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SUMMARY

Epidemiological data are often fragmented, partial, and/or ambiguous and unable to yield the desired level of understand-
ing of infectious disease dynamics to adequately inform control measures. Here, we show how the information contained in
widely available serology data can be enhanced by integration with less common type-specific data, to improve the under-
standing of the transmission dynamics of complex multi-species pathogens and host communities. Using brucellosis in
northern Tanzania as a case study, we developed a latent process model based on serology data obtained from the field,
to reconstruct Brucella transmission dynamics. We were able to identify sheep and goats as a more likely source of
human and animal infection than cattle; however, the highly cross-reactive nature of Brucella spp. meant that it was
not possible to determine which Brucella species (B. abortus or B. melitensis) is responsible for human infection. We
extended our model to integrate simulated serology and typing data, and show that although serology alone can identify
the host source of human infection under certain restrictive conditions, the integration of even small amounts (5%) of
typing data can improve understanding of complex epidemiological dynamics. We show that data integration will often
be essential when more than one pathogen is present and when the distinction between exposed and infectious individuals
is not clear from serology data. With increasing epidemiological complexity, serology data become less informative.
However, we show how this weakness can be mitigated by integrating such data with typing data, thereby enhancing
the inference from these data and improving understanding of the underlying dynamics.

Key words: data integration, serology, brucellosis, genetics, epidemiological modelling, Bayesian modelling, state-space
models.

INTRODUCTION

It is a regrettable but ubiquitous state of affairs that
we are unable to directly observe those aspects of the
ecology of a pathogen that are most informative of its
epidemiological dynamics. For example, we may be
able to observe how the prevalence of a disease
changes over space and time, but not the underlying
transmission processes that give rise to these
changes. Wemay also be able to observe the presence
of clinical disease, but not when a host became infec-
tious. Similarly, the identification of antibodies
through serological assays can reveal past exposure
of a host to a pathogen but inferring precisely

when this exposure occurred and what it implies
about infectiousness can be challenging.
There is an increasing availability of large-scale,

cross-sectional and longitudinal serology datasets
from human, livestock and wildlife systems around
the world, as the technological requirements neces-
sary to generate serological data are low and evidence
of exposure can persist. The analysis of serological
data is a primary methodology for investigating the
prevalence and transmission dynamics of infectious
diseases. However, in addition to inferring the
timing of exposure, there are several factors that com-
plicate the epidemiological insight that can be gained
from it. For example, serological data are generated
by tests with imperfect sensitivity and specificity. In
addition, the antibodies detected may also have been
generated in response to a number of closely related
pathogens that may be circulating independently of
each other (known as cross-reactivity). Cut-off
thresholds for distinguishing between exposed and
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unexposed individuals are often ambiguous, and anti-
bodies may decline with time after the peak immune
response that follows exposure (Gilbert et al. 2013).
These factors all create challenges for the interpret-
ation of, and inference from, serological data.
How should epidemiologists proceed when con-

fronted by data that are only weakly informative of
the dynamics that we so urgently need to under-
stand? We could simply reject such ‘weak’ data and
organize the collection of more informative data.
However, this is not always possible and is likely to
be time consuming, expensive, wasteful, and has po-
tential ethical and welfare implications in terms of
unnecessary animal handling and sampling.
Furthermore, as a reflection of the immune
systems ‘memory’ of historical exposure, serological
data are information rich. Rather than reject these
imperfect data we should instead develop more
sophisticated analyses to interrogate the data we
have and extract the information they contain
(Jones et al. 2009, 2012; Norris et al. 2009).
The most effective response to these analytical

challenges will involve a pragmatic combination of
approaches, including the development of techni-
ques that allow better use of serological data
through integration with additional data relating to
other observable aspects of the system. While each
of these data types may be only weakly informative
on its own, considered together they can strengthen
each other (Strelioff et al. 2013; Viana et al. 2014).
The effective synthesis of available data is an intui-
tive and increasingly recognized approach in many
scientific disciplines (Searls, 2005). However, inte-
gration of multiple different types of data to
conduct robust analysis is a challenge in itself that
requires significant methodological development.
Current Bayesian statistical methods facilitate this

approach (Gelman, 2004) and are becoming increas-
ingly popular among epidemiologists (Basanez et al.
2004; Broemeling, 2014). For example, networks of
‘who-infected-who’, known as transmission trees
(Morelli et al. 2012; Jombart et al. 2014; Mollentze
et al. 2014), have been used to integrate epidemio-
logical, genetic and transmission data from the out-
break of foot-and-mouth disease virus in the UK
in 2001, and greatly enhanced understanding of the
spread of the epidemic. By simultaneously analysing
the time that farms were reported as infected, their
geographic locations and the age of the oldest
lesions found on livestock on each infected farm, it
was possible to estimate a transmission tree
(Haydon et al. 2003). The further inclusion of
whole genome sequence data of the virus isolated
from each farm substantially reduced the number
of potentially plausible transmission trees (Cottam
et al. 2008). Similarly, state-space models
(Patterson et al. 2008; Holdo et al. 2009; Hooker
et al. 2011; Viana et al. 2015) also known as hidden
or latent process models, can enable inference of

the unobserved (or hidden) epidemiological process
behind the generation of observations. These have
recently been used to integrate data on the age of
the host, and the timing of vaccination campaigns
with serology data to reconstruct the dynamics of
Canine Distemper Virus outbreaks in populations
of lions and dogs in and around the Serengeti
National Park (Viana et al. 2015).
The overall aim of this paper is to explore how

widely available serology data can be enhanced by
integration with less common type-specific data, to
improve the understanding of the transmission dy-
namics of complex multi-species pathogens and
host communities. We focus on brucellosis as an
example of such a system, but note that there are
several important infectious diseases for which ser-
ology data are relatively common and type-specific
data much rarer, for example, leptospirosis, foot-
and-mouth disease and blue tongue.

