tail risk premium signals that investors are more averse to extreme
negative outcomes, requiring a higher compensation to hold the market. This is
reflected in the positive effect of Δℙ

ℚES on essentially all quantiles of the market
return distribution. Such unambiguous effect translates to the significant positive
relation between our tail premium and future market returns observed in Table 2.

Table 5 also helps understand why VRP and RV lack predictive power for
future excess market returns. A decrease in the VRP (i.e., an increase in the
compensation required by investors to bear variance risk) leads to a positive shift
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in right tail quantiles, but also to a negative shift in the left tail quantiles. Similarly,
RV has a positive (negative) effect on the right (left) tail quantiles. This contributes
tomake the predictive relationwith respect to excessmarket returns weak, as effects
cancel out. In contrast, our tail premium measure has a positive effect on all
quantiles of the S&P 500 return distribution. This reinforces the predominant role
that aversion to downside risk, as measured by Δℙ

ℚES, plays on explaining future
market returns at high frequency. In Section III.D.2, we evaluate the quality of the
estimated conditional market return distributions through an out-of-sample study of
conditional interval forecasts.

2. Out-of-Sample Forecasts of the S&P 500 Return Distribution

To assess the out-of-sample predictive power of the different models for
various parts of the return distribution, we rely on the framework developed by
Christoffersen (1998) to evaluate conditional interval forecasts. Namely, we con-
sider the likelihood ratio tests of interval forecast conditional coverage (CC), which
are comprised of the joint tests of interval forecast error independence (ID) and
unconditional coverage (UC). For model evaluation, we split our data into the
estimation sample which contains 75% of the data (2,820 observations starting
on Jan. 2, 2004 and ending on Apr. 7, 2015), and the evaluation sample (the
remaining 940 observations ending on Dec. 31, 2018).

Table 6 reports the results. For all intervals as previously defined, we report
the p-values of the CC, ID, and UC tests for several conditioning tests based on
different sets of predictors. The predictor sets are: i) ESℙ, ii) Δℙ

ℚES, iii) ES
ℙ and

Δℙ
ℚES, iv) VRP, v) VRP and ESℙ, vi) VRP and Δℙ

ℚES, and vii) VRP, ESℙ, and

TABLE 5

Predictive Quantile Regressions: S&P 500 Excess Returns

Table 5 reports quantile regression coefficients and their standard deviations (in parentheses) of quantile regressions
predicting the distribution of the excess returns on the S&P 500 index at the 1-day horizon. The sample is from 2004-01-02
to 2018-12-31. All reported coefficients and standard errors are rounded to 2 decimal places. Those significant at the 0.05
confidence level are printed in bold and those significant at the 0.01 level are additionally highlighted with a ⋆. Those
significant at the 0.01 level are additionally marked with a ⋆. The standard errors are computed by pairwise bootstrap with
the use of the quantreg 5.83 (Koenker (2013)) package for R 4.0.3. The R1 goodness-of-fit measure is calculated as in
Koenker and Machado (1999). ESℙ is the nonparametric estimate of realized (physical) expected shortfall of intra-day S&P
500 returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail
risk premium measure, Δℙ

ℚES, is the difference between the risk-neutral and the physical ES. RV is the realized variance of
intra-day returns on the S&P 500 index. The daily value of the VRP is defined as VRP�RV × 365� VIX=100ð Þ2.

1 2 3 4 5 6 7 8 9 10 11

Quantile: 0.05 0.15 0.25 0.35 0.45 0.5 0.55 0.65 0.75 0.85 0.95

Δℙ
ℚES 1.32 4.05 4.05 5.99⋆ 7.39⋆ 7.65⋆ 8.05⋆ 7.81⋆ 7.41 10.83 12.27⋆

(4.81) (4.81) (2.48) (2.24) (2.21) (2.14) (2.18) (2.39) (2.89) (4.40) (3.03)

ES �9.90⋆ �6.40⋆ �4.31⋆ �1.10 0.00 �0.05 0.66 1.11 3.12⋆ 4.20⋆ 7.39⋆

(2.22) (1.65) (1.18) (1.17) (0.96) (1.02) (0.95) (1.04) (1.15) (1.18) (1.46)

VRP 34.43⋆ 19.63 8.04 1.96 �4.94 �8.65 �11.02 �14.84 �22.85⋆ �35.73⋆ �53.82⋆

(11.32) (9.21) (7.89) (5.81) (5.24) (4.66) (5.46) (6.65) (8.83) (8.10) (7.94)

RV �25.57 �17.39 �5.65 �10.83 �5.26 1.77 2.23 12.79 16.46 24.11⋆ 31.67⋆

(15.07) (13.98) (9.94) (8.08) (8.59) (8.99) (8.56) (10.59) (9.01) (9.02) (10.02)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00⋆

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R1(%) 21.55 9.36 4.04 1.45 0.56 0.63 1.09 2.85 6.16 13.45 29.82
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TABLE 6

Out-of-Sample Interval Forecast Tests of S&P 500 Excess Return Distribution Models

