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Abstract. The classical conservation of number principle is an important result
in algebraic geometry. We present a version of this principle suitable for the study of
topological properties of real algebraic varieties. Our self-contained topological proof
does not depend on the intersection theory of algebraic cycles. Some applications are
included.
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1. Introduction and results. The goal of this note is to give self-contained
topological proofs of certain results in real algebraic geometry, which heretofore
required techniques of intersection theory (Chow rings, algebraic equivalence of cycles,
etc.) [1, 8, 9]. The main results are a suitable version of the conservation of number
principle (Theorem 1.4) and an application of this principle concerning topological
properties of fibers of a real algebraic morphism (Theorem 1.7).

Throughout this note the term real algebraic variety designates a locally ringed
space isomorphic to an algebraic subset of �n, for some n, endowed with the Zariski
topology and the sheaf of �-valued regular functions. Morphisms between real
algebraic varieties will be called regular maps. Basic facts on real algebraic varieties and
regular maps can be found in [4]. Every real algebraic variety carries also the Euclidean
topology, which is determined by the usual metric topology on �. Unless explicitly
stated otherwise, all topological notions related to real algebraic varieties will refer to
the Euclidean topology.

Given a compact real algebraic variety X , we denote by Halg
d (X, �/2) the subgroup

of the homology group Hd(X, �/2) generated by the homology classes of d-dimensional
Zariski closed subsets of X [2, 3, 4, 6]. Assuming that X is nonsingular, we let
Hc

alg(X, �/2) denote the inverse image of Halg
d (X, �/2) under the Poincaré duality

isomorphism

DX : Hc(X, �/2) → Hd(X, �), DX (α) = α ∩ [X ],

where c + d = dim X and [X ] is the fundamental class of X .
The groups Halg

d (−, �/2) and Hc
alg(−, �/2) have the expected functorial properties:

If f : X → Y is a regular map between compact nonsingular real algebraic varieties,
then the induced homomorphisms

f∗ : H∗(X, �/2) → H∗(Y, �/2), f ∗ : H∗(Y, �/2) → H∗(X, �/2)
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satisfy

f∗
(
Halg

d (X, �/2)
) ⊆ Halg

d (Y, �/2), f ∗(Hc
alg(Y, �/2)

) ⊆ Hc
alg(X, �/2).

Furthermore,

H∗
alg(X, �/2) = ⊕

c≥0
Hc

alg(X, �/2)

is a subring of the cohomology ring H∗(X, �/2). Proofs of these facts are in [2, 3, 6]
([2, 3] contain topological proofs).

Assume that X is compact and nonsingular. A cohomology class α in Hk
alg(X, �/2)

is said to be algebraically equivalent to 0 if there exist a compact nonsingular irreducible
real algebraic variety T , two points t0 and t1 in T , and a cohomology class σ in
Hk

alg(X × T, �/2) such that α = σt1 − σt0 , where given t in T , one defines it : X →
X × T by it(x) = (x, t) for all x in X , and sets σt = i∗t (σ ). We denote by Algk(X) the set
of all cohomology classes in Hk

alg(X, �/2) that are algebraically equivalent to 0.

EXAMPLE 1.1. Let X be a compact nonsingular irreducible real algebraic variety
of dimension n. Obviously, Hn

alg(X, �/2) = Hn(X, �/2). We assert that given any two
distinct points t0 and t1 in X , the cohomology class α in Hn

alg(X, �/2), Poincaré dual to
the homology class in Halg

0 (X, �/2) represented by {t0, t1}, belongs to Algn(X). Indeed,
let σ in Hn

alg(X × X, �/2) be the cohomology class Poincaré dual to the homology class
in Halg

n (X × X, �/2) represented by the diagonal

� = {(x, t) ∈ X × X | x = t}.
For any point t in X , the map it : X → X × X , defined by it(x) = (x, t) for all x in X , is
transverse to � and hence DX (i∗t (σ )) is the homology class in H0(X, �/2) represented
by i−1

t (�). Since i∗t (σ ) = σt and i−1
t (�) = {t}, we get α = σt1 − σt0 . Thus α belongs

to Algn(X) as asserted. Note that α 	= 0 if t0 and t1 belong to distinct connected
components of X .