Case study: brucellosis in northern Tanzania

Brucellosis is a bacterial zoonosis that has a world-
wide distribution, but human disease incidence is
higher in low- and middle-income countries (Dean
et al. 2012b). In humans, it causes non-specific
febrile illness, debilitating symptoms, including
joint and muscle pain, as well as more severe compli-
cations such as endocarditis and neurological symp-
toms (Dean et al. 2012a). Multiple animal species,
including livestock, are affected by brucellosis
which impacts on productivity through abortion,
reduced reproductive efficiency and decreased milk
production. Human infections are typically acquired
through contact, ingestion or inhalation of bacteria
shed by infected animals.
Brucellosis can be caused by one of several bac-

teria of the genus Brucella. The two species of great-
est relevance for human and livestock health in
northern Tanzania are Brucella abortus, which is
typically thought to be associated with cattle, and
Brucella melitensis, which is often reported in sheep
and goat populations (hereafter combined and re-
ferred to as ‘caprids’) (World Health Organization
et al. 2006). The main risk factor identified as the
driver of animal and human infection is large
animal population size (Kadohira et al. 1997;
McDermott and Arimi, 2002). However, the
known capacity for B. abortus and B. melitensis to
be transmitted between cattle and caprids compli-
cates the interpretation of the roles played by
different host populations in the maintenance and
transmission of this disease.
In sub-Saharan Africa, current efforts to develop

control strategies are constrained by limited under-
standing of two fundamental features of brucellosis
epidemiology: (1) which animal species are affected
and act as the source of human infections; and (2)
which Brucella species are maintained in which
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animal hosts? The distinction among epidemiologic-
al scenarios is crucial because vaccination of animals
is currently the most effective method to control
brucellosis (Godfroid et al. 2011), but vaccines are
pathogen species and host-specific; i.e. for
B. abortus vaccine for cattle and B. melitensis
vaccine for caprids.
Most epidemiological data on brucellosis in sub-

Saharan Africa are obtained through serological
surveys. Brucellosis seroprevalence data are com-
pound representations of the occurrence of the two
Brucella species that cross-react with the test
antigen (McGiven, 2013). A seropositive status is
therefore an indication of exposure to B. melitensis
and/or B. abortus. Genetic detection allows identifi-
cation of the infecting species of Brucella, but this is
likely to be successful only if sample collection
occurs within the short-time window around either
acute illness in people, or the time of parturition or
abortion in animals. The considerable investment
required to obtain large numbers of these samples
makes such data extremely scarce.
Figure 1 depicts three of several possible scenarios

of brucellosis transmission in northern Tanzania,
which we will use to illustrate challenges and pos-
sible solutions to better understanding these
complex epidemiological systems. The power to dis-
tinguish between these transmission scenarios likely
depends on how the different hosts co-occur. For
example, cattle and caprids can be highly positively
correlated (e.g. sampled households with more
cattle have more caprids), clearly segregated (e.g.
sampled households contain mostly one host
species) or weakly correlated. These possible popu-
lation structures are demonstrated in Fig. 2.
The aim of this paper is to answer two fundamen-

tal questions:

(1) When can analysis of serology alone identify the
source of human Brucella infection?

(2) When does the integration of realistically sparse
genetic-typing data allow identification of the
appropriate source of infection when serology
alone does not?

To address these questions, we first develop a method
to determine the animal source of humanBrucella spp.
infection and quantify cross-species transmission
between cattle and caprids using field serology data
fromourBrucella case study.Second,weuse simulated
data to explore howdifferent epidemiological scenarios
and population structures might impact on the power
of serological data to reveal similar transmission pat-
terns to those observed in our data. Third, we simulate
genetic type-specific data to augment the serological
data and explore the circumstances under which this
integration enhances serology data and provides
enough analytical power to distinguish between the
different transmission scenarios.

MATERIALS AND METHODS

Field serological survey

Data collection. The serological data on brucel-
losis were collected through a cross-sectional field
study conducted in the Arusha and Manyara
regions of northern Tanzania in 2002–2003.
Within five districts in these regions, a multi-stage
cluster sampling strategy was used to identify and
randomize the selection of villages, sub-villages,
ten cell units and livestock keeping households.
Data collection at the 86 selected households
included blood sample collection from randomly
selected sheep and goats (combined as caprids),
cattle and humans. The number of cattle and/or
caprids sampled at each household was based on
the number required to estimate the within-herd
prevalence given the size of the household herd.
This was calculated for an expected prevalence of

