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Abstract

We study a pair consisting of a smooth 3-fold defined over an algebraically closed field and
a “general” R-ideal. We show that the minimal log discrepancy (“mld” for short) of every
such a pair is computed by a prime divisor obtained by at most two weighted blow-ups. This
bound is regarded as a weighted blow-up version of Mustaţă–Nakamura’s conjecture. We
also show that if the mld of such a pair is not less than 1, then it is computed by at most one
weighted blow-up. As a consequence, ACC of mld holds for such pairs.

2020 Mathematics Subject Classification: 14B05 (Primary); 14E99 (Secondary)

1. Introduction

Throughout this paper, the base field k of varieties is an algebraically closed field of
arbitrary characteristic. We study pairs (A, a) consisting of a smooth variety A of dimension
N > 1 and an “R-ideal” a which means a= ae1

1 · · · aer
r , where ai’s are non-zero coherent

ideal sheaves on A and e = (e1, . . . , er) ∈R
r
>0. We fix a closed point 0 ∈ A.

The minimal log discrepancy (“mld” for short) mld(0; A, a) is an important invariant to
measure the singularity of the pair (A, a) at 0 and plays important roles in birational geom-
etry. We consider every prime divisor over A with the center at 0 and construct a “good
model” of the divisor to approximate the mld. The prototype is as follows:

THEOREM 1·1 ([9, 6]). Assume N = 2. For every prime divisor E over A with the center
at 0, there exists a prime divisor F obtained by one weighted blow-up with the center at 0
satisfying

a(E; A, a) ≥ a(F; A, a),

for every R-ideal a such that a(E; A, a) ≥ 0.

The inequality in the theorem implies that F is a better divisor to approximate the mld.
Therefore the theorem states that every prime divisor over A with the center at 0 has a better
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divisor which is obtained in a simple procedure. Here, we note that F is constructed from E
and does not depend on the choice of an R-ideal a.

Actually, in the paper [9] and [6], the main theorem is not stated in this form, but its proof
shows Theorem 1·1. The paper [9] is for char k = 0, and the paper [6] is for char k = p> 0
and the main statements of both papers are in the following form:

COROLLARY 1·2 ([9, 6]). Assume N = 2. Then, for every pair (A, a), the minimal log
discrepancy mld(0; A, a) is computed by a prime divisor obtained by one weighted blow-up.

The corollary follows from the theorem immediately. See, for example, the proof of
Corollary 1·9 in Section 5.

When we consider the case N = 3, we can see that one weighted blow-up is not sufficient
to obtain a prime divisor computing the mld (see Example 3·3). On the other hand, in the
example we can also show that the mld is computed by a prime divisor obtained by two
weighted blow-ups. So it is natural to expect the following conjecture:

CONJECTURE 1·3. Assume N ≥ 3. For every prime divisor E over A with the center at 0,
there exists a prime divisor F centered at 0 obtained by at most N − 1 weighted blow-ups
satisfying

a(E; A, a) ≥ a(F; A, a),

for every R-ideal a such that a(E; A, a) ≥ 0.

As an immediate consequence of the conjecture, we obtain the following:

CONJECTURE 1·4 (Corollary of Conjecture 1·3). Assume N ≥ 3. Then, for every pair (A, a),
the minimal log discrepancy mld(0; A, a) is computed by a prime divisor obtained by at most
N − 1 weighted blow-ups.

One of the motivations of the conjectures is that it is considered as a “weighted blow-up
version” of Mustaţă–Nakamura Conjecture (MN-Conjecture for short):

CONJECTURE 1·5 (MN-Conjecture [13].) Fix N and the exponent e of R-ideals. Then, there
exists a number �N,e ∈N depending only on N and e such that for any R-ideal a with the
exponent e the minimal log discrepancy mld(0; A, a) is computed by a prime divisor obtained
by at most �N,e times blow-ups. Here, the blow-up means the “usual blow-up”, i.e., blow-up
with the center at an irreducible reduced closed subset.

If this conjecture holds, then ACC Conjecture for these pairs holds ([13]), so it seems to
be a significant conjecture. On the other hand, MN-Conjecture is equivalent to a reasonable
conjecture on arc spaces ([5]), so it makes sense to study it.

Note that MN-Conjecture requires to fix an exponent e, while the weighted blow-up ver-
sions (Conjecture 1·3, 1·4) do not require it. Assume Conjecture 1·3 holds, it is also an
interesting question whether the weights of the blow-ups can be bound uniformly in terms
of exponents. This will strengthen the MN-Conjecture.

Another motivation of Conjecture 1·3 is for the project to bridge between positive
characteristic and characteristic 0 ([5]). In [5], we have:
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A bound of the number of weighted blow-ups 3

LEMMA 1·6. Let a be an R-ideal on a smooth variety Ak over k (char k = p> 0) and E a
prime divisor over (Ak, 0k) computing mld(0k; Ak, a).

If there exists an R-ideal ã on a smooth variety AC over C and a prime divisor Ẽ over
(AC, 0C), where 0C ∈ AC such that

1. ã(mod p) = a (see [5] for the definition of (mod p))

2. a(̃E; AC, ã) ≤ a(E; Ak, a),

then, mld(0C; AC, ã) = mld(0k; Ak, a).

Remark 1·7. In particular, if such ã and Ẽ exist for every a and E and assume that
mld(0k; Ak, a) is computed by a divisor, then the set of mld(0k; Ak, a)’s is contained in the set
of mld(0C; AC, b)’s. Therefore, if we fix the exponent e and the dimension N of Ak, then the
number of the values �e := {mld(0k, Ak, a) | a is a R- ideal with the exponent e} is finite
for char k> 0, because it is proved to be finite in characteristic 0 by [8]. Similarly, if ACC
holds in characteristic 0, then it also holds in positive characteristic.

Now, the problem is to construct appropriate Ẽ and ã for given E and a. If Conjecture 1·3
holds, we can reduce this problem to a divisor F of special type (i.e., obtained by at most
N − 1 weighted blow-ups), which seems easier to handle.

The main results of this paper are the following:

THEOREM 1·8. Assume N = 3. For every prime divisor E over A with the center at 0,
there exists a prime divisor F centered at 0 obtained by at most two weighted blow-ups
satisfying

a(E; A, a) ≥ a(F; A, a),

for every “general” R-ideal a for E such that a(E; A, a) ≥ 0.

The terminology “general” will be defined in Definition 4·9. The weighted blow-ups will
be constructed by “squeezed” blow-ups (see, Definition 4·4) depending only on E and it
works for every general ideal. Here, “general” is necessary, because there exists an example
of non-general ideal such that two squeezed blow-ups do not give the required divisor in the
theorem (cf. Example 5·5). But it does not give a counter example for Conjecture 1·3, indeed
for the example there exists another sequence of weighted blow-ups to obtain the required
divisor (see, also Example 5·5).

As a corollary we obtain:

COROLLARY 1·9. Assume N = 3. Then, for every pair (A, a) with a “general” R-ideal a,
the minimal log discrepancy mld(0; A, a) is computed by a prime divisor obtained by at most
two weighted blow-ups.

