A NOTE ON DIOPHANTINE APPROXIMATION

by MANORANJAN PRASAD and KRISHNA CHANDRA PRASAD (Received 11th October 1971)

1. Introduction

For convenience, we mention some notation and results, which we use very often:
(i) $\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$ denotes an infinite simple continued fraction.
(ii) In a periodic continued fraction, for instance $\left[0, m, n, n^{*}, n, m, m^{*}\right]$, the convergent $[0, m, n, n, n, m, m, n, n, m, m]$ is written as $\left[0, m, n(n, n, m, m)_{2}\right.$] and likewise.
(iii) I denotes the set
$\left\{\xi / \xi=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]\right.$ such that $a_{n} \geqq 2$ from some point on $\}$.
(iv) If $\xi=\left[0, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$, it is well known that

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right|=\frac{1}{\alpha_{n} q_{n}^{2}},
$$

where α_{n} denotes $\left[0, a_{n}, \ldots, a_{1}\right]+\left[a_{n+1}, a_{n+2}, \ldots\right]$ and $p_{n} / q_{n}=\left[0, a_{1}, \ldots, a_{n}\right]$, the nth convergent to ξ; in particular $p_{1} / q_{1}=1 / a_{1}$.
(v) Two irrational numbers ξ_{1} and ξ_{2} are equivalent (e.g. $\xi_{1} \sim \xi_{2}$) if their simple continued fractions tally from some point on.

In (3), the chain of theorems for at least m approximations corresponding to the chain of theorems of Markov (1) is given. Theorems of the former chain becomes those of the latter if one allows $m \rightarrow \infty$.

In this paper, we discuss the third theorem of the former chain (namely Theorem 1 here) in a different manner. Following a technique of (3) we work out a lemma first and, on the basis of this lemma, we recover Theorem 1 and obtain another approximation theorem also. We now state all these results.

Lemma. If ξ is equivalent to $\left[0, n^{*}, m, m, n^{*}\right],(n>m)$, then the inequality

$$
\begin{equation*}
\left|\xi-\frac{h}{k}\right| \leqq \frac{1}{A_{p} k^{2}} \tag{A}
\end{equation*}
$$

where $A_{p}=\left[0, n, m, m(n, n, m, m)_{p-1}\right]+\left[n^{*}, m, m, n^{*}\right]$, has at least p solutions in coprime integers h and k with $k>0$. Further A_{p} cannot be improved as when $\xi=\left[0, n^{*}, m, m, n^{*}\right]$ or $\left[0, m^{*}, m, n, n^{*}\right]$ the inequality (A) has exactly p solutions.
E.M.S.-I