Fig. 1. Plausible alternative epidemiological scenarios for inter-species transmission and sources of human Brucella
infection. Arrows indicate the direction and magnitude of transmission. Question marks indicate that transmission occurs
with an unknown magnitude (which will be estimated by our models). In Scenario 1, humans can be infected by caprids
with B. melitensis and cattle with B. abortus; in Scenario 2 caprids with B. melitensis can transmit to humans and cattle but
only caprids can transmit infection to humans; and in Scenario 3 both caprids and cattle with B. melitensis can infect
humans.
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5%, with 80% power and 95% confidence (Martin
et al. 1987). All humans present at the household
were invited to participate in the study. Serum
samples from all species were tested for antibodies
against Brucella species at the Animal and Plant
Health Agency (APHA) using a competitive
ELISA (McGiven et al. 2003; Perrett et al. 2010).
A cut-off of 60% inhibition was used to define
sample status for all species tested. This dataset is a
subset of data described previously (Shirima, 2005;
Kunda, 2006). Figure 2c shows the number of
cattle and caprids sampled in each household and
Fig. 3a shows the seroprevalence of Brucella sp. in
humans, cattle and caprids in this dataset. No
genetic-typing data of the Brucella species were
available in this field study.

Generalized linear model (GLM) analysis. GLMs
were used to examine the relationship between the
seroprevalence of Brucella exposure in humans and
the (crudely) estimated total numbers of seropositive
cattle and caprids present at each household in the
Tanzanian field dataset. A GLM was used instead of
a GLMM because the inclusion of random effects
(e.g. household and village) did not make a difference
to the results, both in terms of significance and good-
ness-of-fit of the model (i.e. AIC difference was less
than 2; Burnham and Anderson, 2002). The response
variablewas theproportionofhumansat thehousehold
that tested seropositive, weighted by the number of
humans sampled at the household.The covariates con-
sidered were estimates for the total numbers of sero-
positive cattle and caprids present at each household,
which were calculated by multiplying the proportion
seropositive in the sample by the total population size
at the household for each animal group.

Bayesian serology model. A latent model was
developed to quantify the contribution of different

animal hosts to human infection probability from
serology data. A detailed description of this model
is provided in Supplementary information (SI). In
essence, the model is composed of five interlinked
binomial processes: the first two binomials estimate
the cattle and caprid probability of being seroposi-
tive in the sampled population, the third and
fourth binomials take these inferences from the
sample to estimate the number of seropositive
cattle and caprids in the whole population, and the
fifth binomial process uses the population inferences
to estimate the contribution of seropositive animals
to the probability of human infection. One of the
main advantages of this modelling approach is that
it allows propagation of uncertainties from the infer-
ences of the animal samples, to those of the whole
animal population and finally to humans. We note
that this is not a one-way propagation as the five
binomials are estimated simultaneously and inform
each other.
For each host [i.e. cattle c, caprids (sheep and

goats) s and humans h], a binomial model (equiva-
lent to a Bernoulli process) is implemented to de-
scribe the observation process of each individual
serology test result. The likelihood of the data
from an individual being classified as seropositive
was based on the serological test data and a probabil-
ity of misclassification. This probability of misclas-
sification (i.e. whether the serology assay generates
false positives or negatives (further details in the
SI) typically incorporates pre-existing information
about the performance of the test being used. For
simplicity and because there is no misclassification
in the simulated data, this was always set to
0. These binomials are ultimately defined by a prob-
ability of an individual testing seropositive in a
household. At the household level, these are linear-
ized through a logit transformation and described
through a linear predictor (lnSer). For humans,

Fig. 2. Population structures used in simulations. In population structure 1 there is a positive correlation between cattle
and caprid numbers in each household (HH). In population structure 2 there is clear segregation and each household has
mostly cattle or mostly caprids. Population structure 3 shows an intermediate relationship with weak correlation of cattle
and caprid numbers and represents the structure of the real sampled population from northern Tanzania.
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this linear predictor is described below. For cattle
(lnSerc) and caprids (lnSers) these predictors are
described as a function of the number of cattle
[Ncattle(i)] and caprids [Ncaprids(i)] in each house-
hold (i):

lnSercðiÞ ¼ β0;c þ β1;cNcattleðiÞ þ β2;cNcapridsðiÞ
ð1Þ

lnSersðiÞ ¼ β0;s þ β1;sNcattleðiÞ þ β2;sNcapridsðiÞ
ð2Þ

where β0,c and β0,s correspond to the intercepts, β1,c
and β2,c, and β1,s and β2,s, correspond to the coeffi-
cients governing the effect of the number of cattle
and caprids on the probability of infection in cattle
and caprids, respectively. The unobserved total
numbers of infected cattle and caprids per household
[Yc(i) and Ys(i)] are then estimated through a
Binomial process using the infection probability
estimated from the sampled population (pSer,
which corresponds to the inverse logit of the predict-
or lnSer) and data on the total herd/flock size at each
household:

YcðiÞ ∼ binomialðpSercðiÞ;NcattleðiÞÞ ð3Þ

YsðiÞ ∼ binomialðpSersðiÞ;NcapridsðiÞÞ ð4Þ

The estimated total numbers of positive animals
[Yc(i) and Ys(i)] are then used as covariates in the
logit linear predictor [lnSerh(i)] of the probability
of human infection:

lnSerhðiÞ ¼ β0;h þ β1;hYcðiÞ þ β2;hYsðiÞ ð5Þ

where β0,h corresponds to the intercept, β1,h and β2,h
correspond to the coefficients governing the effect of
the number of infected cattle and caprids on the
probability of human infection.
Further details of the model, including the prior

distributions allocated to each coefficient and the
model code for implementation in JAGS, are pro-
vided in the SI.
This model only used serology data and was

implemented with the field survey data to estimate
the human source of infection in the northern
Tanzanian setting. This serology only model was
also implemented with simulated datasets (see the
subsequent section) to address our specific aim 1
and explore how different epidemiological scenarios
and population structures might impact on the infer-
ences made from serological data.

