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Abstract

The partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all iso-
morphisms between its inverse subsemigroups. We prove that a tightly connected fundamental inverse
semigroup S with no isolated nontrivial subgroups is lattice determined 'modulo semilattices' and if T is
an inverse semigroup whose partial automorphism monoid is isomorphic to that of S, then either S and T
are isomorphic or they are dually isomorphic chains relative to the natural partial order; a similar result
holds if T is any semigroup and the inverse monoids consisting of all isomorphisms between subsemi-
groups of S and T, respectively, are isomorphic. Moreover, for these results to hold, the conditions that
5 be tightly connected and have no isolated nontrivial subgroups are essential.

2000 Mathematics subject classification: primary 20M10, 2OM18, 20M20.

1. Introduction

A partial automorphism of an algebraic structure A of a certain type is any isomor-
phism between its substructures (including, if necessary, the empty one), and the set
of all partial automorphisms of A with respect to composition is an inverse monoid
called the partial automorphism monoid of A. The problem of characterizing algebras
of various types by their partial automorphism monoids was posed by Preston in [13].
Since idempotent partial automorphisms correspond to subalgebras, this is closely
related to the problem of characterizing algebras by their subalgebra lattices. In [4],
we described large classes of combinatorial inverse semigroups determined by their
lattices of inverse subsemigroups and partial automorphism monoids (Theorems 5
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and 8, respectively) and showed that these theorems do not hold for fundamental in-
verse semigroups containing isolated nontrivial subgroups (Proposition 10). However,
the problem of whether the principal results of [4] can be extended from combina-
torial to fundamental inverse semigroups with no isolated nontrivial subgroups has
remained open. The purpose of this article is to solve this problem in the affirmative.
In Section 3, we study lattice isomorphisms of inverse semigroups and show that so-
called tightly connected fundamental inverse semigroups without nontrivial isolated
subgroups are lattice determined 'modulo semilattices' (Theorem 3.5). Using this the-
orem, we prove in Section 4 that any tightly connected fundamental inverse semigroup
S with no nontrivial isolated subgroups is determined (up to a dual isomorphism if 5 is
a chain with respect to the natural partial order) in the class of all inverse semigroups
by its monoid of isomorphisms between inverse subsemigroups (Theorem 4.2), and
in the class of all semigroups by its monoid of isomorphisms between arbitrary sub-
semigroups (Theorem 4.4). Examples described in [4, Propositions 9 and 10] show
that the conditions imposed on 5 in Theorems 3.5, 4.2, and 4.4 are essential. A few
concluding remarks and open questions are contained in Section 5. We use [1] and [7]
as standard references for the algebraic theory of semigroups, in particular with regard
to Green's relations 7i, C, 1Z, T> and J, and refer to [12] for an extensive treatment
of the theory of inverse semigroups.

The main results of the paper were reported at the Special Session on Semigroup
Theory of the 999th Meeting of the American Mathematical Society held at Vanderbilt
University on October 16-17, 2004.

2. Preliminaries

Denote by Ix the symmetric inverse monoid on a set X. Let (p be a bijection of
X onto a set Y. For any a e Xx, define a(<p a <p) = <p~l o a o <p. Clearly <p a <p is
a bijection of Ix onto TY, and if U is a subsemigroup of Tx, then (cp a <p)\u is an
isomorphism of U onto U(<p n <p).

Let S be an arbitrary semigroup. Denote by Es the set of idempotents of 5. For
any x e S and K. e {%, C, 7£, V, J}, denote by Kx the /C-class of S containing x,
and by J(x) the principal two-sided ideal of S generated by x. Let Jx < Jy if and
only if J(x) c J(y) for x, y € S. Then < is a partial order on the set of J"-classes
of 5. Similarly one can partially order the set of £-classes and the set of 7£-classes
of S. If U is a subsemigroup of 5, to distinguish its Green's relations from those on 5,
we will use superscripts. If U is a regular (in particular, inverse) subsemigroup of 5,
then Ku = /C5 n (U x U) for K € {H, C, 11} (see Hall [6, Result 9]).