In a straightforward manner one can prove the following result.

PROPOSITION 1.2. For any compact nonsingular real algebraic variety X, the set
Algk(X) is a subgroup of Hk

alg(X, �/2). If α is in Algk(X) and γ is in H�
alg(X, �/2), then

α ∪ γ is in Algk+�(X). If moreover, δ is in Algm(Y ), where Y is a compact nonsingular
real algebraic variety, then γ × δ is in Alg�+m(X × Y ).

The group Algk(−) also has nice functorial properties.

PROPOSITION 1.3. Let f : X → Y be a regular map between compact nonsingular
real algebraic varieties. Then

(i) f ∗(Algk(Y )) ⊆ Algk(X),
(ii) (D−1

Y ◦ f∗ ◦ DX )(Algn−k(X)) ⊆ Algp−k(Y ), where n = dim X and p = dim Y.

Propositions 1.2 and 1.3 will be proved in Section 2.
Given a compact nonsingular real algebraic variety X , two cohomology classes α1

and α2 in Hk
alg(X, �/2) are said to be algebraically equivalent if α1 − α2 is in Algk(X).

For α in Hk(X, �/2) and β in H�(X, �/2), where k + � = dim X , we denote by
α • β the intersection number of α and β, that is, α • β := 〈α ∪ β, [X ]〉. Thus α • β is
an element of �/2.
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The next result is called the conservation of number principle.

THEOREM 1.4. Let X be a compact nonsingular real algebraic variety. Assume
that α1, α2 in Hk

alg(X, �/2) are algebraically equivalent and β1, β2 in H�
alg(X, �/2) are

algebraically equivalent. If k + � = dim X, then α1 • β1 = α2 • β2.

As a consequence we immediately obtain the following fact.

COROLLARY 1.5. For any compact nonsingular real algebraic variety X, one has

dim�/2
(
Hk(X, �/2)/Hk

alg(X, �/2)
) ≥ dim�/2 Alg�(X),

where k + � = dim X.

Proof. By Theorem 1.4, α • β = 0 for all α in Hk
alg(X, �/2) and all β in Alg�(X).

The proof is complete since

Hk(X, �/2) × H�(X, �/2) → �/2, (α, β) → α • β

is a dual pairing [7, Proposition 8.13].

EXAMPLE 1.6. Note that

X = {(x, y, z) ∈ �3 | ((x2 + y2) − 1)((x2 + y2) − 2) + z2 = 0}

is a nonsingular Zariski closed surface in �3, homeomorphic to a torus, and

C = {(u, v) ∈ �2 | (u2 − 1)(u2 − 2) + v2 = 0}

is a compact nonsingular Zariski closed curve in �2, with two connected components
C+ containing (1, 0) and C− containing (−1, 0). The map π : X → C, π (x, y, z) =
(x2 + y2, z), is regular, π (X) = C+, and π : X → C+ is a smooth (of class C∞)
circle bundle over C+. Let β be the cohomology class in H1(C, �/2) Poincaré
dual to the homology class in H0(C, �/2) represented by {(1, 0), (−1, 0)}. In view
of Example 1.1, β is in Alg1(C). It follows from Proposition 1.3(i) that π∗(β)
belongs to Alg1(X). By construction, π∗(β) 	= 0 and hence Alg1(X) 	= 0. Applying
Corollary 1.5, we get H1

alg(X, �/2) 	= H1(X, �/2). Since H1(X, �/2) ∼= (�/2)2, we have
H1

alg(X, �/2) = Alg1(X) ∼= �/2.

If Xn = X × · · · × X is the n-fold product, then, in view of the last statement of
Proposition 1.2, Algk(Xn) 	= 0 for 1 ≤ k ≤ n.

This example was first used by Joost van Hamel (unpublished) to illustrate a
somewhat different phenomenon.

Our next result can also be deduced from Theorem 1.4.

THEOREM 1.7. Let f : X → Y be a regular map between compact nonsingular real
algebraic varieties. If Y is irreducible, then given two regular values y1 and y2 of f , the
smooth manifolds f −1(y1) and f −1(y2) are cobordant.