Simulation study

Simulation of serology & genetic typing data. We
simulated datasets to illustrate the three alternative
epidemiological scenarios of Brucella transmission

(Fig. 1) within three distinct population structures
(Fig. 2). In epidemiological scenario 1, cattle were
infected with B. abortus only and caprids with
B. melitensis only. Humans could acquire Brucella
infection from both livestock populations, but the
contribution of B. melitensis-positive caprids to
human infection probability was twice as large as
that of B. abortus-positive cattle. See Table S3 for
simulation coefficient values. In this case, genetic-
typing data were simulated only for B. abortus-posi-
tive cattle and B. melitensis-positive caprids (see
below for details of the sampling mechanisms used
for simulations). In epidemiological scenario 2,
only B. melitensis was present. Here, cattle could
be exposed to infection from caprids and seroconvert
but humans could only acquire infection from
caprids. This illustrates a situation where cattle do
not shed the pathogen and no genetic-typing data
are available. In epidemiological scenario 3, only
B. melitensis was present but both caprids and
cattle were infected. Genetic-typing data were simu-
lated for B. melitensis-positive cattle and caprids and
the probability of obtaining typing data from sero-
positive individuals in these two groups was equal.
In this scenario, humans acquire infection from
both hosts, but the contribution of B. melitensis-
positive caprids to human infection probability is
twice as large as the contribution of B. melitensis-
positive cattle. We note that there is no genetic-
typing data for humans, and that in all simulations
the only data available for humans are serological
test results. Scenarios where only B. abortus is
present were not included but these would be func-
tionally equivalent to the B. melitensis only scenarios
explored in scenarios 2 and 3.
Each of the epidemiological scenarios was simu-

lated for the three distinct population structures in
Fig. 2. The simulated population structures
included 86 households and 428 humans (identical
to the household and human numbers in the field
dataset). The total size of the livestock population
in each household (cattle + caprids) was also as
observed in the field study, but the ratio of cattle:
caprids was altered for each population structure.
In population structure 1, the total animal popula-
tion was divided between cattle and caprids (with a
probability of 0·5 of being a cow vs caprid), leading
to a strong positive correlation (measured by the
Pearson’s correlation coefficient, r) between cattle
and caprid numbers in each household (r = 0·975).
In population structure 2, there is clear segregation
of the cattle and caprid populations such that each
household had either 90% cattle or 90% caprids
(r = 0·08). In population structure 3, the number
(and ratio) of cattle and caprids in each household
was as observed in the field dataset (r = 0·656).
The models and parameters used to simulate the

alternative datasets are based on the serology
model presented above, and its extension that
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includes genetic-typing data presented below. In
brief, animal infection probability was simulated as
function of the size of the cattle and caprid popula-
tions at the household level. Human infection prob-
ability was simulated as a function of the number of
animals in each of four possible infectious popula-
tions: B. abortus infected cattle, B. abortus infected
caprids, B. melitensis-infected cattle and B. meliten-
sis-infected caprids. The parameter values used for
these simulations differed for the different epidemio-
logical scenarios and the details of the values used are
given in Table S3. The plausibility of the values
used for the simulated datasets was ensured by
keeping the number of households, the number of
human and animals per household (explained
above), and the prevalence values generated within
realistic values (i.e. similar to those in the field
dataset). Simulated prevalence values were below
10% for cattle and caprid populations and 16% for
humans.
To simulate both genetic-typing and serological

data, the Brucella species-specific (B. melitensis or
B. abortus) infection status (infected or not) was
simulated at the individual animal level. For simpli-
city, all genetically positive individuals were clas-
sified as seropositive, analogous to assuming that
all animal infections would lead to a detectable and
lasting antibody response. This is an oversimplifica-
tion that assumes that there is no misclassification in
serostatus and that only seropositive animals can be
genetically positive. We deal with the latter issue in
the model analyses by considering such samples
(genetically typed positives from seronegative indi-
viduals) as missing data. This simulation strategy
also meant that all seropositive animals were positive
for B. melitensis and/or B. abortus, corresponding to
an assumption that the Brucella species responsible
for all seropositivity could be determined in all
cases. The exception to this assumption is the
genetic-typing data simulated for cattle in epidemio-
logical scenario 2. Here, all cattle test negative for
B. melitensis as they constitute a dead-end host and
would not shed Brucella.
As complete sampling of populations is rarely

achievable in field studies, we sampled individuals
from these simulated datasets using a rationale
analogous to the sampling strategy used in the ori-
ginal field study; i.e. the sample size required to es-
timate prevalence of 5% with 95% confidence and
90% precision (Dohoo et al. 2003). Figure 3 illus-
trates the number of animals sampled from the
range of population sizes. Only the data obtained
from these sampled animals were considered in the
model analyses.
While the determination of the serostatus of an in-

dividual is relatively straightforward, the apparently
intermittent or temporally variable nature of
Brucella shedding by the infected animals (World
Health Organization et al. 2006; Ebrahimi et al.