Table 6 reports the results of evaluating out-of-sample interval forecasts for the excess returns on the S&P500 index obtainedwith different quantile predictivemodel specifications. Each rowcontains thep-values of the
Christoffersen (1998) tests of interval forecast conditional coverage (CC), interval forecast error independence (ID), and unconditional coverage (UC) for the quantile interval indicated in the first column. The row
denoted “joint” contains the result of a joint evaluation of interval forecasts which follows Section IV.B in Christoffersen (1998) and aggregates the interval forecasts to six intervals spanning the quantiles (0.0 to 0.05],
(0.05 to 0.25], (0.25 to 0.5], (0.5 to 0.75], (0.75 to 0.95], and (0.95 to 1.00]. For model evaluation purposes, we split our data into the estimation sample which contains 75%of the data (2,820 observations starting on Jan.
2, 2004 and ending on Apr. 7, 2015), and the evaluation sample (the remaining 940 observations ending onDec. 31, 2018). Thep-valueswhich indicate the rejection of the null hypotheses at the 0.05 level are printed in
bold face. Those that indicate rejections at the 0.01 level are further marked with a⋆. All model specifications contain a constant term and the regressor set indicated on the label. ESℙ is the nonparametric estimate of
realized (physical) expected shortfall of intra-day S&P 500 returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail risk premium measure, Δℙ
ℚES, is the

difference between the risk-neutral and the physical ES. The daily value of the VRP is defined as VRP�RV× 365� VIX=100ð Þ2. “Both” indicates that the predictive model contains both the ESℙ andΔℙ
ℚES terms.

ES Δℙ
ℚES Both VRP VRP+ES VRP+Δℙ

ℚES VRP+Both

CC ID UC CC ID UC CC ID UC CC ID UC CC ID UC CC ID UC CC ID UC

Interval 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Joint 0.05 0.25 0.01 0.00⋆ 0.07 0.00⋆ 0.19 0.80 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.12 0.65 0.00⋆ 0.00⋆ 0.09 0.00⋆ 0.66 0.80 0.21
0.0 – 0.05 0.10 0.08 0.20 0.00⋆ 0.02 0.01⋆ 0.25 0.28 0.20 0.00⋆ 0.00⋆ 0.02 0.70 0.49 0.62 0.00⋆ 0.06 0.00⋆ 0.41 0.36 0.33
0.05 – 0.15 0.93 0.72 0.87 0.00⋆ 0.05 0.00⋆ 0.80 0.51 0.96 0.00⋆ 0.03 0.00⋆ 0.75 0.64 0.54 0.00⋆ 0.02 0.00⋆ 0.95 0.76 0.96
0.15 – 0.25 0.99 0.99 0.87 0.14 0.20 0.13 0.36 0.33 0.29 0.07 0.04 0.29 0.96 0.93 0.78 0.08 0.10 0.13 0.96 0.93 0.78
0.25 – 0.35 0.01⋆ 0.24 0.00⋆ 0.17 0.98 0.06 0.03 0.58 0.01⋆ 0.23 0.66 0.10 0.32 0.51 0.18 0.71 0.95 0.42 0.93 0.99 0.70
0.35 – 0.45 0.91 0.66 0.96 0.00⋆ 0.87 0.00⋆ 0.39 0.57 0.22 0.00⋆ 0.80 0.00⋆ 0.56 0.42 0.47 0.00⋆ 0.57 0.00⋆ 0.76 0.83 0.48
0.45 – 0.5 0.69 0.94 0.39 0.02 0.17 0.01 0.33 0.71 0.15 0.03 0.21 0.02 0.04 0.85 0.01 0.25 0.39 0.15 0.32 0.42 0.20
0.5 – 0.55 0.39 0.46 0.25 0.06 0.52 0.02 0.10 0.07 0.26 0.08 0.96 0.02 0.61 0.45 0.52 0.00⋆ 0.75 0.00⋆ 0.12 0.05 0.62
0.55 – 0.65 0.23 0.42 0.16 0.88 0.75 0.62 0.44 0.94 0.24 0.38 0.73 0.15 0.55 0.33 0.70 0.28 0.14 0.48 0.71 0.94 0.41
0.65 – 0.75 0.02 0.24 0.01 0.68 0.74 0.41 0.03 0.02 0.16 0.71 0.94 0.41 0.01⋆ 0.37 0.00⋆ 0.54 0.28 0.78 0.30 0.31 0.29
0.75 – 0.85 0.95 0.76 0.96 0.77 0.59 0.62 0.83 0.94 0.54 0.64 0.65 0.41 0.39 0.17 0.87 0.68 0.74 0.41 0.24 0.44 0.13
0.85 – 0.95 0.56 0.83 0.29 0.29 0.29 0.24 0.87 0.65 0.78 0.33 0.45 0.20 0.59 0.45 0.47 0.42 0.26 0.47 0.25 0.33 0.18
0.95 – 1.0 0.05 0.24 0.03 0.00⋆ 0.09 0.00⋆ 0.19 0.35 0.12 0.01⋆ 0.27 0.00⋆ 0.01⋆ 0.62 0.00⋆ 0.00⋆ 0.02 0.00⋆ 0.21 0.71 0.09
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Δℙ
ℚES.

26 We also conduct a joint evaluation of interval forecasts that aggregates
forecasts to six intervals spanning the quantiles (0.0 to 0.05], (0.05 to 0.25], (0.25 to
0.5], (0.5 to 0.75], (0.75 to 0.95], and (0.95 to 1.00].

For ESℙ, the null hypothesis of correct conditional coverage is rejected only
for two intervals, while the independence of prediction errors is never rejected. For
the joint interval test, CC and UC are rejected. Results for Δℙ

ℚES are similar, but
there is less efficiency for intervals covering the left tail. When Δℙ

ℚES is added to
ESℙ in the column titled “both,” efficiency improves as there is no rejection in the
CC joint interval test. In fact, across nearly all intervals, results are supportive of
interval forecast efficiency. VRP is the predictor that leads to most rejections of the
out-of-sample coverage tests. Even so, the best performance is obtained with the
model including the three predictors, for which there are essentially no rejections of
CC, ID, andUC in the joint test and across intervals. Overall, the results support that
the in-sample predictive power of the estimated quantile models containing our tail
premium measure translates to out-of-sample performance.