This result is of interest if y1 and y2 belong to distinct connected components of
Y . A different proof of Theorem 1.7 can be found in [5].

Proofs of Theorems 1.4 and 1.7 are given in Section 3.
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2. Proof of the propositions. Given real algebraic varieties X and T , a point t in T ,
and a cohomology class τ in Hk(X × T, �/2), we set τt = i∗t (τ ), where it : X → X × T
is defined by it(x) = (x, t) for all x in X .

It is convenient to give the following characterization of cohomology classes
algebraically equivalent to 0.

LEMMA 2.1. For any compact nonsingular real algebraic variety X, given a
cohomology class α in Hk

alg(X, �/2), the following conditions are equivalent:
(a) α is algebraically equivalent to 0,
(b) there exist a compact nonsingular irreducible real algebraic variety T, two points t0

and t1 in T, and a cohomology class τ in Hk
alg(X × T, �/2) such that τt0 = 0 and τt1 = α.

Proof. Suppose that (a) holds. Then there exist a compact nonsingular irreducible
real algebraic variety T , two points t0 and t1 in T , and a cohomology class σ in Hk

alg(X ×
T, �/2) such that α = σt1 − σt0 . Let π : X × T → X be the canonical projection. Since
it0 ◦ π ◦ it = it0 for every point t in T , setting τ = σ − π∗(i∗t0

(σ )), we get

τt = i∗t (σ ) − i∗t
(
π∗(i∗t0

(σ )
)) = σt − (

it0 ◦ π ◦ it
)∗

(σ ) = σt − σt0 .

In particular, τt1 = σt1 − σt0 = α and τt0 = 0. Hence (b) is satisfied.
The proof is complete since it is obvious that (b) implies (a).

Proof of Proposition 1.2. In order to prove that Algk(X) is a subgroup of Hk
alg(X, �/2)

it suffices to show that given α and β in Algk(X), the sum α + β is in Algk(X). By
Lemma 2.1, there exist compact nonsingular irreducible real algebraic varieties T and
U , and cohomology classes σ in Hk

alg(X × T, �/2) and τ in Hk
alg(X × U, �/2) such

that σt0 = 0, σt1 = α for some t0, t1 in T and τu0 = 0, τu1 = β for some u0, u1 in U .
Given t in T and u in U , let it : X → X × T , ju : X → X × U , e(t,u) : X → X × T × U
be the maps defined by it(x) = (x, t), ju(x) = (x, u), e(t,u)(x) = (x, t, u) for all x in X .
Denoting by π : X × T × U → X × T and ρ : X × T × U → X × U the canonical
projections, we have π ◦ e(t,u) = it and ρ ◦ e(t,u) = ju. Thus, setting ξ = π∗(σ ) + ρ∗(τ ),
we get

ξ(t,u) = e∗
(t,u)(π

∗(σ ) + ρ∗(τ ))

= (
π ◦ e(t,u)

)∗
(σ ) + (

ρ ◦ e(t,u)
)∗

(τ )

= i∗t (σ ) + j∗u(τ )

= σt + τu.

In particular, ξ(t0,u0) = σt0 + τu0 = 0 and ξ(t1,u1) = σt1 + τu1 = α + β. Hence α + β is in
Algk(X). We proved that Algk(X) is a subgroup of Hk

alg(X, �/2).
Let p : X × T → X be the canonical projection and set η = σ ∪ p∗(γ ). Since p ◦ it

is the identity map of X , we get

ηt = i∗t (σ ∪ p∗(γ )) = i∗t (σ ) ∪ i∗t (p∗(γ )) = σt ∪ (p ◦ it)∗(γ ) = σt ∪ γ.

In particular, ηt0 = σt0 ∪ γ = 0 ∪ γ = 0 and ηt1 = σt1 ∪ γ = α ∪ γ . Thus α ∪ γ is
in Algk+�(X).