2014), the potential for animals to seroconvert and
recover (to a genetically negative but seropositive
status) and relatively low diagnostic sensitivity of
PCR-based techniques for the direct detection of
Brucella, all ensure that the genetic identity of the
infecting Brucella species will only ever be obtain-
able for a small subset of previously infected
animals. To represent the sparseness of available
genetic-typing data and explore the amount of
typing data required to effectively identify the host
and pathogen species that pose the greatest threat
to human populations, we used different proportions
of the genetic-typing data available for the seroposi-
tive animals sampled, i.e. 50, 10 and 5% (e.g. for the
5% situation, genetic-typing data were only available
for 5% of the seropositive animals in the sampled
population).

Model extension to integrate serology with genetics. In
order to integrate genetic-typing data, we extended
the serology model described above to include the
influence of different pathogen and animal host com-
binations upon the probability of human infection.
In this extended model, we replace lnSerh(i) by
lnTypeh(i) and define this linear predictor as:

lnTypehðiÞ ¼ α0;h þ α1;hYc;aðiÞ þ α2;hYs;aðiÞ
þ α3;hYc;mðiÞ þ α4;hYs;mðiÞ

ð6Þ

where α0,h corresponds to the intercept, α1,h and α2,h
correspond to the coefficients governing the effect of
the number of B. abortus infected cattle and caprids
(Yc,a andYs,a), respectively, and α3,h and α4,h corres-
pond to the coefficients governing the effect of the
number of B. melitensis infected cattle and caprids

Fig. 3. Serology sampling strategy. The continuous bold
line shows the relationship between the number of animals
present at each household and the number sampled. The
dotted line shows the number of animals that would be
sampled if all animals present were sampled.
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(Yc,m and Ys,m), respectively, on the probability of
human infection. The main difference between the
extended model and the serology only model is in
the way the ‘true’ number of infected cattle and
caprids in each household are estimated [i.e. four
Y’s from equation (6) compared with the two Y’s
from equation (5)]. In this extended model, the
number of B. abortus and B. melitensis-infected
cattle and caprids were estimated from Binomial
processes in which the probability of being infected
with a pathogen/host combination (pType) is
weighted by the probability of the host being sero-
positive (pSer), which was estimated from the ser-
ology only model. It is in this step that the
integration between serology and genetic-typing
data occurs:

Yc;aðiÞ ∼ binomialðpTypec;aðiÞ
× pSercðiÞ;NcattleðiÞÞ ð7Þ

Yc;mðiÞ ∼ binomialðpTypec;mðiÞ
× pSercðiÞ;NcattleðiÞÞ ð8Þ

Ys;aðiÞ ∼ binomialðpTypes;aðiÞ
× pSersðiÞ;NcapridsðiÞÞ ð9Þ

Ys;mðiÞ ∼ binomialðpTypes;mðiÞ
× pSersðiÞ;NcapridsðiÞÞ ð10Þ

The remaining components of this model are
equivalent to those of the serology only model.
However, the probability of being genetically posi-
tive (pType) comes from the binomial likelihood of
the data [e.g. for B. abortus in cattle ∼binomial
(pTypec,a(i), Ncattle(i))], rather than being a
Bernoulli trial, as we assume that the misclassifica-
tion associated with genetic typing is negligible
(e.g. there are no incorrectly typed individuals by
PCR-based diagnostics). This probability pType is
finally linearized (lnType) through a logit trans-
formation and described as a function of the
number of animals in the household. For cattle
with B. abortus [lnTypec,a(i)]:

lnTypec;aðiÞ ¼ α0;c;a þ α1;c;aNcattleðiÞ
þ α2;c;aNcapridsðiÞ ð11Þ

The parameter α0,c,a corresponds to the intercept,
α1,c,a and α2,c,a correspond to the coefficients govern-
ing the effect of the number of cattle and caprids in
the household. Further details of the model, includ-
ing the full linear predictors for the remaining
sources of infection (e.g. B. abortus infected
caprids, B. melitensis infected cattle and B. meliten-
sis-infected caprids), are given in the SI.
Although the model is a stochastic one, the model

formulation matches the process of data simulation.

Consequently, it should allow us to retrieve the
coefficient values used to generate the contributions
of the different infected animal populations to the
probability of human infection. In addition, to veri-
fying that we could retrieve the coefficient values
used for simulations, we further determine the good-
ness-of-fit by evaluating its fit to the data, confi-
rming that we can recover the generated animal
population sizes and prevalence values, and by
checking convergence of the model. Further details
are given in the SI.

RESULTS

Brucella field survey: GLM analysis

The GLM analysis revealed no statistically signifi-
cant relationships between the human seropreva-
lence and the predicted number of seropositive
caprids or cattle at the household. The coefficient
estimates and standard errors (S.E.) obtained in the
model are given in Table 1.