IV. Robustness Analysis

Our tail risk premium measure depends on a number of choices regarding the
estimation of the RND and the expected shortfall. In this section, we perturb the
method to learn about its sensitivity to those choices and compare its performance to
the baseline case analyzed in Section III.

A. Risk-Neutralization with the Hellinger Discrepancy

Our baseline tail premium measure relies on the particular value of γ¼�3 for
the parameter indexing the discrepancy in the Cressie–Read family used for esti-
mating the RND. As explained in Section II.C, this value is chosen to tilt the
distribution of market returns toward large negative returns, as an investor with
high aversion to downside risk does. In this subsection, we check whether this
choice is essential to our findings by investigating if a less drastic risk-adjustment,
implied by the Hellinger discrepancy (γ¼�1

2), produces similar results. This
discrepancy is still consistent with aversion to downside risk (i.e., large negative
returns are still overweighted), but gives less probability mass to the left tail
compared with γ¼�3.

In Appendix D.1, we plot the time-series of the Δℙ
ℚES obtained using the

Hellinger discrepancy and the associated Lagrange multiplier in Figure D.1. The
dynamics of the new Δℙ

ℚES is very similar to that obtained for γ¼�3 in Figure 1.
The main difference between the two is that the new Δℙ

ℚES attains smaller values,
which is natural as the expected shortfall under a RND giving less probability mass
to the left tail is smaller. The Lagrange multipliers, on the other hand, are larger
(in absolute value) for γ¼�1

2. This is because the investor associated with the
portfolio optimization problem buys a larger amount of the risky asset (the market
index) as her aversion to downside risk is smaller. Table D.1 reproduces the main
predictability analysis for the equity premium and variance risk premium using the

26Due to the fact that VRP has a better performance than RV in the previous quantile regressions, we
decided to drop RV. Results including RVare similar.
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new Δℙ
ℚES. The results are very similar to the baseline ones for γ¼�3, where the

tail risk premium measure has strong predictive power across all regression spec-
ifications. This confirms that our findings are robust to a change of discrepancy
measure within the Cressie–Read family.

B. Risk-Neutralization Without Equity Premium Restrictions

Our baseline estimation of the RND imposes a non-negativity constraint for
the conditional equity premium (i.e., for the average of the high-frequency excess
market returns on day t). This is to prevent the marginal investor solving the dual
portfolio problem from shorting themarket index, whichwould imply that marginal
utility is low for negative market return states, such that ESℚ would be below ESℙ.
In this subsection, we drop this restriction and, after re-calculating Δℙ

ℚES, conclude
that this has no material impact on our predictability results.

In Appendix D.2, we plot the time-series of the Δℙ
ℚES obtained without

imposing the restriction on the equity premium and the associated Lagrange mul-
tiplier in FigureD.2 in theAppendixD. The immediate consequence of allowing for
a negative equity premium is that the estimates of the Lagrange multiplier turn
positive on a significant part of the sample (meaning that the investor sells the
market index). This, in turn, makes the implied RND to put higher probability
weights in states of nature where the index has large positive returns (which
represent negative returns of the investor’s portfolio). As a consequence, ES
becomes smaller under ℚ than under ℙ during those dates, as visible in the central
panel of Figure D.2. This difference notwithstanding, a visual comparison with our
main Figure 1 uncovers similar dynamics of Δℙ

ℚES with and without restrictions.
Table D.2 reproduces the main predictability analysis for the equity premium

and variance risk premium using the Δℙ
ℚESwithout restrictions. A comparison with

the baseline results in Tables 2 and 4 suggests that removing the positive equity
premium constraint renders the estimatedΔℙ

ℚES noisier, as the associated t-statistics
and R2s of the 1-day horizon predictive regressions become lower. Even so, the tail
risk premium measure still retains statistical significance and is the strongest
predictor of aggregate market risk premiums among the variables we consider.
We therefore conclude that our findings are robust to removing the equity premium
constraint.

C. Lower Expected Shortfall Threshold

In our baseline analysis, we set α¼ 0:2 as the confidence level of the α-
quantile of the return distribution (sα) for calculating the expected shortfalls in
equations (2) and (3). In this subsection, we examine the sensitivity of our results to
this choice by setting α¼ 0:1, meaning the expected shortfall threshold is farther in
the left tail of the returns and there are less return observations to extract
information from.

The results are collected in Appendix D.3. First, decreasing α mechanically
translates to an increase in the ESℙ measure, which is evident when comparing the
left graphs of FigureD.3 in theAppendixD and Figure 1. Somewhat less intuitively,
we also observe changes to the estimates of the tail risk premium comparing the
central panels of the aforementioned figures. With α¼ 0:1, Δℙ

ℚES becomes
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significantly higher than with α¼ 0:2 in periods of market distress. This is com-
patible with heterogeneous investors’ attitudes toward downside risk observed
under different extreme quantiles of the distribution of returns.27

Table D.3 contains the main predictability results for risk premiums using the
expected shortfall and tail premium measures estimated with α¼ 0:1. We do not
observe any changes relative to our baseline analysis regarding the predictive power
of ESℙ and Δℙ

ℚES for the equity and variance risk premiums. That is, aversion to
downside risk (as captured by our tail premium measure) has strong predictive
power, while downside risk itself (as captured by the expected shortfall) remains a
statistically insignificant predictor.

D. Including Option Returns in the Estimation of the Risk-Neutral
Distribution

Finally, our baseline specification to compute the risk-neutral expected short-
fall relies on a nonparametric RND extracted solely from high-frequency market
returns. However, in principle, the risk-neutral measure can be estimated using
information from any security for which high-frequency return data are available. In
particular, given that options are informative about higher-order risks of the under-
lying asset, a natural question is whether adding index option returns to the esti-
mation of the RND helps the resulting tail risk premium measure better predict the
equity premium. We use high-frequency data on S&P 500 options to test this
possibility.