Let 5 be an inverse semigroup. We say that * € S is a group element if it belongs
to some subgroup of S; otherwise x is a nongroup element. Denote by Ns the set of all

https://doi.org/10.1017/S1446788700015810 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015810


[3] Inverse semigroups 187

nongroup elements of 5. Recall that 5 is termed combinatorial [12] ifH = I5, that is,
if every nonidempotent element of 5 is nongroup. If JC € 5 and Hx = {JC}, the D-class
Dx will be called combinatorial. Following Jones [9], we say that an idempotent e
of 5 (and each subgroup of He) is isolated if De = He, and nonisolated otherwise.
For any X c S, denote by (X) the inverse subsemigroup of 5 generated by X. If
x e S, we say that {JC) is a monogenic inverse subsemigroup of 5 generated by x, and
if 5 = {x), the inverse semigroup 5 is monogenic. A monogenic inverse semigroup
{x) such that JCJC"1 > JC~'JC is an inverse monoid with identity JCJC"1 called the bicyclic
semigroup; we denote it by B{x, JC"1). It is well known (see [1, Theorem 2.53]) that
B(x, JC"1) consists of a single P-class and its idempotents form a chain:

If 5 contains no bicyclic subsemigroup, it is called completely semisimple. The
structure of monogenic inverse semigroups is described in detail in [12, Chapter IX].
We recall only a few basic facts about them.

Let S = (JC) be a monogenic inverse semigroup. Then T> = J and the partially
ordered set of P-classes (that is, j7-classes) of 5 is a chain with the largest element Dx.
It is obvious that one of the following holds:

(a) xx'1 = JC"'JC;

(b) xx~l and JC"'JC are incomparable with respect to the natural partial order;
(c) xx~l > JC"'JC or JC~'JC > JCJC"1.

In case (a), 5 = Dx is a cyclic group. In case (b), Dx = {JC, JC"1, JCJC"1, JC-1JC} is the
greatest 2?-class of S (and, of course, 5 \ Dx is an ideal of 5). Finally, in case (c),
5 = Dx is bicyclic, it is either B{x, JC"1) or <B(JC~\ JC). In case (b), either 5 is a free
monogenic inverse semigroup or it contains a smallest ideal K, the so-called kernel
of S; in the latter case, either A' is a bicyclic semigroup or a cyclic group, and Da is
combinatorial for any a e S except for the case when a e K and K is a nontrivial
group.

An inverse semigroup 5 is called fundamental if I5 is the only idempotent-
separating congruence on 5. Since all idempotent-separating congruences on a regular
semigroup are contained in 7i, it is immediate that combinatorial inverse semigroups
are fundamental (but clearly not conversely). Fundamental inverse semigroups, intro-
duced by Munn [11] (and independently by Wagner [16]), constitute one of the most
important classes of inverse semigroups. Munn, in particular, provided an effective
method of describing all fundamental inverse semigroups with the given semilattice of
idempotents. Let £ be a semilattice. Then the Munn semigroup TE of E is an inverse
semigroup (under composition) consisting of all isomorphisms between principal ide-
als of E (see [7, Section V.4]). It is common to identify each e e E with lEe € TE, so
the semilattice of idempotents of TE is identified with E. If S is an inverse semigroup,
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a subset A" of 5 is called full if Es £ K. Munn proved (see [11, Theorem 2.6]) that
an inverse semigroup S with Es = E is fundamental if and only if 5 is isomorphic
to a full inverse subsemigroup of TE; in particular, TE itself is fundamental. It is well
known that 5 is fundamental if and only if for any x,y e S, if x~xex = y~ley for
all e € £5, then x = y (see [7, Section V.3]). This result was used in the proof
of [3, Lemma 2.1], which provides a convenient criterion for a bijection between an
arbitrary inverse semigroup and a fundamental one to be an isomorphism.

RESULT 2.1 (From [3, Lemma 2.1]). Let S and T be inverse semigroups and <p a
bijection ofS onto T.IfS is fundamental and<p\Es is an isomorphism of Es onto ET,
then <p is an isomorphism of S onto T if and only if(s~^es)<p = (scp)~l (e<p)(s(p) for
all s e 5 and e e Es.

By modifying the proof of [3, Lemma 2.1], we also obtain the following.

LEMMA 2.2. Let S and T be inverse semigroups and <p a bijection of S onto T,
preserving C-classes, such that <p\Es is an isomorphism of Es onto ET. Suppose that
(fx)cp = (f(p)(x<p)forallx e Nsand f < xx~l. Then (x~lex)(p = (x(p)~l(e(p)(x(p)
for all e e Es and x e Ns.