Serology model applied to the field data

The results of the serology model analysis of the field
study data suggest that the model was appropriate to
describe animal and human Brucella infection. The
similarity of the mean seroprevalence values per
household of each host population calculated from
the data (Fig. 4 black bars) and those estimated
from our serology model (Fig. 4 blue bars) is an in-
dication of good model fit. Later we also show that
we can retrieve all the coefficients used in the simu-
lations with our model. Although the mean sero-
prevalence estimated for humans was somewhat
underestimated by the model, the estimated credible
intervals fall within the standard deviation (S.D.) of
the data, which has a large variability.
Caprids were identified by our model as the main

source of human infection in northern Tanzania field
data. This is shown in Fig. 4 (right panel). The pos-
terior distribution of the coefficient governing the
contribution of Brucella seropositive caprids to
human infection probability [blue, i.e. β2,h in equa-
tion (5)] is 95% above zero. In comparison the distri-
bution for seropositive cattle [red, i.e. β1,h in
equation (5)] is below or close to zero (Fig. 4, right
panel).
Our results showed increased infection probability

in larger livestock populations. All the coefficients
governing the contribution of cattle (Fig. 5, red)
and caprid (Fig. 5, blue) household population size
to the probability of infection in cattle [β’s from
equation (1); Fig. 5 left panel] and caprids [β’s
from equation (2); Fig. 5 right panel] were positive
(i.e. at least 95% of the credible interval of each pos-
terior distribution is greater than zero). However,
the caprid population size (blue) seems to have a
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greater positive influence on both caprid and cattle
infection probability than cattle population size
(red).

Simulation study

The results of the serology only analysis of the simu-
lated data (Fig. 6) show that the ability of our model
to accurately quantify the contribution of different
livestock populations to human infection probability
depends on the epidemiological scenario and the

population structure of the animal hosts involved.
Figure 6 shows the posterior distributions of the coeffi-
cients governing the influence of seropositive cattle
(red) and caprids (blue) upon the probability of
human infection [β’s in equation (5)] from each com-
bination of the different epidemiological scenarios
(rows) and population structures (columns). If the
coefficient value used in the simulations (indicated as
a small vertical bar on the x-axis) falls within the re-
spective posterior distribution, and the 95% credible
intervals are above zero, it suggests that the model

Table 1. Summary of the GLM analysis examining the relationship between human Brucella seroprevalence
and the seropositive population size of caprids and cattle at each household in the Tanzanian field dataset

Variable Coeff. S.E. P Odds ratio 95% CI

Predicted no. positive caprids 0·016 0·017 0·35 1·02 0·98–1·051
Predicted no. positive cattle −0·018 0·029 0·54 0·98 0·93–1·039

Fig. 4. Results from the serology model on the Brucella field survey data. The left panel shows the raw mean
seroprevalence per household, per species (with associated S.D.; black) and the equivalent model estimated means
(with associated 95% credible intervals; blue). The right panel shows the posterior distributions of the coefficients
governing the contribution of cattle (β1,h in red) and caprids (β2,h in blue) to the probability of human infection in northern
Tanzania.

Fig. 5. Model estimates for the influence of animal population size on infection probability of cattle (β1,c & β2,c, left panel)
and caprids (β1,s & β2,s, right panel).
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accurately quantified the contribution to human in-
fection probability. However, if the 95% credible
intervals cross zero, it suggests that the host popula-
tion associated with that coefficient was not found to
have a significant contribution to human infection.
Nonetheless, only when the posterior is flat (typically
not visible in our plots), or 95% below zero can we be
certain that the host does not contribute to human
infection.
Figure 6 suggests that in positively correlated host

populations (e.g. Population structure 1) it is
difficult to identify the main host source of human in-
fection from serology alone, as the posteriors for both
caprids and cattle are similar, highly variable and their
95% credible intervals crosses zero. In epidemiologic-
al scenario 2 the contribution of caprids was accurate-
ly quantified but cattle are still (wrongly) implicated
in human infection in some cases. In contrast, in the
presence of an uncorrelated host population
(Population structure 2), serology data alone seem to
be sufficient to identify the host sources and quantify
their contribution to human infection, in all epi-
demiological scenarios investigated. For moderately
correlated host populations (Population structure 3)
our results show that the main source of human infec-
tion (i.e. caprids in all cases) is accurately identified
and its contribution to human infection is quantified
reasonably well (although sometimes the mean is
slightly overestimated). However, the contribution

of cattle to human infection is only accurately quan-
tified in epidemiological scenario 1. In epidemiologic-
al scenarios 2 and 3, the 95% credible intervals of the
posterior distributions governing the effect of cattle
on human infection (red) cross zero, but their large
percentage above zero are sufficient to consider them
as potential sources. However, while cattle are cor-
rectly identified as a potential contributor to human
infection in epidemiological scenario 3 (but with the
wrongmagnitude of contribution), in epidemiological
scenario 2 cattle should not have been identified at all.
The results of the extended model implemented

with 50, 10 or 5% of genetic-typing data are shown
in Fig. 7. Given the low resolution achieved by the
serology data alone for population 1, results for this
population are not included in the figure. The poster-
ior distributions in Fig. 7 correspond to the estimated
coefficients governing the influence of B. abortus and
B. melitensis-positive cattle (grey and red, respective-
ly) andB. melitensis in caprids (green) upon the prob-
ability of human infection [i.e. α’s in equation (6)] for
each combination of epidemiological scenario (rows)
and population structure (columns). We note that
B. abortus in caprids is never visible as this patho-
gen–host combination never occurs, and hence its
posterior distribution is null. This figure shows that
even a small amount of genetic-typing data (e.g. 5%)
is enough to empower serology data to distinguish
the pathogen species being transmitted by the

Fig. 6. Posterior distributions of the coefficients governing the effect of Brucella-seropositive cattle (β1,h in red) and
caprids (β2,h in blue) on the probability of human infection. These posteriors were obtained from the serology only
model applied to each combination of the epidemiological scenarios and population structures used for simulations. Small
vertical lines on the x-axes correspond to the coefficient values used for simulation.
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different hosts (see change in colour of the posterior
distributions from Figs 6 and 7).
The integration of genetic-typing data with ser-

ology data also enables effective discrimination
between infectious and exposed hosts. This is
visible in the results of the extended model for

epidemiological scenario 2, population structure 3,
where the posterior distribution governing the ap-
parent contribution of positive cattle to human infec-
tion probability (simulated with an effectively zero
coefficient value) is no longer visible (as it was for
the serology model, see red in Fig. 6).