It remains to prove that γ × δ is in Alg�+m(X × Y ). By Lemma 2.1, there exist
a compact nonsingular irreducible real algebraic variety T , two points t0 and t1 in
T , and a cohomology class θ in Hm

alg(Y × T, �/2) such that θt0 = 0 and θt1 = δ. Since
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γ × θ = q∗(γ ) ∪ r∗(θ ), where q : X × Y × T → X and r : X × Y × T → Y × T are
the canonical projections, it follows that γ × θ belong to H�+m

alg (X × Y × T, �/2). For
each t in T , we have (γ × θ )t = γ × θt. In particular, (γ × θ )t0 = γ × θt0 = γ × 0 = 0
and (γ × θ )t1 = γ × θt1 = γ × δ. Hence γ × δ is in Alg�+m(X × Y ).

Proof of Proposition 1.3. (i) Let β be an element of Algk(Y ). By Lemma 2.1, there
exist a compact nonsingular irreducible real algebraic variety T , two points t0 and t1

in T , and a cohomology class τ in Hk
alg(Y, �/2) such that τt0 = 0 and τt1 = β. For t in

T , let it : X → X × T and jt : Y → Y × T be the maps defined by it(x) = (x, t) for all
x in X and jt(y) = (y, t) for all y in Y . Denoting by i : X → X the identity map, we
have ( f × i) ◦ it = jt ◦ f . Thus, setting σ = ( f × i)∗(τ ), we obtain

σt = i∗t (( f × i)∗(τ )) = (( f × i) ◦ it)∗(τ ) = ( jt ◦ f )∗(τ ) = f ∗( jt(τ )) = f ∗(τt).

In particular, σt0 = f ∗(τt0 ) = f ∗(0) = 0 and σt1 = f ∗(τt1 ) = f ∗(β), and hence f ∗(β) is in
Algk(X). This completes the proof of (i).

(ii) Let α be an element of Algn−k(X). By Lemma 2.1, there exist a compact
nonsingular irreducible real algebraic variety T , two points t0 and t1 in T , and a
cohomology class σ in Hn−k

alg (X × T, �/2) such that σt0 = 0 and σt1 = α.
Given a point t in T , let et : {t} ↪→ T be the inclusion map. For any cohomology

class η in Hs(T, �/2), we define the element εt(η) of �/2 by setting εt(η) = 1 if s = 0
and e∗

t (η) 	= 0, and εt(η) = 0 in all other cases.
For any λ in Hr(X, �/2) and any µ in Hr(Y, �/2), we have

i∗t (λ × η) = εt(η)λ, j∗t (µ × η) = εt(η)µ,

where the it and jt are the maps defined as in (i). If e is the identity map of T , then

(
DY ◦ j∗t ◦ D−1

Y×T ◦ ( f × e)∗ ◦ DX×T
)
(λ×η) = (

DY ◦ j∗t ◦ D−1
Y×T ◦ ( f ×e)∗

)
(DX (λ)×DT (η))

= (
DY ◦ j∗t ◦ D−1

Y×T

)
( f∗(DX (λ)) × DT (η))

= DY
(

j∗t
(
D−1

Y ( f∗(DX (λ))
) × η)

)

= DY
(
εt(η)D−1

Y ( f∗(DX (λ)))
)

= εt(η) f∗(DX (λ))

= f∗(DX (εt(λ)λ))

= ( f∗ ◦ DX ◦ i∗t )(λ × η).

Since r and s are arbitrary, it follows from Künneth’s theorem for cohomology that

DY ◦ j∗t ◦ D−1
Y×T ◦ ( f × e)∗ ◦ DX×T = f∗ ◦ DX ◦ i∗t

as homomorphisms from H∗(X × T, �/2) into H∗(Y, �/2), and hence

j∗t ◦ D−1
Y×T ◦ ( f × e)∗ ◦ DX×T = D−1

Y ◦ f∗ ◦ DX ◦ i∗t .