Using our high-frequency option data, we calculate the index option returns
as follows: In each 5-minute window, we sort OTM call (put) options into five
portfolios based on the absolute value of their Black–Scholes delta, denoted as Δ01
(deep OTM options with absolute deltas ranging from 0.0 to 0.1) through Δ05
(close to at-the-money (ATM) options with absolute deltas ranging from 0.4 to 0.5).
Next, we calculate themid price for each option. In the following step, wematch the
observations in a given 5-minute window to those in the subsequent window, and
we discard options with no match. We further drop from the return calculation the
options whose mid prices did not change between two observation windows.
Finally, from the remaining data, we calculate the equal-weighted return on each
option portfolio.

We estimate the RND by solving the minimum discrepancy problem in
(5) including as basis assets the S&P 500 market index and one option portfolio
at a time.28 The excess market return predictability results for the tail premium are
reported in Table 7, where each column corresponds to the estimation including
option returns grouped by the indicated Δ. We include ESℙ as control and consider
the 1-day horizon. The tail risk premium Δℙ

ℚES is statistically significant only for
the call groups Δ01 and Δ03. In terms of R2, this model performs worse than the
equivalent one without options in Table 2 (0.63 and 0.65 for Δ01 and Δ03,

27See Castro and Galvao (2019) for the development of a rational dynamic model based on quantile
utility preferences.

28We refrain from including all option portfolios at once in the estimation as the number of basis
assets would be too large relative to the number of high-frequency observations, which can lead to
unstable results.
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respectively, against 0.73). For all other option portfolios, there is little predictive
power coming from the associated tail risk premium.

The previous results can be rationalized by the following. When we include
option and index returns together in the estimation of the risk-neutral measure, we
lose the interpretation of how the risk-neutral measure acts on index returns. When
the S&P 500 index is the unique asset, the RND overweights market negative
returns and underweights positive ones, provided that the equity premium is pos-
itive. This is such that the risk-neutral expected shortfall appropriately reflects
downside risk of the market index. In contrast, when the index and an option
portfolio are basis assets, the RND overweights negative returns coming from
the optimal solution of the dual portfolio problem (i.e., a linear combination of
index and option returns), which are not necessarily negative realizations of the
market. Table 7 reports that this hurts performance, giving support to our baseline
specification using only market returns for the estimation.

V. Conclusion

In this article, we propose a new method to compute tail risk premium at high
frequency using solely intra-day market returns and a risk-neutralization algorithm.
Empirically, we show that our tail risk premium measure has strong predictive
power for aggregate market and cross-sectional risk premiums at short horizons.
Such predictability is robust to controlling for established measures of risk and risk
premiums and to different specifications of our measure. Our findings provide new
high-frequency evidence that aversion to downside risk is fundamental to explain
asset pricing behavior. A natural extension of our method would be to use a cross
section of high-frequency returns to investigate to what extent this would improve
the model forecasting ability.

TABLE 7

Predictive Regressions: S&P 500 Excess Returns with Option-Implied Tail Premium

Table 7 reports regression coefficients and their standard deviations (in parentheses) for predictive regressions of the close-
to-close S&P 500 excess returns at the 1-day horizon with Δℙ

ℚES calculated with the use of risk-neutral probabilities obtained
from the joint risk-neutralization of high-frequency returns on the S&P 500 index and on options thereon, with options grouped
into five portfolios based on their type and Δ. Δ01 corresponds to deep out of the money options while Δ05 corresponds to at
themoney options. All reported coefficients and standard errors are rounded to 2 decimal places. Those significant at the 0.05
confidence level are printed in bold and those significant at the 0.01 level are additionally highlighted with a ⋆. We report
Andrews (1991) standard errors calculatedwith the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al. (2020)). ESℙ is
the nonparametric estimate of realized (physical) expected shortfall of intra-day S&P 500 returns before the close, on the day
when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail risk premium measure, Δℙ
ℚES, is the

difference between the risk-neutral and the physical ES.

Call Options Put Options

Δ01 Δ02 Δ03 Δ04 Δ05 Δ01 Δ02 Δ03 Δ04 Δ05

1 2 3 4 5 6 7 8 9 10

Δℙ
ℚES 6.85⋆ 3.87 6.09⋆ 2.49 2.22 4.21 3.37 3.09 1.98 2.67

(2.46) (2.22) (1.90) (1.62) (1.68) (2.93) (2.71) (2.43) (2.78) (2.73)

ESℙ �0.07 0.02 �0.04 0.10 0.04 0.00 �0.02 0.00 0.02 0.04
(0.78) (0.77) (0.79) (0.81) (0.80) (0.82) (0.84) (0.81) (0.86) (0.84)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 0.63 0.25 0.65 0.14 0.09 0.25 0.17 0.15 0.06 0.16
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Appendix

Appendix A. Extreme Value Theory, Expected Shortfall, and the Tail Shape
Parameter

Extremevalue theory (EVT) shows that onceweare looking far in the tail of a random
variableX representing losses (negative of the returns)with a given distributionF, at values
larger than an exogenous threshold u, the conditional distribution function F X ≤ xjx≥ uð Þ
can bewell approximated by ageneralizedPareto distribution (GPD)G ξ ,βð Þ.29Weuse this
result to identify a direct link between our ESmeasures of risk defined underℙt andℚt and
the corresponding shape parameters ξℙt and ξℚt that determine the thickness of the GPD’s
capturing the behavior of the tails of ℙt and ℚt.