Fig. 7. Posterior distributions for the coefficients describing the contributions of different infected animal populations to
the probability of human infection from the model integrating genetic and serology data (α1,h in green, α3,h in red and α4,h
in grey), with decreasing levels of genetic-typing data (50% in top row, 10% in middle row and 5% in bottom row within
each epidemiological scenario). Small vertical lines on the x-axes correspond to the coefficient values used for simulation.
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The estimated host contributions from the
extended model with 50% genetic-typing data are
similar to those from the serology only model.
However, as we decrease the amount of data to 10
and 5% the uncertainty in the coefficient estimates
increases (as seen by the increasingly wide posterior
distributions in Fig. 7). In examples such as epi-
demiological scenario 3 and population structure 3,
we may lose completely the ability to identify a par-
ticular source of infection (see flattening of red pos-
terior distribution for 5% of genetic-typing data).
The amount of genetic-typing data necessary to
add value to serology data depends on the population
structure and epidemiological scenario. However,
our results suggest that a sample of genetic-typing
data from 5 to 10% of the serology samples may be
sufficient to achieve the epidemiological insights
that can be gained from the integration of these
types of data.
We note that our model sometimes overestimates

the coefficient value governing the influence of
caprids orB. melitensis-positive caprids in human in-
fection (see median of posterior distributions com-
pared with simulated values). Nonetheless, these
simulated values fall within the posterior distribu-
tion, which indicates that the model accurately
describes the data but may require further informa-
tion to reduce uncertainty.

DISCUSSION

To effectively control infectious diseases, we must
clearly identify the infecting pathogen(s) and distin-
guish between multiple possible epidemiological
transmission scenarios. This need provided the mo-
tivation to explore the circumstances under which
formal integration of data can improve our under-
standing of the disease dynamics. We use brucellosis
in northern Tanzania as a case study, to develop a
modelling framework that enables the accurate iden-
tification of the host and pathogen-specific source(s)
of human infection, and show that integration of
multiple types of data is a powerful technique. The
value of this approach is most clear under two cir-
cumstances: (1) when more than one pathogen is
present and serology data give a compound re-
presentation of the presence of multiple pathogens;
and (2) the distinction between exposed and infec-
tious individuals is not clear from serology data.
Brucellosis is transmitted to humans by animals.

Animal vaccines exist but are host and pathogen
species-specific, and bothB. abortus andB. melitensis
species have been isolated in Tanzania (Bouley et al.
2012; Mathew et al. 2015). This makes clear under-
standing of the multi-host infection dynamics critic-
al, and without using the data integration approaches
developed here we risk selecting inappropriate
control options for brucellosis. The results of this
study show that the animal population that

constitutes the source of human Brucella infection
can often be accurately identified with serology
data alone. However, integration of genetic-typing
data is essential to distinguish which pathogen gen-
erates the exposures observed. For example, the
results shown in Fig. 7 (but not Fig. 6) for epidemio-
logical scenarios 1 and 3 have quite different implica-
tions for the control measures that might be applied
in these two situations. In both cases, caprids and
cattle contribute with similar magnitudes to human
infection. However, integration of genetic-typing
data enables distinction of the contribution of
B. abortus-positive cattle in scenario 1 from the
B. melitensis-positive cattle in scenario 3. Second,
in epidemiological scenario 2, cattle can be exposed
to B. melitensis transmitted from caprids, but are
not infectious to humans. In contrast, in epidemio-
logical scenario 3 both caprids and cattle can
transmit infection to humans. The difference in the
roles played by the cattle in these two scenarios is
fundamental, yet it is very difficult to discern using
serological data only and the model can only do
this in the more segregated populations. Despite
the precision of the estimated coefficients decreasing
with decreasing amounts of typing data, integration
of even a small amount of genetic-typing data (e.g.
5%) enables the model to distinguish these two situa-
tions, so that it does not estimate a contribution of
cattle to human infection probability in any of the
scenario 2 datasets.
The improvement brought by the integration and

the amount of genetic-typing data is influenced by
both population structure and epidemiological scen-
ario. The analyses of the simulated datasets indicate
that when two host populations are clearly segre-
gated, the analysis of serology data alone is
sufficient to accurately identify the host source(s)
of human Brucella infection under all of the epi-
demiological scenarios considered. However, with
increasing levels of correlation between the two
host populations it is increasingly difficult to identify
the source of human infection from serology alone.
Integration of genetic-typing data becomes more
valuable in these more complex scenarios. It is also
possible that with higher forces of infection (e.g.
larger coefficients), some of the effects would be
easier to capture. However, we have deliberately
used coefficients of biologically plausible magnitude
for the Brucella case study.
The specific results of the case study, i.e. from the