Setting now τ = (D−1
Y×T ◦ ( f × e)∗ ◦ DX×T )(σ ), we obtain

τt = j∗t (τ ) = (
D−1

Y ◦ f∗ ◦ DX ◦ i∗t
)
(σ ) = (

D−1
Y ◦ f∗ ◦ DX

)
(σt).
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In particular,

τt0 = (
D−1

Y ◦ f∗ ◦ DX
)(

σt0

) = (
D−1

Y ◦ f∗ ◦ DX
)
(0) = 0

τt1 = (
D−1

Y ◦ f∗ ◦ DX
)(

σt1

) = (
D−1

Y ◦ f∗ ◦ DX
)
(α).

Hence (D−1
Y ◦ f∗ ◦ DX )(α) is in Algp−k(Y ), and the proof of (ii) is complete.

3. Proofs of the theorems. We begin with the following result.

LEMMA 3.1. Let X be a compact nonsingular real algebraic variety of dimension n.
Then for any cohomology class α in Algn(X), one has 〈α, [X ]〉 = 0.

Proof. Choose a finite subset S of X representing the homology class DX (α) = α ∩ [X ]
in H0(X, �/2). By [7, p. 239], 〈α, [X ]〉 = ε(α ∩ [X ]), where ε : H0(X, �/2) → �/2 is the
augmentation homomorphism. Hence, denoting by #S the number of elements of S,
we get

〈α, [X ]〉 = #S (mod 2).

In order to complete the proof it suffices to show that #S is an even integer.
Suppose that #S is an odd integer. We obtain a contradiction as follows. Let Y be a

real algebraic variety consisting of one point and let f : X → Y be the unique possible
map. Obviously, (D−1

Y ◦ f∗ ◦ DX )(α) 	= 0 in H0(Y, �/2) ∼= �/2. On the other hand, by
Proposition 1.3(ii), (D−1

Y ◦ f∗ ◦ DX )(α) is in Alg0(Y ). However, since Y consists of one
point, it follows from the definition that Alg0(Y ) = 0. Thus we have a contradiction
and the proof is complete.

Proof of Theorem 1.4. By assumption, α1 − α2 is in Algk(X) and β1 − β2 is in
Alg�(X). Therefore, in view of Proposition 1.2, (α1 − α2) ∪ β1 and α2 ∪ (β1 ∪ β2) are in
Algk+�(X). Hence

〈α1 ∪ β1, [X ]〉 − 〈α2 ∪ β1, [X ]〉 = 〈(α1 − α2) ∪ β1, [X ]〉 = 0,

〈α2 ∪ β1, [X ]〉 − 〈α2 ∪ β2, [X ]〉 = 〈α2 ∪ (β1 − β2), [X ]〉 = 0,

where the last equality in either line is a consequence of Lemma 3.1. It follows that
〈α1 ∪ β1, [X ]〉 = 〈α2 ∪ β2, [X ]〉, which is equivalent to α1 • β1 = α2 • β2. The proof is
complete.

The proof of Theorem 1.7 requires some preparation. All manifolds we use will
be smooth (of class C∞), paracompact and without boundary. Let M be a smooth
manifold and let N be a smooth submanifold of M. Assume that N is a closed subset
of M. We denote by τM

N the Thom class of N in M; thus τM
N is in Hk(M, M � N; �/2),

where k = dim M − dim N. If N = {x}, we shall write τM
x instead of τM

{x}. Clearly, τM
x is

just the unique generator of the group Hm(M, M � {x}, �/2) ∼= �/2, m = dim M. As
usual, wi(M) will denote the ith Stiefel-Whitney class of M.

Given a topological space T , we let εT : H0(T, �/2) → �/2 denote the
augmentation homomorphism.

Proof of Theorem 1.7. Let n = dim X, p = dim Y , and k = n − p. For any point
y in Y , let βy denote the cohomology class in Hp(Y, �/2) Poincaré dual to the
homology class in H0(Y, �/2) represented by y. By Example 1.1, given y1 and y2

https://doi.org/10.1017/S0017089503001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001186


THE CONSERVATION OF NUMBER PRINCIPLE 223

in Y , the cohomology class βy1 − βy2 belongs to Algp(Y ). In view of Proposition 1.3(i),
f ∗(βy1 − βy2 ) = f ∗(βy1 ) − f ∗(βy2 ) is in Algp(X) and hence Theorem 1.4 implies that