It is known as the Zariski’s sequence that every prime divisor E over A with the center at
0 is obtained by successive usual blow-ups from A, such that the centers of blow-ups are the
center of E on each step ([11, VI, 1·3]). The following corollary shows that in some cases,
we obtain the two weighted blow-ups to compute the mld by just looking at the center of the
second blow-up in the Zariski’s sequence.
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COROLLARY 1·10 (Corollary 5·9). Assume N = 3. Let E be a prime divisor over A comput-
ing mld(0; A, a) for a pair (A, a). Let A1 −→ A be the first usual blow-up with the center at 0
in the Zariski’s sequence. Assume that the center C ⊂ A1 of E is a curve of degree ≥ 2 in the
exceptional divisor E1 � P

2. Then a weighted blow-up which is called “squeezed blow-up”
at C gives a divisor computing mld(0; A, a).

Note that in this case the first blow-up is also a squeezed blow-up. Example 3·3 is just in
this case. In Section 5, we show a more general corollary. On the other hand, if we restrict
to the case mld ≥ 1, then we have the following:

THEOREM 1·11. Assume N = 3. Then, for every general pair (A, a) with mld(0; A, a) ≥ 1,
the minimal log discrepancy is computed by a prime divisor obtained by one weighted
blow-up.

COROLLARY 1·12. Assume N = 3. In

�= {(A, a) | mld(0; A, a) ≥ 1 with general a}

the Mustaţă–Nakamura Conjecture holds and also the ACC Conjecture holds for char k ≥ 0.
Here, ACC Conjecture means that the set of mld(0; A, a) for the pairs in the subset �J ⊂�

consisting of R-pairs with the exponents in J ⊂R>0 satisfies the Ascending Chain Condition.
Here, J is a DCC set.

The corollary follows from Theorem 1·11 in the same way as in the proof of [6,
corollary 1·6], since the mld is computed by one weighted blow-up.

This paper is organised as follows: in Section 2 we prepare basic terminologies which will
be used in this paper. In Section 3 we discuss about weighted blow-up at a (not necessarily
closed) smooth point and basic formula on weighted projective space, that is the exceptional
divisor appearing in a weighted blow-up. In Section 4 we construct an appropriate regular
system of parameter (RSP for short) with the weight, in order to make a weighted blow-up.
In Section 5 we give the proofs of the main results.

2. Preliminaries

Let A be an N-dimensional smooth variety defined over an algebraically closed field k.
We fix a closed point 0 ∈ A.

Definition 2·1. We call E a prime divisor over A, if there is a proper birational morphism
ϕ: A′ −→ A from a normal variety A′ on which E is an irreducible divisor. The generic point
P ∈ A of the image ϕ(E) is called the center of E on A. In this case, we sometimes call E a
prime divisor over (A, P).

Definition 2·2. For a prime divisor E over a non-singular variety A, let ϕ: A′ −→ A be a
proper birational morphism with normal A′ such that E appears on A′. Let kE (or sometimes
written as kE/A) be the coefficient of the relative canonical divisor KA′/A at E and vE the
valuation defined by the prime divisor E. Here, note that kE (kE/A) does not depend on the
choice of A′.
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A bound of the number of weighted blow-ups 5

Let a be an R-ideal on A as in the beginning of the first section and ei’s are the exponents.
The log discrepancy of the pair (A, a) at E is defined as

a(E; A, a) := kE −
∑

i

eivE(ai) + 1

and the minimal log discrepancy of the pair at a closed point 0 is defined as

mld(0; A, a) := inf{a(E; A, a) | E prime divisor over A with the center at 0}
It is known that for N ≥ 2, either mld(0; A, a) ≥ 0 or mld(0; A, a) = −∞ holds. For N = 1,

we define mld(0; A, a) = −∞ if the left-hand side is negative, by abuse of notation, because
it is convenient to describe the Inversion of adjunction.

Definition 2·3. We say that a prime divisor E over A with the center at 0 computes
mld(0; A, a)

if either a(E; A, a) = mld(0; A, a) (when the right-hand side is ≥ 0)
or a(E; A, a)< 0 (when the mld is −∞).

Remark 2·4. Assume there exists a log resolution of the pair (A, am0), where m0 is the
maximal ideal defining 0 ∈ A. If mld(0; A, a) ≥ 0, then, on every such resolution there is
a prime divisor computing mld(0; A, a). If mld(0; A, a) = −∞ and Z(a) ⊂ A contains an
irreducible component of codimension one, there may not exist a prime divisor comput-
ing the mld among the exceptional divisors appearing in a given log resolution (cf. [3,
proposition 7·2]). But in this case, if we construct an appropriate log resolution of (A, am0)
by taking more blowing-ups from the given one, a prime divisor computing mld(0; A, a)
appears on that. Therefore, for char k = 0 or N ≤ 3, every pair (A, a) has a prime divisor
computing mld(0; A, a), since there is a log resolution for every pair.

3. Weighted blow-ups and weighted projective spaces

In this section A is always a smooth variety of dimension N ≥ 2 defined over an
algebraically closed field k and P ∈ A is a (not necessarily closed) point.

Definition 3·1. Let x1, . . . , xc be an RSP of a regular local ring R with the algebraically
closed residue field and w1, . . . , wc be positive integers with gcd (w1, . . . , wc) = 1. For n ∈
N, denote by In the ideal in R generated by all monomials xs1

1 · · · xsc
c such that

∑c
i=1 siwi ≥

n. The weighted blow-up of Spec R with wtw(x1, . . . , xc) = (w1, . . . , wc) is the canonical
projection:

ProjA( ⊕n∈N In) −→ A := Spec R.

The exceptional divisor E for the weighted blow-up is called a prime divisor obtained by a
weighted blow-up of A at P.

More generally, let P ∈ A be a smooth point with the not-necessarily-algebraically closed
residue field K. Let K be the algebraic closure of the residue field of OA,P. A weighted
blow-up of A at the point P is the canonical morphism induced from a weighted blow-up
A −→ Spec KÔA,P for some RSP x1, . . . , xc of KÔA,P with wtw(x1, . . . , xc) = (w1, . . . , wc)
for some (w1, . . . , wc) ∈Z

c
>0, where KÔA,P is the extension of the formal power series ring
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ÔA,P over K to the one over K. Let E be the prime divisor obtained by the weighted blow-
up A −→ Spec KÔA,P. The prime divisor E over A with the center at P corresponding to E
is called a prime divisor obtained by a weighted blow-up of A at P. Note that if E gives a
valuation v and the valuation ring Ov, the prime divisor E corresponds to the valuation v
whose valuation ring is K(A) ∩Ov.

Note that weighted blow-ups are only defined at smooth points.
Here, we show a 3-dimensional example that the minimal log discrepancy is not computed

by a divisor obtained by only one weighted blow-up, but computed by a divisor obtained by
two weighted blow-ups.

The following are well known, for example see [10, remark 2·6, lemma 2·7].

Remark 3·2. Let P ∈ A be a point of a smooth variety with the residue field K.

(1) The set of prime divisors over A with the center at P corresponds bijectively to the set
of prime divisors over Â := Spec ÔA,P with the center at the closed point. Moreover,
if prime divisors E and Ê correspond under the above bijection, then for every R-ideal
a on A we have vE(a) = vÊ(a) and also a(E; A, a) = a(̂E, Â, aOÂ).

(2) Let K′ ⊃ K be a field extension and A′ := Spec K′ÔA,P. Then, there is a surjective
map from the set of prime divisors over A′ with the center at the closed point to the set
of prime divisors over A with the center at P. If prime divisors E′ and E correspond by
the above surjective map, then it follows a(E′; A′, aOA′) = a(E; A, a) for every R-ideal
a on A.

Example 3·3. Assume char k �= 2, 5. Let A := A
3
k and a= (f )7/10, where

f = (x2 + y2 + z2)2 + x5 + y5 + z5.

Then, a divisor computing mld(0; A, a) = 0 is not obtained by one weighted blow-up ([12,
exercise 6·45]).