The cumulative GPD distribution function is given by Gξ,β xð Þ¼
1� 1 + ξx

β


 ��1
ξ
, x≥ 0, β > 0, 0 < ξ < 1, where β is a scaling parameter and ξ the shape

parameter. The larger the ξ, the thicker the tail is. It is well-known that given a sample of
returnsR¼ R1,…,RTf g whose conditional tail distribution is approximated by a GPD
and a fixed confidence level α, there is a direct relation between the expected shortfall
measure with confidence level α, ESα Rð Þ, the value-at-risk based on the same confi-
dence level, VaRα Rð Þ, and the shape parameter ξ:

ESα Rð Þ¼VaRα Rð Þ
1� ξ

+
β� ξu
1� ξ

:(A-1)

Our tail riskmeasures (ESℙt
t , ESℚt

t ) and tail risk premium (Δℙ
ℚESt) are calculated on

a daily frequency. Following Bollerslev and Todorov (2014), we allow the tail’s shape
parameters (ξℙt , ξ

ℚ
t ) to be time-varying. Assuming for simplicity that the threshold u and

scale β parameters are time-invariant and common to both physical and risk-neutral
distributions, we can invert (A-1) to obtain the time-varying shape parameters as
hyperbolic functions of our ES measures:

ξℙt ¼ 1 +
VaRℙ,α

t + β�u

u�ESℙ,αt

,(A-2)

ξℚt ¼ 1 +
VaRℚ,α

t + β�u

u�ESℚ,α
t

:(A-3)

Equation (A-1) also implies that our tail risk premium is a continuous function
H :, :ð Þ of the time-varying tail shape parameters of both physical and risk-neutral
distributions:

Δℙ
ℚESt ¼H ξℙt ,ξ

ℚ
t

� �
:(A-4)

Bollerslev and Todorov (2014) and Bollerslev et al. (2015) propose the left jump
tail variance (LTV), a risk-neutral jump tail risk measure for the S&P 500 returns. They
build a new dynamic model for the S&P 500 prices under the risk neutral measure ℚ,
whose dynamics is decomposed into a continuous stochastic volatility component and a

29This threshold-exceedance distribution, or distribution of the tail, is usually identified based on a
sample of observed random variables with the same distribution F. See Chapter 7 in McNeil, Rudiger,
and Paul (2005) for more details on EVT.
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jump component with time-varying stochastic jump-intensity. The key novelty with
respect to the previous literature is the use of EVT to model the tails (both left and right)
of the jump-intensity measure, suggesting that they follow Frechet distributions with
time-varying shape/decay parameters F xð Þ¼ x�αt ,αt > 0. They adopt the inverse of this
shape parameter, ξ t ¼ 1

αt
, as a measure of tail risk. Since the Frechet distribution is

directly comparable to the GPD when the shape parameter ξ is positive (i.e., ξ t > 0),
equations (A-3) and (A-4) directly connect our risk-neutral expected shortfall (ESℚ) and
tail risk premium (Δℙ

ℚES) measures to LTV.
Moreover, since ESℚt is an invertible function of ξℚt and Δℙ

ℚESt is linear in ES
ℚ
t ,

LTV, and our tail measures, at least from a theoretical point of view, induce the same
probability filtration (i.e., the same information sets) along the time dimension.
However, they naturally differ in practice in terms of their estimation procedure and
data used. LTV is estimated with the use of options. It represents the expected (risk-
neutral) return volatility that stems from large negative price jumps. To identify and
separate the diffusive part and the jump component of the return process, Bollerslev
et al. (2015) use index options with maturity between 6 and 31 trading days, reflecting
market expectations over these horizons. In contrast, our tail risk premium measure
relies on high-frequency market return data, containing information completely con-
ditional on day t.

Appendix B. Definitions of Risk Premiums Predictors

ESℙ: Estimate of the expected shortfall ESℙt ¼�Et RitjRit ≤F�1
Rt

0:2ð Þ
h i

obtained from
the empirical distribution of 5-minute returns on the S&P 500 index during market
opening hours on day t. See equation (2).

Δℙ
ℚES: Difference between ES

ℙ and its ℚ-measure counterpart; the change of measure
is described in equation (1) and Δℙ

ℚES is defined in equation (4).

Δℙ
ℚES

⊥: Residual from the full-sample regression of Δℙ
ℚES on VRP.

VRP: RV� VIXð Þ2=100=365.
RV: Realized variance of 5-minute intraday returns on the S&P 500 index duringmarket

opening hours calculated as
PNt

j¼1 logrjt
� �2

.

LTV: Left tail variance the S&P 500 index returns as defined in Bollerslev et al. (2015)
obtained from www.tailindex.com.

IV: Integrated quadratic variation of 5-minute intraday returns on the S&P 500 index
during market opening hours, the continuous component of RV, estimated as in
Mancini and Gobbi (2012).

JV: The jump component of realized variance, calculated as max RV� IV,0f g
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Appendix C. Supplementary Results

TABLE C.1

Predictive Regressions: Medium- and Long-Term S&P 500 Excess Returns

TableC.1 reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-to-close S&P
500 excess returns at the 5- and 21-day horizons. All reported coefficients and standard errors are rounded to 2 decimal places. Those
significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally highlighted with a ⋆. We
calculate standard errors for overlapping observations using the procedure of Britten-Jones, Neuberger, and Nolte (2011). ESℙ is the
nonparametric estimate of realized (physical) expected shortfall of intra-day S&P 500 returns before the close, on the daywhen each return
calculation commences, ESℙ

t ¼�Et Rit jRit ≤F�1
Rt

0:2ð Þ
h i

. Our tail risk premium measure, Δℙ
ℚES, is the difference between the risk-neutral

and the physical ES. VRP is the variance risk premium calculated as the difference between the day’s realized variance and the
(appropriately scaled) VIX2 index. Δℙ

ℚES
⊥ is the component of the tail risk measure that is orthogonal to the variance risk premium. LTV

is the left tail variance of Bollerslev et al. (2015) obtained fromwww.tailindex.com.RV is the realized variance of intra-day returns on theS&P
500 index. IV is an estimate of integrated quadratic variation, the continuous component of realized variance, estimated as in Mancini and
Gobbi (2012). JV is the jump component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from return data
sampled at the 5-minute frequency.