α • f ∗(βy1

) = α • f ∗(βy2

)

for every cohomology class α in Hk
alg(X, �/2). It is known that wi(X) is in Hi

alg(X, �/2)
for all i ≥ 0 [2, 3]. Thus, given nonnegative integers i1, . . . , ir with i1 + · · · + ir = k, we
have

(
wi1 (X) ∪ . . . ∪ wir (X)

) • f ∗(βy1

) = (
wi1 (X) ∪ . . . ∪ wir (X)

) • f ∗(βy2

)
. (1)

Let us set

ni1...ir ( f, y) = (
wi1 (X) ∪ . . . ∪ wir (X)

) • f ∗(βy).

Note that

ni1...ir ( f, y) = 0 for y in Y � f (X), (2)

since y in Y � f (X) implies f ∗(βy) = 0.
If y in f (X) is a regular value of f , then f −1(y) is a smooth submanifold of X of

dimension k. We assert

ni1...ir ( f, y) = 〈
wi1 ( f −1(y)) ∪ . . . ∪ wir ( f −1(y)), [ f −1(y)]

〉
. (3)

Suppose that (3) holds. If y1 and y2 are regular values of f , then (1), (2), and (3)
guarantee that f −1(y1) and f −1(y2) have the same Stiefel-Whitney numbers. Hence, by
Thom’s theorem [11], the smooth manifolds f −1(y1) and f −1(y2) are cobordant. Thus
it remains to prove (3).

In order to simplify notation set F = f −1(y). Let f̄ : (X, X � F) → (Y, Y � {y})
be the map defined by f . Since y is a regular value of f , we have

f
∗(

τY
y

) = τX
F .

Moreover the following diagram is commutative:

Hp(Y, Y � {y}; �/2)
f

∗

−−−−→ Hp(X, X � F ; �/2)

ψ

� ϕ

�

Hp(Y, �/2)
f ∗

−−−−→ Hp(X, �/2),

where ϕ and ψ are the canonical homomorphisms. Since ψ(τY
y ) = βy, it follows that

f ∗(βy) = f ∗(ψ
(
τY

y

)) = ϕ
(

f
∗(

τY
y

)) = ϕ
(
τX

F

)
. (4)

Note that if e : F ↪→ X is the inclusion map, then

〈
α ∪ ϕ

(
τX

F

)
, [X ]

〉 = 〈e∗(α), [F ]〉 (5)
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for every cohomology class α in Hp(X, �/2). Indeed, (5) can be proved by direct
computation:

〈
α ∪ ϕ

(
τX

F

)
, [X ]

〉 = εX
((

α ∪ ϕ
(
τX

F

)) ∩ [X ]
)

= εX
(
α ∩ (

ϕ
(
τX

F

) ∩ [X ]
))

= εX (α ∩ e∗([F ]))

= εX (e∗(e∗(α) ∩ [F ]))

= εF (e∗(α) ∩ [F ])

= 〈e∗(α), [F ]〉,
where the third equality holds since ϕ(τX

F ) ∩ [X ] = e∗([F ]) [10, Problem 11.C], the fifth
equality is a consequence of naturality of augmentation, and the other equalities are
standard properties of the ∪, ∩, and 〈, 〉 products [7].

Furthermore, since the normal vector bundle of F in X is trivial, we have
e∗(wi(X)) = wi(F) for all i ≥ 0, and hence

e∗(wi1 (X) ∪ . . . ∪ wir (X)
) = wi1 (F) ∪ . . . ∪ wir (F). (6)

Now, making use of (4), (5), and (6), we get

ni1...ir ( f, y) = 〈
wi1 (X) ∪ . . . ∪ wir (X) ∪ f ∗(βy), [X ]

〉

= 〈
wi1 (X) ∪ . . . ∪ wir (X) ∪ ϕ

(
τX

F

)
, [X ]

〉

= 〈
e∗(wi1 (X) ∪ . . . ∪ wir (X)

)
, [F ]

〉

= 〈
wi1 (F) ∪ . . . ∪ wir (F), [F ]

〉
,

which proves (3). Hence the proof is complete. �
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