On the other hand, there is a sequence of weighted blow-ups

A2
ϕ2−→ A1

ϕ1−→ A,

where ϕ1 is the usual blow-up at 0 and ϕ2 is a weighted blow-up with weight (1, 2) at the
generic point of the curve x2 + y2 + z2 = 0 on E1 = P

2
k . Here, E1 is the exceptional divisor

for ϕ1. The exceptional divisor E2 for ϕ2 computes mld(0; A, a) = 0

The following lemma for a weighted projective space with a special weight is used for
our main results. The statement is easily generalised to higher dimensional case, but for
simplicity of notation we state here only for 2-dimensional case.

LEMMA 3·4. Let r ≤ s be positive integers such that gcd (r, s) = 1. Let g ∈ k[x1, x2, x3] be
a weighted homogeneous polynomial with respect to the weight w = (w(x1), w(x2), w(x3)) =
(r, r, s) and Q ∈ Pk(r, r, s) a closed point not contained in the coordinate planes, i.e., Q �∈
(x1 · x2 · x3 = 0). Let � ∈ k[x1, x2, x3] be a weighted homogeneous polynomial of degw (�) = r
such that �(Q) = 0. If � � |g, then it follows

r · s · ordQ(g) ≤ r · s · ordQ(g |L ) ≤ degw g,

where L ⊂ Pk(r, r, s) is the divisor defined by �= 0 in Pk(r, r, s).
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Proof. As ordQg ≤ ordQ(g |� ), the first inequality is trivial. We will show the second
inequality. Let G ⊂ Pk(r, r, s) be the subscheme defined by g = 0 on Pk(r, r, s). Let

π : P2
k � P(r, r, s), (X1, X2, X3) �→ (Xr

1, Xr
2, Xs

3) = (x1, x2, x3)

be the canonical covering. Then, as π∗L and π∗G has no common irreducible components,
Bezout’s theorem on P

2 implies

π∗L · π∗G = deg π∗� · deg π∗g = degw � · degw g = r · degw g, (1)

In case char k = 0 or char k = p> 0 and p � |r · s, the morphism π is étale around Q.
Therefore, π−1(Q) consists of r2 · s closed points {Qi | i = 1, . . . , r2 · s} whose analytic
neighbourhoods of π∗G and π∗L are isomorphic to those of G and L at Q, respectively.
Then, by (1) we obtain

r2 · s · ordQ(g |L ) =
r2s∑
i=1

ordQi(π
∗g |π∗L ) ≤ π∗L · π∗G = r · degw g,

which yields the required inequality.
In case p|r, denote r = pe · q (gcd (p, q) = 1). Then, the fiber π−1(Q) consists of q2 · s

closed points, as a topological space. For a closed point Qi (i = 1, . . . , q2 · s) in the fiber
π−1(Q) we obtain

mQOP2 ⊂m
pe

Qi
,

where mQ and mQi are the maximal ideals of Q ∈ P(r, r, s) and of Qi ∈ P
2, respectively. Let

C ⊂ P
2 be the subscheme with the reduced structure of π∗L. Then, we have

mL,QOC ⊂m
pe

C,Qi
,

where mL,Q and mC,Qi are the maximal ideals of Q ∈ L and of Qi ∈ C, respectively.
Therefore, for every i = 1, . . . , q2 · s it follows

pe · ordQ(g | L) ≤ ordQi(π
∗g) |C .

Now, there are q · s points Qi lying on C. Then, by Bezout’s theorem on P
2 for C and π∗G,

we obtain

q · s · peordQ(g |L ) ≤ q · s · ordQi(π
∗g) |C≤ C · π∗G = degw g.

Here noting that q · s · pe = r · s, this is the required inequality.
In case p|s, the proof is similar.

4. Squeezed systems and squeezed blow-ups

Let A be a variety of dimension N ≥ 2 over an algebraically closed field k.

Definition 4·1. Let P ∈ A be a smooth point (not necessarily closed), K the residue field,
and E a prime divisor over A with the center at P. Denote the algebraic closure of K by K.
An RSP {x1, . . . , xc} of KÔA,P at the closed point is called a squeezed system for E at P, if
vi := vE(xi) (i = 1, . . . , c) satisfy:
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(1) v1 = · · · = vc−1 ≤ vc;

(2) v1 := min{vE(x) | x ∈m \m2};
(3) vc := max{vE(x) | x ∈m \m2};

where KÔA,P is the extension of the coefficient field K of the formal power series ring OA,P

to K, and m⊂ KÔA,P is the maximal ideal.
In this case,

v′ := (v′
1, . . . , v′

c) = (v1, . . . , vc)

gcd (v1, . . . , vc)

is called a squeezed weight for E at P.
Let E and v′ = (v′

1, . . . , v′
c) be as above. In this case, we call E a prime divisor of squeezed

type v′.

Note that the squeezed weight for E is determined by a prime divisor but squeezed system
is not uniquely determined by the prime divisor E.

Remark 4·2. For every A, P and E as in Definition 4·1, there exists a squeezed system
of KÔA,P. Indeed, it is obvious that there is x1 ∈m \m2 such that v(x1) is the mini-
mal value among {vE(x) | x ∈m \m2}. Existence of the maximal v(xc) among the set is
proved by Zariski’s subspace theorem (cf. [1, (10·6)]). Now, we extend {x1, xc} to an RSP
{x1, x2, . . . , xc} of OA,P. Here, if vE(xi)> vE(x1) for 2 ≤ i ≤ r − 1, replace xi by x1 + xi.
Then, we obtain a squeezed system {x1, x2, . . . , xc}.

Actually in [9] and [6], the proofs of Theorem 1·1 show the following:

Example 4·3 (Theorem 1·1). For every prime divisor E over a smooth surface A with the
center at 0 such that a(E; A, a) ≥ 0 for an R-ideal a on A. Then, the exceptional divisor E1

obtained by a squeezed blow-up for E satisfies

a(E; A, a) ≥ a(E1; A, a).

Definition 4·4. Let A, P and E as above and let {x1, . . . , xc} be a squeezed system for
E and v′ = (v′

1, . . . , v′
r) be the squeezed weight. We call the weighted blow-up of weight v′

with respect to the coordinate system {x1, . . . , xc} a squeezed blow-up for E.

Remark 4·5. As in the definitions, a squeezed system is a RSP in the local ring with extended
coefficient field. A squeezed system is not in general a RSP of the original local ring OA,P.

Example 4·6. Let AK := Spec K[[y, z]] and AK := Spec K[[y, z]], where K is the alge-
braic closure of K. Take an element a ∈ K \ K and let φ ∈ K[T] be the minimal polynomial
of a. Let ϕ1 : A1 −→ AK be the usual blow-up at the closed point of AK . Then the exceptional
divisor E1 is the projective line P

1
K with the homogeneous coordinates {y, z}. Denote the

homogenised polynomial of φ by �(y, z) := zdeg φφ(y/z). Take the blow-up ϕ2: A2 −→ A1

with the center at the closed subscheme C defined by the ideal (�(y, z)) on E1. As the
proper transforms of any curves defined by linear forms �= cy + dz = 0 (c, d ∈ K) on A1

do not intersect to C, it follows vE2 (�) = 1. Therefore, every RSP {f1, f2} of K[[y,z]] satisfies
vE(f1) = vE(f2) = 1.
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On the other hand, take the base change ψ : AK −→ AK by the field extension K ⊃ K. Let
z′ := y − az ∈ K[[y, z]]. Then, the proper transform of the curve defined by z′ = 0 contains
the point (a:1) ∈ P

1
K

= E1 where E1 is the exceptional divisor of the blow-up at the closed

point of AK . As (a:1) ∈ E1 satisfies �(y, z) = 0, the proper transform of z′ = 0 intersects the
center of the second blow-up induced from ϕ2. One can see that vE(z′)> 1, and therefore a
squeezed system cannot be taken from K[[y,z]].