5 Days 21 Days 5 Days 21 Days 5 Days 21 Days 5 Days 21 Days 5 Days 21 Days 5 Days 21 Days 5 Days 21 Days

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ESℙ 0.51 �1.66 0.03 �2.14 0.19 �0.37 �2.61 �5.10 �2.63 �4.98
(2.88) (10.08) (2.77) (9.47) (2.64) (9.86) (4.48) (13.96) (4.41) (13.88)

Δℙ
ℚES 11.17 11.33 11.02 9.69 11.29 9.16 8.82 3.81 8.81 6.73

(8.33) (19.69) (9.13) (21.73) (10.60) (30.49) (7.65) (18.27) (7.25) (18.28)

VRP �2.43 �26.50 �1.95 �27.47 �2.53 �27.73 �26.59 �82.43 �27.06 �80.94
(16.95) (42.86) (17.68) (42.73) (17.12) (40.36) (25.60) (82.05) (25.61) (83.73)

Δℙ
ℚES

⊥ 8.69 4.72
(10.77) (31.82)

RV 28.22 50.48
(39.78) (122.31)

LTV �0.24 �0.48 �0.24 �0.49
(0.27) (0.70) (0.27) (0.70)

JV 29.57 1.10
(45.40) (150.93)

IV 28.25 54.15
(40.45) (121.18)

Constant 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
(0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.01)

R2 (adj
%)

�0.01 �0.01 0.32 0.09 0.36 0.47 0.27 0.11 0.15 0.09 0.51 0.60 0.50 0.58

TABLE C.2

Out-of-Sample Predictive R2 for S&P 500 Excess Returns

Table C.2 reports the predictive R2, calculated asR2 ¼ 1�P
t Rt � bRt


 �2
=
P

t Rtð Þ2, where bRt is the model’s predicted return
in period t. (This is in contrast to Table 3, where bμ is subtracted from the return in the denominator.) The following model
specifications are considered: i) Δℙ

ℚES, our measure of the tail risk premium; ii) bμ (constant) (i.e., the historical average excess
return); iii) VRP, the variance risk premium; and iv) “both,” containing Δℙ

ℚES and VRP. Predictive regressions are estimated on
expanding samples starting in Jan. 2008 (columns 1–3), Jan. 2012 (columns 4–6), and Apr. 2015 (columns 7–9). In the first 2
columns of each sub-panel, we consider univariate predictive models, and in each respective third column, a model
containing both predictors. Across the rows of each panel we consider different parameter update frequencies, from every
month in the top row to no updates (i.e., the parameters are estimated on data prior to the starting date and never updated) in
the final row.

Update Freq.

OOS from Jan. 1, 2008 OOS from Jan. 1, 2012 OOS from Apr. 15, 2015

bμ VRP Δℙ
ℚES Both bμ VRP Δℙ

ℚES Both bμ VRP Δℙ
ℚES Both

1 2 3 4 5 6 7 8 9 10 11 12

1 months 0.00 �1.15 0.10 �0.35 0.13 0.03 0.83 0.74 0.08 0.02 1.48 1.42
3 months 0.02 �1.38 0.01 �0.32 0.24 0.24 0.75 0.76 0.19 0.17 1.65 1.64
6 months 0.01 0.01 0.65 0.61 0.22 0.21 0.73 0.74 0.19 0.17 1.65 1.63
12 months 0.00 �0.14 0.60 0.32 0.24 0.19 0.52 0.49 0.13 0.10 1.64 1.61
24 months 0.03 �0.01 0.67 0.51 0.21 0.16 0.47 0.45 0.10 �0.05 1.63 1.50
Never 0.03 0.07 0.80 0.82 0.08 0.00 0.67 0.61 0.06 �0.12 1.62 1.45

Almeida, Ardison, Freire, Garcia, and Orłowski 31

https://doi.org/10.1017/S0022109023001199 Published online by Cam
bridge U

niversity Press

http://www.tailindex.com
https://doi.org/10.1017/S0022109023001199


Appendix D. Robustness Results

D.1 Alternative CR Discrepancy

TABLE C.3

Predictive Regressions: Medium- and Long-Term Variance Risk Premium

Table C.3 reports regression coefficients and their standard deviations (in parentheses) for predictive regressions of the variance risk
premium at the 5- and 21-day horizon. All reported coefficients and standard errors are rounded to 2 decimal places. Those significant at
the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally highlighted with a ⋆. We calculate
standard errors for overlapping observations using the procedure of Britten-Jones et al. (2011). We report Andrews (1991) standard
errors calculated with the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al. (2020)). ESℙ is the nonparametric estimate of
realized (physical) expected shortfall of intra-day S&P 500 returns before the close, on the daywhen each return calculation commences,
ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail risk premiummeasure, Δℙ
ℚES, is the difference between the risk-neutral and the physical ES. VRP

is the variance risk premium calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index.
Δℙ
ℚES

⊥ is the component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the left tail variance of Bollerslev et
al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P 500 index. IV is an estimate of
integrated quadratic variation, the continuous component of realized variance, estimated as in Mancini and Gobbi (2012). JV is the jump
component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from return data sampled at the 5-minute
frequency.