brucellosis field serology survey; are consistent with
the transmission processes illustrated in the epi-
demiological scenario 2. For northern Tanzania,
caprids were estimated to be the most likely
source of human Brucella exposure and the size of
the household caprid population is a key driver of
infection probability in both animal hosts.
Current understanding of the host–pathogen pre-
ferences of Brucella suggests that B. melitensis is
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the most likely pathogen to be transmitted from
caprids to humans (World Health Organization
et al. 2006). However, only integration of genetic-
typing data can confirm this hypothesis. The nega-
tive coefficient estimated for the contribution of
Brucella-positive cattle to human infection could
indicate some kind of protective effect of owning in-
creasing numbers of cattle upon human probability
of Brucella exposure. Cattle ownership is linked to
socioeconomic status in the study area, which may
lead to indirect impacts upon Brucella exposure
probability. A preference for consumption of cow
milk could also mean that consumption of milk
from caprids would become increasingly unlikely
in households with more cattle. However, the
real-world plausibility of these explanations
requires further investigation. We also cannot rule
out the possibility that the estimation of this appar-
ent protective effect may arise from an influence of
population structure (e.g. posterior for epidemio-
logical scenario 3 & population structure 3 peaks
at positive values but a large portion is seen also at
negative values).
All seroprevalence values estimated by the model

for the field dataset are well within the S.D. seen in
the data. However, we note the slight underestimate
of the mean seroprevalence per household in
humans from the model estimate as compared with
the observed data. The credible interval of the
model estimate is also considerably narrower than
the equivalent S.D. in the observed data. This under-
estimation of both prevalence and uncertainty could
suggest that in addition to the risk posed by the pres-
ence of infected animals within the household envir-
onment, human infection could also be influenced,
to a greater extent than is true for cattle and caprids
themselves, by factors external to the household en-
vironment that are currently not included in the
model. Plausible factors would include for example
the consumption of milk from animals from other
households within the same village, district or region.
The results implicating caprids as the main source

of human Brucella infection were not revealed by a
standard GLM analysis. This is likely due to a
more appropriate handling of the uncertainty struc-
ture in the Bayesian model as compared with the
GLM. This may be particularly important for the
estimation of the main risk factor, i.e. seropositive
animal population size. The Bayesian approach
allows propagation of uncertainty from individual
animal samples to human inferences in the whole
population. While intuitively this should just lead
to a higher uncertainty in the final estimates,
because the processes defined for animals and
humans are interlinked and their inference are
made simultaneously, they can inform each other
and empower individual inferences.
In addition to identifying sources of infection,

the modelling framework implemented here can

highlight other aspects of the underlying disease dy-
namics. Strong associations between human and
animal Brucella seropositivity at the household
level have been recorded previously in East African
populations (Osoro et al. 2015). However, other
studies have found no associations (Zolzaya et al.
2014) or positive correlations are identified but
only at larger spatial scales (Bonfoh et al. 2012).
Increased correlation between human and caprid
seroprevalences is also seen when our dataset is
aggregated at the village and district levels as com-
pared with the correlation seen at the household
level (Shirima, 2005). The question of the optimal
spatial unit to consider is likely to vary between set-
tings and depend to a large extent on livestock man-
agement and animal–human interaction practices.
The degree to which household herds are managed
as closed units or mixed with herds from neighbour-
ing households or villages, and the degree to which
humans interact with their own animals only or the
wider population, either directly or indirectly (e.g.
through milk consumption), will impact on the
scales at which transmission occurs. Although
different patterns of correlation will be seen in
different settings, questions about the links
between infection in different hosts and the spatial
scale at which any links occur are consistent
themes in the recent brucellosis literature and calls
have been made for greater efforts to understand
the complexities of brucellosis transmission at the
animal–human interface at different scales (Zolzaya
et al. 2014).
In this study, we used household as the spatial

scale for the analysis but the models could be
applied at different spatial scales, or alternatively
extended to include more complex spatial structur-
ing providing flexibility for application to a range
of settings. For example, we may wish to add a
random effect of village to the linear predictors to es-
timate how much variability in the mean prevalence
is driven by a sample being collected in a specific
village (or village-associated factors) instead of a
household. Other options, such as a full nested hier-
archical model (e.g. household within villages,
within regions) may also be desirable and are
straightforward extensions to our model. The
underestimation of the variance in the human sero-
prevalence at household level may reflect the
absence of extra-household influences (associated
with spatial effects mentioned above) on human in-
fection probability in our model. As the network of
the trade of dairy products become increasingly
complex and involves more actors across greater
spatial scales, the spatial scales that are important
for understanding human brucellosis infection risk
may increasingly become distinct from the scales at
which transmission between cattle and caprids
occurs. Other useful extensions to this modelling ap-
proach would be the inclusion of a formal distinction
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between the various forms of missing values (e.g.
non-typed animals vs typed but undetected patho-
gen, or sensitivity/specificity in the typing data)
and improvements of the observational process to
include estimation of the timing of exposure (Viana
et al. 2015).
Here we focused on a case study of Brucella in

northern Tanzania; however, our findings and chal-
lenges are applicable to many systems, in which
there is considerable need to clearly identify the
infecting pathogen(s) that impact on human health
(as well as livestock productivity) and to distinguish
between a single or multi-pathogen transmission
epidemiological scenario. Our results show that our
method for integrating multiple types of data is
powerful and that important enhancements to
understanding of underlying infection dynamics
can be made through the integration of just small
amounts of genetic typing data.

SUPPLEMENTARY MATERIAL
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