Now we are going to define “general” ideal.

Definition 4·7. Let E be a prime divisor over A of squeezed type (v′
1, v′

2, v′
3) (note that

v′
1 = v′

2) and let E1 be the exceptional divisor obtained by the squeezed blow-up with respect
to a squeezed system {x1, x2, x3}.

An irreducible curve B ⊂ E1 = P(v′
1, v′

2, v′
3) with the following properties is called a bad

curve for E on E1.

(1) B is a curve of degree v′
1 with respect to (v′

1, v′
2, v′

3). (In the discussions on a weighted
projective space, “degree” always means degree with respect to (v′

1, v′
2, v′

3), and it is
sometimes denoted by degv′ .)

(2) B contains the center of E.

LEMMA 4·8. Under the setting of Definition 4·7, the following hold:

(i) A bad curve does not always exist. More precisely a bad curve does not exist if and
only if one of the following holds;

(a) the squeezed weight is (1, 1, 1); or
(b) the squeezed weight (v′

1, v′
2, v′

3) satisfies v′
1 < v′

3 and the center of E on A1 is a
curve of degv′ > v′

1 on E1 � P(v′
1, v′

2, v′
3); or

(c) E = E1.

(ii) If a bad curve exists, then it is unique in E1.

Proof. It is clear that if E = E1, then the center of E on E1 is the generic point, so there
is no bad curve on E1. We exclude this trivial case in the following discussions. In case
the squeezed blow-up is the usual blow-up, then the exceptional divisor does not have a
bad curve. Because if B is a bad curve, it is defined by linear form �= ∑

i aiXi = 0 with
a3 �= 0, where {X1, X2, X3} is the projective coordinate system on E1 = P

2 corresponding to
the squeezed system {x1, x2, x3} on OA,0. This is a contradiction to the fact that (1, 1, 1) is
the squeezed system, as we obtain another RSP {x1, x2, �(x1)} such that

vE(x1)< vE(�(xi)). (2)

Here, we give the proof of this inequality, as this kind of discussion is used frequently in this
paper.

Let ϕ1 : A1 −→ A be the squeezed blow-up and ψ : Ã −→ A1 a birational morphism on
which E appears. Denote the composite ϕ1 ◦ψ by ϕ. Let D be the proper transform of
Z(�(xi)) ⊂ A in A1, then D ∩ E1 contains the center of E on A1 by the assumption. Note that
we can express

(ϕ∗
1�(xi)) = rE1 + D, (r = vE1(�(xi))).
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Here, we remind the reader that vE(�(xi)) is the coefficient of the divisor (ϕ∗�(xi)) =
ψ∗(rE1 + D) at the component E. The center of E on A1 is contained in D, there-
fore the contribution from ψ∗(D) to vE(�(xi)) is positive. Therefore, vE(�(xi))> rvE(E1) =
vE1(�(xi))vE(E1) = vE(x1). This shows the inequality (2).

For the case where E1 is an exceptional divisor of a squeezed blow-up with respect to
(v′

1, v′
2, v′

3) with v′
1 < v′

3, if the center C of E on E1 is a curve of degree > v′
1, then there is no

bad curve. Because, a curve of degree v′
1 cannot contain a curve of degree > v′

1. This gives
the proof of “if” part of (i).

Assume a bad curve exists on E1. When the center of E on E1 is a curve, then it should
coincide with the bad curve by the definition, therefore the center should be of degree v′

1.
When the center of E on E1 is a closed point P, then a bad curve should contain P. Express
the point P by the homogeneous coordinates (a,b,c) with a, b, c ∈ k. Then a curve of degree
v′

1 containing P is defined by bX1 − aX2 = 0. Now we obtain the uniqueness of the bad curve
on E1. This completes the proof of “only if” part of (i) and the proof of (ii).

Definition 4·9. Let E be a prime divisor over a smooth variety A with the center at a closed
point 0. An R-ideal a is called general for E if there exists a squeezed blow-up A1 −→ A for
E with the exceptional divisor E1 satisfying the following:

(1) ordBaA1OE1 ≤ 1, where B is the bad curve on E1 and aA1 is the weak transform of a at
A1. If there is no bad curve on E1, then we account it as the inequality automatically
holds;

(2) in addition, if a(E; A, a)< a(E1; A, a) and the center P of E on A1 is a smooth closed
point, then there exists a squeezed blow-up A2 −→ A1 for E at P. Let E2 be the excep-
tional divisor. Then, ordB′ILaA2OE2 ≤ 1, where B′ is the bad curve on E2, aA2 is the
weak transform of a at A2 and IL is the defining ideal of the intersection L := E2 ∩ E′

1
in E2. Here, E′

1 is the proper transform of E1 on A2. If there is no bad curve on E2,
then we account it as the inequality automatically holds.

We say that a pair (A, a) is general if the R-ideal a is general for a prime divisor computing
mld(0; A, a). Here, the weak transform aiA2 of an ideal ai ⊂OA on A2 is defined as

aiOA2 = aiA2OA2(−vE1(ai)E1 − vE2 (ai)E2).

The weak transform aA2 of an R-ideal a on A is defined as the canonical extension of the
one for an ideal of OA (see, for example [9]).

Remark 4·10. In (2), we assume smoothness of the center P of E on A1. But it turns out that
it always holds by Lemma 5·1.

Remark 4·11. The definition of generality of an R-ideal is rather complicated. However, one
can see that under a fixed exponent, the inequalities of orders at specific curves of E1 and E2

are open conditions in the space of regular functions of A, which is the reason why we call
the ideal a “general”. The following gives a sufficient condition for generality of the ideal.

Under the same symbols as in Definition 4·9, the R-ideal a is general for E if one of the
following hold:

(1) there is no bad curve on E1 or E2;
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(2) assume the bad curves B ⊂ E1 and B′ ⊂ E2 exist. ordBaA1OE1 = 0, and ordB′
aA2OE2 = 0.

5. Proofs of the main results

For the proofs of the main theorems we need the following lemma which guarantees that
the second weighted blow-up is possible.

LEMMA 5·1. Let E be a prime divisor over a smooth N-fold A (N ≥ 2) with the center at
the closed point 0. Let {x1, . . . , xN} be a RSP at 0. Let vi := vE(xi), v := (v1, . . . , vN) and
define

v′ := (v′
1, . . . , v′

N) = (v1, . . . , vN)

gcd v
.

Let ϕ1: A1 −→ A be the weighted blow-up with respect to {x1, . . . , xN} with weight v’.
Denote the exceptional divisor of ϕ1 by E1. Assume E �= E1 and let C be the center of E
on A1 and P ∈ C the generic point of C.

Then,

P ∈ E1 \
{⋃

(Xi = 0)
}

⊂ E1 = P(v′
1, . . . , v′

N),

where Xi is a homogeneous coordinate function corresponding to xi. In particular, P is
smooth on A1 and also on E1.

Proof. Assume that the statement does not hold, then we may assume that P is in the
hyperplane defined by X1 = 0 in E1 = P(v′). There exists at least one homogeneous coor-
dinate function Xi such that P does not lay in the hyperplane defined by Xi = 0. Then we
obtain:

vE(xi) = vE1(xi) · vE(E1) = v′
i · vE(E1);

vE(x1) = vE1(x1) · vE(E1) + ordPX1 ≥ v′
1 · vE(E1) + 1.

This is a contradiction to the fact that

vE(x1) : vE(xi) = v′
1 : v′

i.

The following lemma is a basic idea appeared in [9].