Horizon:

5 Days 21 Days 5Days 21 Days 5 Days 21Days 5 Days 21Days 5 Days 21Days 5 Days 21Days 5 Days 21Days

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ESℙ 0.05 �0.16 0.01 �0.22 �0.10 �0.57⋆ �0.07 �0.20 �0.07 �0.20
(0.07) (0.24) (0.05) (0.17) (0.04) (0.17) (0.06) (0.23) (0.06) (0.22)

Δℙ
ℚES 0.84⋆ 1.43⋆ 0.93⋆ 1.75⋆ 0.80⋆ 0.95 0.53⋆ 1.36⋆ 0.58⋆ 1.31⋆

(0.27) (0.51) (0.23) (0.53) (0.26) (0.76) (0.12) (0.32) (0.10) (0.30)

VRP 1.59⋆ 5.13⋆ 1.34⋆ 3.68⋆ 1.26⋆ 3.55⋆ 1.69⋆ 6.40⋆ 1.73⋆ 6.39⋆

(0.18) (0.58) (0.21) (0.93) (0.19) (0.86) (0.43) (1.21) (0.43) (1.09)

Δℙ
ℚES

⊥ 0.85⋆ 1.20
(0.27) (0.80)

RV �0.22 �1.95
(0.59) (2.06)

LTV 0.00 �0.01 0.00 �0.01
(0.00) (0.01) (0.00) (0.01)

JV �1.14 �1.11
(0.59) (2.40)

IV �0.14 �2.03
(0.66) (1.85)

Constant 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00 0.00 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 8.68 8.69 23.26 22.53 32.46 24.92 27.55 19.97 27.54 19.95 32.00 29.98 32.21 31.10

FIGURE D.1

Time Series of the Tail Measures Implied by the S&P 500 Intraday Data Calculated
with the Hellinger Divergence

Figure D.1 shows the daily time series of Tail Risk, Tail Risk Premium, and Lagrange Multiplier for the Hellinger case with
quantile α=0.2 and Cressie Read γ = � 1

2.
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TABLE D.1

Predictive Regressions: S&P 500 Excess Returns and Variance Risk Premium
with Hellinger Discrepancy

TableD.1 reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-
to-close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to 2 decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlightedwith a⋆. We report Andrews (1991) standard errors calculatedwith the use of the sandwich3.0.0package forR
4.0.3 (Zeileis et al. (2020)). ESℙ is the nonparametric estimate of realized (physical) expected shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail risk
premium measure, Δℙ

ℚES, is the difference between the risk-neutral and the physical ES. VRP is the variance risk premium
calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. Δℙ

ℚES
⊥ is the

component of the tail riskmeasure that is orthogonal to the variance risk premium. LTV is the left tail variance of Bollerslev et al.
(2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P 500 index. IV is an
estimate of integrated quadratic variation, the continuous component of realized variance, estimated as inMancini andGobbi
(2012). JV is the jump component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from
return data sampled at the 5-minute frequency.

1 Day 1 Day 1 Day 1 Day 1 Day 1 Day 1 Day

1 2 3 4 5 6 7

Panel A. S&P 500 Excess Returns

ESℙ 0.17 �0.19 �0.35 �2.15 �2.12
(0.77) (0.87) (0.58) (1.14) (1.12)

Δℙ
ℚES 11.01 11.26⋆ 10.42⋆ 12.57⋆ 12.42⋆

(4.44) (4.00) (4.04) (4.18) (4.00)

VRP 2.38 1.48 0.91 �16.18 �16.35
(8.97) (9.06) (9.17) (7.79) (7.81)

Δℙ
ℚES

⊥ 9.54
(4.22)

RV 15.68
(10.36)

LTV �0.10 �0.10
(0.07) (0.07)

JV 18.76
(14.39)

IV 15.16
(10.75)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 0.00 0.67 0.70 0.68 0.56 1.95 1.93

Panel B. Variance Risk Premium

ESℙ 0.02 0.00 �0.02⋆ �0.03 �0.03
(0.01) (0.01) (0.01) (0.02) (0.02)

Δℙ
ℚES 0.54⋆ 0.57⋆ 0.52⋆ 0.31⋆ 0.32⋆

(0.20) (0.20) (0.20) (0.09) (0.09)

VRP 0.32⋆ 0.26⋆ 0.22⋆ 0.37⋆ 0.38⋆

(0.07) (0.06) (0.06) (0.10) (0.10)

Δℙ
ℚES

⊥ 0.54⋆

(0.20)

RV 0.02
(0.11)

LTV 0.00 0.00
(0.00) (0.00)

JV �0.06
(0.27)

IV 0.02
(0.10)

Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 9.24 21.73 29.38 27.88 28.63 29.53 29.55
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D.2 No Equity Risk Premium Constraints

FIGURE D.2

Time Series of the Tail Measures Implied by the S&P 500 Intraday Data Calculated Without
Imposing the Positive Equity Risk Premium Constraint

Figure D.2 shows the daily time series of Tail Risk, Tail Risk Premium, and Lagrange Multiplier with quantile α=0.2, Cressie
Read γ=-3 with unconstrained Equity Risk Premium.
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TABLE D.2

Predictive Regressions: S&P 500 Excess Returns and Variance Risk Premium Without
Imposing Ex Ante Equity Premium Constraints

TableD.2 reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-
to-close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to 2 decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlightedwith a⋆. We report Andrews (1991) standard errors calculatedwith the use of thesandwich3.0.0 package forR
4.0.3 (Zeileis et al. (2020)). ESℙ is the nonparametric estimate of realized (physical) expected shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:2ð Þ
h i

. Our tail risk
premium measure, Δℙ

ℚES, is the difference between the risk-neutral and the physical ES. VRP is the variance risk premium
calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. Δℙ

ℚES
⊥ is the

component of the tail riskmeasure that is orthogonal to the variance risk premium. LTV is the left tail variance of Bollerslev et al.
(2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P 500 index. IV is an
estimate of integrated quadratic variation, the continuous component of realized variance, estimated as inMancini andGobbi
(2012). JV is the jump component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from
return data sampled at the 5-minute frequency.