PROOF. Le t* e Ns and e e Es. By assumption, (fx)<p = (f<p)(xcp) whenever
/ < xx~l, so (ex)<p = {exx~x)cpx(p = e<p(xx~l)<px<p = (e<p)(x<p). Since <p preserves
£-classes, {s~ls)cp = {scp^isy) for each s € S because s^sCs and (s<p)~](s(p) is
theonly idempotentinLj^. Thus (x~xex)cp = [(ex)<p]~l(ex)cp = (e(px<p)~\e<px<p) =
(x<p)-\e<p)(x<p). •

The following auxiliary result is established by applying an argument from the
second paragraph of the proof of [4, Lemma 2] to a slightly more general situation.

RESULT 2.3 (From the proof of [4, Lemma 2]). Let S be an inverse semigroup,
x 6 A ŝ, and e e Es. If u € {e, x) n Re and u ^ e, then u = exm for some nonzero
integer m.

3. Lattice determinability

Let S be an inverse semigroup. To indicate that H is an inverse subsemigroup of S,
we write H < S. Since 0 < 5, the set of all inverse subsemigroups of 5, partially
ordered by inclusion, is a complete (and compactly generated) lattice denoted by £(5)
(as in [9]). Let T be an inverse semigroup such that there is an isomorphism * of C(S)
onto C(T). Then S and T are called lattice isomorphic, and * is a lattice isomorphism
of 5 onto T. We say that a mapping \jr : S -* T induces * (or ^ is induced by iff) if
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= H\j/ for all H < S. If 5 is isomorphic to every inverse semigroup that is lattice
isomorphic to 5, then S is called lattice determined, and if each lattice isomorphism
of S onto an inverse semigroup T is induced by an isomorphism of S onto T, then S
is strongly lattice determined.

Let S and T be inverse semigroups and ^ a lattice isomorphism of S onto T. It is
clear that an inverse subsemigroup U of 5 is an atom of C(S) if and only if U = [e]
for some e e Es. Thus there is a unique bijection \jrE of Es onto ET defined by the
formula {e}*I> = {e\]/E} for all e e Es, and we will say that \jrE is the E-bijection
associated with * . Recall that if X is a partially ordered set and x, y e X, then x \\ y
means that x and y are incomparable in X, and x S/[ y denotes the negation of x \\ y.
It is well known (see [15, Subsection 36.6 and Introduction to Chapter XIV]) that
for all e, f e Es, we have e jj" / if and only if e\jsE $ firE, and if e \\ f, then
(^/)Vf£ = ( ^ E X / V ' E ) . which is expressed by saying that \jrE is a weak isomorphism
of Es onto ET.

RESULT 3.1 (See [9, Proposition 1.6, Corollary 1.7]). / / S and T are inverse
semigroups and W a lattice isomorphism of S onto T, there is a (unique) bijection
i/f : Ns U Es ->• NT U ET with the following properties:

(a) rfr extends tyE, that is, \jf\Es = ijfE;
(b) yr and xj/"' preserve 1Z- and C-classes\
(c) for every x € Ns U Es, we have (x)^ = (xty) so, in particular, (x~l)ijf =

W;
(d) if a homomorphism y : S ->• 7 induces * , f/ien xi^ = xy /or a// x e/VjU £s-

Using the terminology of [15], we say that the bijection \jr : Ns U £$ —> iVY U £V
in Result 3.1 is the base partial bijection associated with the lattice isomorphism *
of 5 onto T. In the notation of Result 3.1, suppose that 5 has no nontrivial isolated
subgroups. Then T also has no nontrivial isolated subgroups (see [9, Corollary 1.9]).
As shown by Ershova [2], in this case there is a bijection \j/ of S onto T which
extends i/r and retains a number of its properties. This bijection ty can be constructed
as follows. First, set xij/ = x\fr if x is a nongroup element or an isolated idempotent
of S. Now for every nonisolated idempotent e of S, choose and fix an element
re e Ns n Re. It is easily seen that for each a 6 He, there is a unique q e Hre such
that a = req~\ and we put a\fr — (re\js){q\jfYx. Then it can be shown that e^r = e\Jr
for every e e Es, \jr preserves C- and 7^-classes, that is, (ss~x)^/ = (s-i(r)(sr}r)~l and
(s~ls)\jr = (silr)~l(sxjr) for all s € S, and if * is induced by an isomorphism y of S
onto T, then y = yjr (see [2, Lemmas 1 and 2], or [15, Subsection 43.7]). Again using
the terminology of [15], we call \jt the base bijection of 5 onto T associated with *
(clearly, it depends also on the choice of re e Nsr\ Re for each noninsolated e e Es).
Of course, if S is combinatorial, then ^ = ijr, that is, \fr is the base bijection of S
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onto T.
Let S be an inverse semigroup. If x € 5 and e e Es are such that e < xx"1 and