LEMMA 5·2. Let a be an R-ideal on A with a(E; A, a) ≥ 0. Let A′ −→ A be a proper bira-
tional morphism with normal A′, and D an irreducible divisor on A′ with the same center on
A as that of E. Assume a(D; A, a)> a(E; A, a) and the generic point P of the center of E on
A′ is smooth and not contained in the other exceptional divisors for A′ −→ A.

Then, we have

mld(P; D, aA′OD)< 0, in particular

ordPaA′OD > 1,

where aA′ is a weak transform of a on A′.
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Proof. First we express the log discrepancy at E as follows:

a(E; A, a) = kE/A + 1 − vE(a)

= kE/A′ + kD/A · vE(D) + 1 − vD(a) · vE(D) − vE(aA′)

= a(E; A′, ID · aA′) + vE(D) · a(D; A, a),

(3)

where kE/A′ is the coefficient of the relative canonical divisor KÃ/A′ at E and ID is the defining

ideal of D in A′. Then, by the assumption, it follows a(E; A′, ID · aA′)< 0 and therefore we
obtain

mld(P; A′, ID · aA′) = −∞.

By Inversion of adjunction ([3, 7]) we obtain mld(P; D, aA′ ·OD) = −∞. Hence, it follows
ordP(aA′ ·OD)> 1 as claimed.

Setting for the proof of Theorem 1·8.
Let E be a prime divisor over a smooth 3-fold A with the center at a closed point 0. Let a

be a general R-ideal on A such that a(E; A, a) ≥ 0. Let

ϕ1 : A1 −→ A

be a squeezed blow-up for E satisfying the condition (1) in Definition 4·9. Let the squeezed
system {x1, x2, x3} and the weight v′ = (v1

′, v′
2, v′

3) correspond to the squeezed blow-up ϕ
(note that v′

1 = v′
2). Denote the exceptional divisor for ϕ by E1. If a(E1; A, a) ≤ a(E; A, a),

then E1 is the required prime divisor F in the theorem. Therefore, from now on, we assume
that the inequalities a(E1; A, a)> a(E; A, a) ≥ 0 hold.

LEMMA 5·3. Let A, E and E1 be as above. If a is general for E and the inequalities
a(E1; A, a)> a(E; A, a) ≥ 0 hold, then we obtain the following:

(i) 0< a(E1; A, a)< 1;

(ii) v′ = (1, 1, n) with n ≥ 1 or v′ = (2, 2, 3).

(a) In case (1, 1, n) the center of E on A1 is a curve in E1 = P(1, 1, n) of degree
n + 1.

(b) In case (2, 2, 3) the center of E on A1 is either a curve of degree 6 or a closed
point in E1 = P(2, 2, 3).

Proof. Let f e = f e1
1 · · · f er

r ∈ a be a general element, i.e., vE1 (a) = ∑
i ei · degv′ (inv′ fi),

where inv′ f is the initial part of f with respect to the weight v′.

We divide the proof into two cases according to the dimension of the center of E on A1.
Let P ∈ A1 be the generic point of the center of E on A1.

Case 1. dim {P} = 1.
Let C := {P} defined by �= 0 on E1 = P(v′), where � is homogeneous of degree ≥ v′

1
with respect to the weight v′.
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The R-divisor on E1 induced from a general element f e = f e1
1 · · · f er

r is expressed as
follows: (∏

inv′ f ei
i

)
= αC +

∑
j

γjCj, with α > 1, γi ∈R>0

Here, note that α > 1 follows from Lemma 5·2. As a is general, C is not a bad curve, there-
fore its degree is greater than v′

1. Then, degv′ �≥ v′
1v′

3, because � is an irreducible weighted
homogeneous polynomial in x1, x2, x3 of weight v′

1, v′
1, v′

3 not contained in the coordinate
hyperplanes in E1 � P(v′). (Note that such a polynomial with smallest degree is in the form

ax
v′

3
1 + bx

v′
3

2 + cx3
v′

1 .) Then, we have:

vE1(a) =
∑

i

ei · degv′ (inv′ fi) = degv′ (αC +
∑

j

γjCj)> degv′ C = degv′ �≥ v′
1v′

3.

By the assumption a(E1; A, a)> a(E; A, a) ≥ 0, it follows

0 ≤ a(E1; A, a) = 2v′
1 + v′

3 − vE1(a)< 2v′
1 + v′

3 − v′
1 · v′

3. (4)

The possibilities of (v′
1, v′

1, v′
3) are only (1, 1, n) with n ∈N and (2, 2, 3). In case (2, 2, 3), by

(4) we have a(E1; A, a))< 2 · 2 + 3 − 2 · 3 = 1. Then, in this case we have (i) and (b) of (ii).
In case (1, 1, n) for n ∈N, we have degv′ �≥ n + 1. Indeed, if not, we have degv′ �= n

and �= X3 + h(X1, X2) for a nonzero homogeneous polynomial h of degree n. As E has the
center at the curve �= 0, in the same way as the proof of (2) we have

vE(x3 + h(x1, x2))> vE(x3),

and also x3 + h(x1, x2) ∈m0 \m2
0 which is a contradiction to the maximality of vE(x3).

Therefore, in this case also we have a(E1; A, a))< 2 + n − (n + 1) = 1, which shows (i) and
(a) of (ii).

Case 2. dim {P} = 0
We can take P = (1: a: b) ∈ E1 = P(v′) (a, b �= 0) as the homogeneous coordinate of the

point P by Lemma 5·1.

First we will show that v′
1 �= 1. To see this, assume that v′

1 = 1. Then a curve bX
v′

3
1 − X3 = 0

contains P, therefore

vE(bx
v′

3
1 − x3)> vE(x3) = v3,

and also bx
v′

3
1 − x3 ∈m0 \m2

0 which is a contradiction to the maximality of vE(x3).
Now we may assume that v′

1 ≥ 2. Then, of course v′
1 < v′

3 and the curve B defined by
aX1 − X2 = 0 contains P. Note that B is the bad curve.

Take a general element f e = f e1
1 · · · f er

r ∈ a such that vE1(a) = vE1 (f e) = degv′ (inv′ f e). The
R-divisor on E1 = P(v′) induced from a general element f e = f e1

1 · · · f er
r is expressed as

follows: (∏
inv′ f ei

i

)
= αB +

∑
j

γjCj, with α, γi ∈R>0. (5)
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By generality of a, we have α ≤ 1. By Lemma 5·2, we have mld(P; E1, aA1OE1) = −∞. By
the description (5) of the divisor defined by a general element f e, we have

−∞ = mld(P; E1, aA1OE1) = mld(P;E1, IαB ·
∏

i

Iγi
Ci

) ≥ mld(P;E1, IB ·
∏

i

Iγi
Ci

)

= mld(P; B, (
∏

i

Iγi
Ci

)OB).

Hence, it follows ordP(
∏

i Iγi
Ci

)OB > 1. Applying Lemma 3·4 to the curve B of degree v′
1, we

obtain

1< ordP(
∏

i

Iγi
Ci

)OB ≤
∑
γi degv′ Ci

v′
1v′

3
≤ vE1(f e)

v′
1v′

3
≤ 2v′

1 + v′
3

v′
1v′

3
,

Here, for the third inequality, we use∑
γi degv′ Ci ≤ vE1(f e) − αv1

′.

Then, the only possibility of v′ satisfying these inequalities is (2, 2, 3) and we also have
vE1(a) = vE1(f e)> 2 · 3 which completes the proof of (i) and (ii) in case dim {P} = 0.