Panel A. S&P 500 Excess Returns

1 Day 1 Day 1 Day 1 Day 1 Day 1 Day 1 Day

1 2 3 4 5 6 7

ESℙ 0.17 0.13 �0.02 �1.68 �1.65
(0.77) (0.84) (0.57) (1.21) (1.19)

Δℙ
ℚES 5.44 5.55 5.55 6.28⋆ 6.18⋆

(2.39) (2.19) (2.22) (2.22) (2.08)

VRP 2.28 2.22 1.38 �16.05 �16.25
(8.89) (9.01) (9.31) (7.72) (7.79)

Δℙ
ℚES

⊥ 4.76
(2.32)

RV 15.23
(10.61)

LTV �0.11 �0.11
(0.07) (0.08)

JV 20.21
(13.77)

IV 14.47
(11.24)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 0.00 0.58 0.61 0.63 0.45 1.86 1.84

(continued on next page)
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D.3 Alternative Threshold for ES Calculation

TABLE D.2 (continued)

Predictive Regressions: S&P 500 Excess Returns and Variance Risk Premium Without
Imposing Ex Ante Equity Premium Constraints

Panel B. Variance Risk Premium

1 Day 1 Day 1 Day 1 Day 1 Day 1 Day 1 Day

1 2 3 4 5 6 7

ESℙ 0.02 0.01 �0.01 �0.02 �0.02
(0.01) (0.01) (0.01) (0.01) (0.01)

Δℙ
ℚES 0.27 0.28⋆ 0.28⋆ 0.14⋆ 0.15⋆

(0.11) (0.10) (0.10) (0.05) (0.05)

VRP 0.31⋆ 0.30⋆ 0.25⋆ 0.37⋆ 0.38⋆

(0.07) (0.05) (0.06) (0.10) (0.10)

Δℙ
ℚES

⊥ 0.30⋆

(0.10)

RV 0.02
(0.11)

LTV 0.00 0.00
(0.00) (0.00)

JV �0.01
(0.28)

IV 0.01
(0.10)

Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 9.24 19.99 27.40 27.29 28.20 28.22 28.19

FIGURE D.3

Time Series of the Tail Measures Implied by the S&P 500 Intraday Data with α¼0:10

Figure D.3 shows the daily time series of Tail Risk, Tail Risk Premium, and LagrangeMultiplier for the case with quantile α=0.1
and Cressie Read γ=-3.
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TABLE D.3

Predictive Regressions: S&P 500 Excess Returns and Variance Risk Premium with Tail
Measures Calculated at the 10th Percentile of Intraday Returns

TableD.3 reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-
to-close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to 2 decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlightedwith a⋆. We report Andrews (1991) standard errors calculatedwith the use of thesandwich3.0.0 package forR
4.0.3 (Zeileis et al. (2020)). ESℙ is the nonparametric estimate of realized (physical) expected shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESℙ

t ¼�Et Rit jRit ≤ F�1
Rt

0:1ð Þ
h i

. Our tail risk
premium measure, Δℙ

ℚES, is the difference between the risk-neutral and the physical ES. VRP is the variance risk premium
calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. Δℙ

ℚES
⊥ is the

component of the tail riskmeasure that is orthogonal to the variance risk premium. LTV is the left tail variance of Bollerslev et al.
(2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P 500 index. IV is an
estimate of integrated quadratic variation, the continuous component of realized variance, estimated as inMancini andGobbi
(2012). JV is the jump component of realized variance, calculated as max RV� IV,0f g. RV, IV, and JV are calculated from
return data sampled at the 5-minute frequency.

1 Day 1 Day 1 Day 1 Day 1 Day 1 Day 1 Day

1 2 3 4 5 6 7

Panel A. S&P 500 Excess Returns

ESℙ 0.11 �0.13 �0.26 �1.76 �1.75
(0.61) (0.67) (0.44) (0.87) (0.86)

Δℙ
ℚES 5.80⋆ 5.91⋆ 5.57⋆ 6.97⋆ 6.85⋆

(2.17) (2.00) (2.04) (2.25) (2.11)

VRP 2.43 1.54 1.01 �16.39 �16.63
(8.84) (9.14) (9.27) (7.48) (7.71)

Δℙ
ℚES

⊥ 5.16
(2.08)

RV 16.60
(9.86)

LTV �0.11 �0.11
(0.07) (0.07)

JV 20.12
(14.14)

IV 16.14
(10.25)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 0.00 0.74 0.77 0.75 0.63 2.16 2.14

Panel B. Variance Risk Premium

ESℙ 0.01 0.00 �0.01⋆ �0.02 �0.02
(0.01) (0.01) (0.01) (0.01) (0.01)

Δℙ
ℚES 0.27⋆ 0.29⋆ 0.27⋆ 0.16⋆ 0.16⋆

(0.10) (0.10) (0.10) (0.05) (0.05)

VRP 0.31⋆ 0.26⋆ 0.23⋆ 0.37⋆ 0.38⋆

(0.07) (0.06) (0.06) (0.10) (0.10)

Δℙ
ℚES

⊥ 0.28⋆

(0.10)

RV 0.03
(0.10)

LTV 0.00 0.00
(0.00) (0.00)

JV �0.06
(0.25)

IV 0.03
(0.09)

Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj %) 9.41 22.02 29.34 28.28 28.91 29.47 29.49
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