COROLLARY 5·4 (Theorem 1·11). Let A be a smooth variety of dimension 3 over an alge-
braically closed field k. For any general pair (A, a) with mld(0; A, a) ≥ 1 the minimal log
discrepancy is computed by a prime divisor obtained by one weighted blow-up.

Proof. As a(E1; A, a) ≥ mld(0; A, a) ≥ 1, the inequality a(E1; A, a)> a(E; A, a) does not
hold by (i) in Lemma 5·3.

Proof of Theorem 1·8. Let A1, E1 be as in the setting above. Assuming 0 ≤ a(E; A, a)<
a(E1; A, a), we will prove that a(E; A, a) ≥ a(E2; A, a) for a divisor E2 obtained by the second
“blow-up” constructed below in Case 1 and Case 2.

Let P ∈ E1 ⊂ A1 be the center of E. First, for every prime divisor D over A1 with the center
at P and with the inequality a(D; A, a)> a(E; A, a) ≥ 0, we observe that

a(D; A1, aA1) ≥ 0. (6)

Indeed, we have an expression of a(D; A, a) as follows:

a(D; A, a) = a(D; A1, aA1) + vD(E1)(a(E1; A, a) − 1).

As a(D; A, a) ≥ 0 and a(E1; A, a) − 1< 0 (Lemma 5·3), we have a(D; A1, aA1) ≥ 0.

Case 1. dim {P} = 1
Let {y1, y2} be a squeezed system for E on A1 at P and E2 the prime divisor obtained

by the squeezed blow-up of A1 at P with respect to {y1, y2}. Let K := OA1,P/mA1,P and K
the algebraic closure of K. Let A1K := Spec ÔA,P, A1K := Spec KÔA,P = Spec K[[y1, y2]].
Denote the both closed points of A1K and of A1K by 0. Here, we note that {y1, y2} is not
necessarily a squeezed system on A1K for E as is shown in Example 4·6, but it does not
matter. Because we are interested only in ideals which came from A1 and in this case a
squeezed system on A1 for E works in the same way as in [9] and [6], which one can see
below:
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Let Ã −→ A1 be a log resolution of (A1, aOA1) on which E appears. Then, the base change
˜̃A −→ A1K by A1K −→ A1 is also a log resolution of (A1K , aOA1K

) on which the prime divi-
sor E corresponding to E appears. Let A2 −→ A1 be the squeezed blow-up with respect to
the squeezed system {y1, y2} and E2 the exceptional divisor. By definition, it means that
A2K −→ A1K is squeezed weighted blow-up with respect to the squeezed system {y1, y2}
and E2 be the exceptional divisor corresponding to E2.

If E = E2, then we have E = E2 and we are done. So, we may assume that the center of E
on A2K is a point. Then the center Q ∈ A2K is not on the proper transform of E1 on A2K . This
is proved as follows:

Let w = (r, s) be the weight of the squeezed system {y1, y2} on A1.
First, we show that r = s does not happen. Assume r = s, i.e., w = (1, 1), then we can take

an expression Q = (a, b) of Q ∈ E2 = P
1
K

by homogeneous coordinates with a, b �= 0. Let

z := by1 − ay2 ∈OA1K
. As Q is the center of E on E2 ⊂ A2K and satisfying bY1 − aY2 = 0

(Y1, Y2 are the homogeneous coordinates on E2 = P
1
K corresponding to y1, y2.), it follows

z ∈mQ \m2
Q, and vE(z)> vE(y1), vE(y2),

which is a contradiction to the fact that {y1, y2} is a squeezed system. Now, we may assume
that r< s. Let h = 0 be the defining equation of E1 in A1 around P, then E1 is also defined
by h = 0 and it is smooth at the closed point 0 ∈ A1K . Therefore, we have ordy1,y2h = 1. Then
the initial part of h with respect to w is one of the following:

(1) inw(h) = y1, (2) inw(h) = y2, (3) inw(h) = y2 + ay1
d (a ∈ K, w1d = w2). In the first two

cases, E′
1 |E2

is in the zero locus of the coordinate functions, where E′
1 is the proper trans-

form of E1 on A2K . Therefore it does not contain the center Q of E by Lemma 5·1. In case
(3), it follows w = (1, d). If Q is in E′

1 |E2
, then we have y′

2 := y2 + ay1
d ∈mA1K ,0 \m2

A1K ,0

and vE(y′
2)> vE(y2) which is a contradiction to the assumption that {y1, y2} is a squeezed

system. Now, in any case we obtain that Q �∈ E′
1.

On the other hand, a(E; A, a) has another expression as follows:

a(E; A, a) = kE/A1 + kE1/A · vE(E1) + 1 − vE(a).

It is sufficient to show that

a(E; A, a) ≥ a(E2; A, a).

Assume contrary, then

0> a(E; A, a) − a(E2; A, a) = a(E; A2K , IE2
· aA2K

) + (vE(E2) − 1) · a(E2; A, a), (7)

where aA2K
is the weak transform of aA1OA1K

. For the calculation of (7), we used

(i) vE(E1) = vE(E2)vE2
(E1) + vE(E′

1) = vE(E2)vE2
(E1).

Then the inequality (7) shows that a(E; A2K , IE2
· aA2K

)< 0 which implies

mld(Q; A2K , IE2
· aA2K

) = −∞.

Then, by Inversion of adjunction ([3, 7]), it follows

mld(Q; E2, aA2K
·OE2

)< 0
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which yields ordQ((aA1OA1K
)A2K

·OE2
) = ordQ(aA2K

·OE2
)> 1.

Let (r,s) be the squeezed weight for E at the closed point 0 ∈ A1K , then

a(E, A1K , aA1K
) = a(E; A1, aA1) ≥ 0,

where we the last inequality follows from (6). Now we reach the situation in Theorem 1·1
and apply the argument in ([9]) for the surface pair (A1K , aA1K

), we obtain

1< ordQ((aA1OA1K
)A2K

·OE2
) ≤ vE2

(aA1OA1K
)

r · s
≤ r + s

r · s
, (8)

where we note that aA2K
= (aA1OA1K

)A2K
and the third inequality follows from

r + s − vE2
(aA1OA1K

) = a(E2; A1K , aA1) = a(E2; A1, aA1) ≥ 0

by (6). The possible positive intergers {r, s} satisfying (8) with gcd (r, s) = 1 are only {1, s}.
In this case let z′ := ys

1 − cy2, where Q = (c, 1) ∈ E2 = P(1, s), then vE(z′)> vE(y2), which
is a contradiction to that {y1, y2} is a squeezed system for E. Hence we obtain

a(E; A, a) ≥ a(E2; A, a),

which completes the proof of the theorem for Case 1.

Case 2. dim {P} = 0
Since we are assuming 0 ≤ a(E; A, a)< a(E1; A, a), by Lemma 5·3 only possibility of v′

is (2, 2, 3) and we have 0 ≤ a(E1; A, a)< 1.
Now take a squeezed blow-up A2 −→ A1 of weight w = (w1, w2, w3) at P and let E2 be

the exceptional divisor. We may assume that the condition (2) in Definition 4·9 holds. Let
Q ∈ E2 be the center of E on A2.

Let E′
1 be the proper transform of E1 on A2. Denote the defining ideals of E′

1 and E2 in A2

by IE′
1

and IE2 , respectively.
Then, we have the similar expansion of a(E; A, a) as in (3) as follows:

a(E; A, a) = a(E; A2, IE′
1
· IE2 · aA2) + vE(E2)a(E2; A, a) + vE(E′

1)a(E1; A, a), (9)

where aA2 is the weak transform of a on A2 and is also the weak transform of aA1 on A2.

Case 2·1. dim {Q} = 0:
We will prove a(E2; A, a) ≤ a(E; A, a). Assume on the contrary that a(E2; A, a)>

a(E; A, a). Then, by (9), we obtain

a(E; A2, IE′
1
· IE2 · aA2)< 0. (10)

It implies that mld(Q; A2, IE′
1
· IE2 · aA2) = −∞. Let L := E′

1 ∩ E2, by Inversion of adjunc-
tion, we obtain

mld(Q; E2, ILaA2OE2)< 0.

Let B′ be the bad curve on E2 (note that a bad curve exists in our case by Lemma 4·8). Then,
we obtain

ordB′aA2OE2 ≤ 1. (11)
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Indeed, when L = B′, then generality of a implies that ordB′aA2OE2 = 0, as ordB′IL = 1. On
the other hand, when L �= B′, then Q �∈ L and therefore generality implies ordB′aA2OE2 ≤ 1.
Now, in the same way as Case 2 in the proof of Lemma 5·3, we obtain that the weight of the
second squeezed blow-up is (2, 2, 3).

We will show a contradiction under this situation. In this case, we have

vE2(aA1)> 6, as well as vE1(a)> 6, (12)

by applying (i) of Lemma 5·3 for (A1, aA1), E2 with the weight w = (2, 2, 3) and also for
(A, a), E1 with the weight v′ = (2, 2, 3). As the squeezed system {y1, y2, y3} at P ∈ A1 has
weight (2, 2, 3), it follows vE2 (f ) ≤ 3 · ordPf for every f ∈ aA1 . Therefore we obtain

vE2(aA1) ≤ 3 · ordPaA1 ≤ 3 · ordPaA1OE1 . (13)

On the other hand, applying Lemma 3·4 to E1 = P(2, 2, 3) and a general element of aA1 ·
OE1 , we obtain 1< ordPaA1OE1 ≤ vE1(a)/2 · 3. Note that the first inequality follows from
Lemma 5·2.

Then, it follows

7 = 2 + 2 + 3 = kE1 + 1 ≥ vE1(a) ≥ 6 · ordPaA1OE1 . (14)

Using (12), (13) and (14) we obtain

7

2
> 3 · ordPaA1OE1 ≥ vE2(aA1)> 6

which is a contradiction. Therefore a(E2; A, a) ≤ a(E; A, a) holds.

Case 2·2. dim {Q} = 1.
In the following, we will prove a(E2; A, a) ≤ a(E; A, a). Assume contrary, a(E2; A, a)>

a(E; A, a). The curve {Q} is not a bad curve, because if it is, then

−∞ = mld(Q; A2, IE′
1
· IE2 · aA2) = mld(Q; E2, ILaA2OE2)

implies ordQILaA2OE2 > 1, while the generality of a implies the converse inequality
ordQILaA2OE2 = ordB′ILaA2OE2 ≤ 1. We also have {Q} �= L. This is proved as follows.

Let h′ ∈OA1 define E1 around P. As P is smooth on E1 and also on A1, we have ordh′ = 1
with respect to RSP {y1, y2, y3} of OA1 at P. Then, considering of the initial term of h′ with
respect to the weight w, we see that one of the following holds:

(1) L is a coordinate axis of E2 = P(w);

(2) L is defined by Y1 + aY2 (a ∈ k) in E2;

(3) L is defined by Y3 + f (Y1, Y2) in E2, where f is a homogeneous polynomial of
degree d.

In the third case, the weight w must be (1, 1, d). In this case, if {Q} = L, it follows
y′

3 := y3 + f (y1, y2) ∈mA1,P \m2
A1,P and vE(y′

3)> vE(y3), which is a contradiction to the

maximality of vE(y3). In case (1), {Q} �= L because Q is not contained in the coordinate
axes (Lemma 5·1). In case (2), L becomes the bad curve, therefore {Q} �= L, because {Q} is
not the bad curve, as we saw above.
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Now we obtain Q �∈ E′
1 ∩ E2. By using this, we have

mld(Q; A2, IE2 · aA2) = mld(Q; A2, IE′
1
· IE2 · aA2) = −∞.

By Inversion of adjunction, we have

mld(Q; E2, aA2OE2) = −∞.

Then, we have 1< ordQaA2 ·OE2

First we show that the squeezed weight w = (r, r, s) for E at P ∈ A1 is (1, 1, n) for n ∈N.
Let C := {Q} be defined by �= 0 in E2 = P(r, r, s). If w �= (1, 1, n), then the other possible
weight w is (2, 2, 3). In this case the smallest possible value for the degree of � on P(2, 2, 3)
with respect to w is 6. Therefore, by 1< ordQaA2 ·OE2 ,

vE2(aA1) ≥ degw � · ordQ(aA1)A2 ≥ 6 · ordQ(aA1)A2 > 6.

Now we obtain the inequality (12). The inequalities (13) and (14) also hold in the present
case. Therefore, we induce a contradiction and w must be (1, 1, n). By Lemma 5·3, degw�=
1 + n.

Let {y1, y2, y3} be a squeezed system at P ∈ A1 with the weight (1, 1, n). Let {Y1, Y2, Y3}
be the homogeneous coordinates of E2 = P(1, 1, n) corresponding to {y1, y2, y3}. As � is
irreducible of degree 1 + n with respect to the weight (1, 1, n), we can express

�= Y1Y3 − Yn+1
2 .

For simplicity, assume a= ae1
1 and take a general element f ∈ a1OA,0 ⊂ k[[x1, x2, x3]], where

{x1, x2, x3} is a squeezed system for E at 0 ∈ A of weight (2, 2, 3). Then the weak transform
fA1 of f on A1 is written as

fA1 = (y1 · y3 − yn+1
2 )r · �′ + g(y), (15)

where �′ is weighted homogeneous and g(y) is the term with the higher weight with respect
to the weight w = (1, 1, n).

Here, we may assume that P = (1, 1, 1) ∈ E1 = P(2, 2, 3), then we can take a RSP at P ∈ A1

by making use of the squeezed system {x1, x2, x3} of squeezed weight (2, 2, 3) which gives
the first weighted blow-up ϕ1 : A1 −→ A:

z1 = x3
1 − x2

3

x2
3

, z2 = x3
2 − x2

3

x2
3

, z3 = x3,

where x3 defines E1 in the neighborhood of P. Take the minimal m ∈N such that

f = xm
3 · fA1 ∈OA,0 ⊂ k[[x1, x2, x3]]. (16)

We note that for m ≥ 2,

ord0xm
3 · zi = m (i = 1, 2), ord0xm

3 · z3 = m + 1, (17)

where ord0 is the order with respect to the parameters x1, x2, x3 in OA,0. Then, by (17),

ord0f = ord0(xm
3 · fA) ≥ m.

On the other hand if xs
3(y1y3 − yn+1

2 )r ∈OA,0, it should be s ≥ 4r. In fact, if a quadratic
monomial zizj (i, j ∈ {1, 2}) appears in y1y3 which is expressed as a function of z1, z2, z3, then
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s ≥ 4r. If such a monomial zizj (i, j ∈ {1, 2}) does not appear in y1y3, then zi (i< 3) appears in
y2, because {z1, z2, z3} and {y1, y2, y3} are both RSP at P ∈ A1. This yields s ≥ 2(n + 1)r ≥ 4r.

Consider the initial part (y1 · y3 − yn+1
2 )r · �′ of fA1 with respect to the weight w = (1, 1, n).

We know that a(E2; A1, aA1) ≥ 0, therefore vE2(f e1
A1

) = vE2(ae1
A1

) ≤ kE2/A1 + 1 = n + 2. Then,
it follows that

e1(r(n + 1) + degw �
′) ≤ n + 2. (18)

As 1< ordQaA2OE2 , it follows 1< ordQ(y1y3 − yn+1
2 )re1 which yields re1 > 1. By this and

(18), we have degw �
′ < r, therefore ordP�

′ < r which yields that the factor of z3( = x3)
appears in �′ at most r − 1 times. Hence, as (16) the inclusion xm

3 (y1 · y3 − yn+1
2 )r · �′ ∈OA,0

should hold, which implies m ≥ 4r − (r − 1) = 3r + 1.
Then, ord0f = ord0(xm

3 · fA1) ≥ 3r + 1, and therefore, taking e1r> 1 into account, we
have

ord0a
e1
1 = ord0f e1 ≥ e1(3r + 1)> 3.

Then, for every prime divisor D over A with the center at 0 has the discrepancy
a(D; A, a)< 0, which is a contradiction to the condition that a(E; A, a) ≥ 0.

The condition “general” is necessary as far as we use “squeezed” blow-ups to construct
a required divisor in Theorem 1·8. Actually, we have a non-general ideal such that two
squeezed blow-ups do not give the required divisor.

Example 5·5. Let f = (x1 − x2)2 + x2
3 + x4

1 ∈ k[x1, x2, x3], e = 6/5 and a= (f )e. Define E
as follows:

g ϕ1 : A1 −→ A be the weighted blow-up with weight (1, 1, 2) with respect to the coordi-
nates {x1, x2, x3}. Let E1 be the exceptional divisor of ϕ1. Let ϕ2 : A2 −→ A1 be the (usual)
blow-up with the center at E1 ∩ (fA1 = 0), where (fA1) is the weak transform of (f ) on A1. Let
E2 be the exceptional divisor of ϕ2. Let ϕ3 : Ã −→ A2 be the (usual) blow-up with the center
at E2 ∩ (fA2 = 0), where (fA2 ) is the weak transform of (f ) on A2. Let E be the exceptional
divisor of ϕ3. Then, ϕ1 and ϕ2 are squeezed blow-ups for E, a is not general for E and the
following hold:

0 = a(E; A, a)< a(E2; A, a) = 1

5
< a(E1; A, a) = 3

5
.

So, we can see that the squeezed blow-ups do not work for this ideal. But if we do not
stick to squeezed blow-up, we can find two weighted blow-ups to obtain the required F in
the theorem. Let {x′

1, x′
2, x′

3} be another RSP defined by x′
i = xi (i = 1, 3) and x′

2 = x1 − x2.
Then, vE(x′

1) = 1, vE(x′
2) = 2, vE(x′

3) = 2. (We can see that this RSP is not squeezed.) Now,
let ψ1 : A′

1 −→ A be the weighted blow-up with weight (1, 2, 2) with respect to {x′
1, x′

2, x′
3}.

Let E′
1 be the exceptional divisor of ψ1. Let ψ2 : A′

2 −→ A′
1 be the (usual) blow-up with

the center at E′
1 ∩ (fA′

1
= 0). Let E′

2 be the exceptional divisor of ψ2. Then, we can see that
E = E2 at the generic points. So, E itself is obtained by two weighted blow-ups.

The example suggests us that we may take an appropriate weighted blow-up to obtain the
required F in the theorem, if a is not general.
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COROLLARY 5·6 (Corollary 1·9). Assume N = 3. Then, for every “general” pair (A, a), the
minimal log discrepancy mld(0; A, a) is computed by a prime divisor E obtained by at most
two weighted blow-ups. More concretely, the blow-ups are squeezed blow-ups for E.

Proof. When mld(0; A, a) ≥ 0, then apply the theorem for a divisor E computing the mld.
When mld(0; A, a) = −∞, then in a similar way as in [9], take a prime divisor E computing
the mld. Then by taking a positive real number t< 1 such that a(E; A, at) = 0 and apply
Theorem 1·8.

COROLLARY 5·7. Let E be a prime divisor over A with the center at 0 and E1 = P(r, r, s)
(r, s ≥ 1) the exceptional divisor of a squeezed blow-up for E. Assume that a(E; A, a) ≥ 0 and
the center of E on E1 is a curve of degree > r, then there is a prime divisor F such that

a(F; A, a) ≤ a(E; A, a)

holds for every R-ideal a and F is obtained by at most two weighted blow-ups.

Proof. We can see that there is no bad curve on E. Therefore, every R-ideal a is general
for E.

The proof of the theorem shows also the following corollary.

COROLLARY 5·8. Let E be a prime divisor over A with the center at 0 computing
mld(0; A, a) ≥ 0. Let E′ be the exceptional divisor of a weighted blow-up with weight
v := (r, s, t), where gcd (r, s, t) = 1. Assume that the center C of E on E′ is a curve of degree
d ≥ r + s + t − 1 If mld(0; A, a) is not computed by E′, then the mld is computed by the
divisor obtained by one additional weighted blow-up at C.

Proof. Let A′ −→ A be the weighted blow-up with weight (r,s,t). By the assumption, we
have a(E; A, a)< a(E′; A, a). Then, by Lemma 5·2, we have α := ordPaA′OE′ > 1, where P
is the generic point of C. Therefore, we obtain vE′(a) = αd> r + s + t − 1, and therefore
a(E′; A, a)< 1. Now, in the same way as Case 1 in the proof of Theorem 1·8, we obtain that
the squeezed blow-up at P gives a divisor F satisfying a(F; A, a) ≤ a(E; A, a) = mld(0; A, a).

The following is a special case of the corollary above. Example 3·3 is in this case.

COROLLARY 5·9 (Corollary 1·10). Let E be a prime divisor over A with the center at 0
computing mld(0; A, a) ≥ 0. Let E′ be the exceptional divisor of the usual blow-up with the
center at 0. Assume that the center C of E on E′ is a curve of degree d ≥ 2 Then, mld(0; A, a)
is computed by the divisor obtained by one additional weighted blow-up at C.
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[3] L. EIN and M. MUSTAŢĂ. Jet schemes and singularities. Proc. Symp. Pure Math. 80 (2) (2009),
505–546.

[4] S. ISHII. Maximal divisorial sets in arc spaces, Adv. Stud. in Pure Math. 50 (2008), 237–249
[5] S. ISHII, Inversion of modulo p reduction and a partial descent from characteristic 0 to positive

characteristic, Romanian J. Pure Appl. Math. vol. LXIV (4) (2019), 431–459. ArXiv: 1808.10155.
[6] S. ISHII, The minimal log discrepancies on a smooth surface in positive characteristic, Math. Z, 297

(2021), 389–39
[7] S. ISHII and A. REGUERA. Singularities in arbitrary characteristic via jet schemes, Hodge theory and

L2 analysis (2017), 419–449. ArXiv:1510.05210.
[8] M. KAWAKITA. Discreteness of log discrepancies over log canonical triples on a fixed pair.

J. Algebraic Geom. 23 (4) (2014), 765–774.
[9] M. KAWAKITA. Divisors computing the minimal log discrepancy on a smooth surface. Math. Proc.

Camb. Phil. Soc. 163 (1) (2017), 187–192.
[10] M. KAWAKITA. On equivalent conjectures for minimal log discrepancies on smooth threefolds.

J. Algebraic Geom. 30 (2021), 97–149.
[11] J. KOLLÁR. Rational Curves on Algebraic Varieties Ergebnisse der Math. 32 (Springer-Verlag, 1995).
[12] J. KOLLÁR. K. SMITH and A. CORTI, Rational and Nearly Rational Varieties. Camb. Stud. Adv. Math.

92 (2002), 235 pages.
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