no / € EM satisfies e < f < xx"1, we say that e is x-covered by xx"1 and write
e -<, xx"1. Take u S and e e Es with e < « " ' . If for some positive integer n,
there exist eo,eu---,en e £5 such that e = e0 < ex < • • • < en = xx"1 and for
every k = 1 , . . . , n, the idempotent et_i is xk-covered by ek where xk = ekx (so that
xkxk

l = ek), then (e0, et, ...,en) is called a s/iorf bypass from e to xx"1 (it is plain
that if xk e £5, then x, € Es for all i < k). If for all x e 5 and e e Es such that
e < xx~l there is a short bypass from e to xx~l, then S is called shortly connected.
If x € NSU Es and e -<, j ; j : " ' ,we say that e is tightly x-covered by xx"1 if either
ex € iV5 or ex e Es (in the latter case, of course, ex = e because ex e Re). Let
x e NSD Es and e < xx"1. If there is a short bypass (e0, e ! , . . . , en) from e = e0 to
xx"1 = en such that for every k = 1 , . . . , n, the idempotent ek-\ is tightly xt-covered
by ek (where, as above, xk = ekx), then (e0, et,..., en) will be called a tight bypass
from e to xx"1. In this case, if x 6 Ns, there is a smallest m e { 1 , . . . , n} satisfying
xm € Ns, so x, e f s for all i < m, and x ; e N5 for all m < j < n. We say that S is
tightly connected if for all x e NSU Es and e < xx"1, there is a tight bypass from e
to xx"1.

It is obvious that every tightly connected inverse semigroup is shortly connected,
and a combinatorial inverse semigroup is shortly connected if and only if it is tightly
connected. At the same time, tightly connected fundamental inverse semigroups
need not be combinatorial; see, for instance, [4, Example 2]. Although the semi-
groups in that example have nontrivial isolated subgroups, there are many noncom-
binatorial tightly connected fundamental inverse semigroups with no nontrivial iso-
lated subgroups. The smallest such example can be constructed as follows. Let
E — {e0, eu /o, / i , f2, 0} be the semilattice given by the diagram in Figure 1.

Let 5 = TE be the Munn semigroup of E. It is easily seen that S is tightly connected
and consists of three 'D-classes: Do = {0}, Dfo (= Dfl = Dfl), and Deo (= Dei),
such that Do < Dfo < Deo. Moreover, {0} U £>/„ is a 10-element combinatorial inverse
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semigroup, and Deo, the top D-class of S, consists of four nontrivial W-classes.
Thus S is a noncombinatorial tightly connected fundamental inverse semigroup with
no nontrivial isolated subgroups.

LEMMA 3.2. Let S be an inverse semigroup, and let U = (e, x) for some x € Ns

and e € Es such that ex € Ns and e is x-covered by xx~l. Then H" = {e}.

PROOF. Suppose u e H" and u ^ e. By Result 2.3, u = exm for some m ^ 0.
Then exmx~m = e and x~mexm = e, so xme = exm, x~me = ex~m, and ex-mxm = e.
Let n = \m\. Clearly m ^ - 1 (otherwise ex = (x~ye)~l = (ex"1)"1 e Hj*,
a contradiction). Thus n > 2. If xx~l > x~lx, then e — ex~"x" < x~2x2 <
x~lx < xx~l, contradicting e -<x xx~\ Hence xx~l ^ x~lx, in which case e =
ex"x~" < x2x'2 < xx~\ so we have e = x2x~2 6 {x). Thus U = (x) and Dv

e

is a combinatorial X>-class of U since ex e Dv
e and ex e Ns. This contradicts the

assumption that e £ u e H"'. Therefore H" — [e}. D

For combinatorial inverse semigroups the following theorem was proved in [4].

RESULT 3.3 ([4, Theorem 5]). Let S be a combinatorial inverse semigroup, T
an inverse semigroup and ^ a lattice isomorphism of S onto T. Let x/r be the base
bijection ofS onto T associated with ty (so, in particular, \j/E = rlr\Es). Suppose that S
is shortly connected (equivalently, tightly connected) and i/^ is an isomorphism of Es

onto ET. Then \j/ is the unique isomorphism of S onto T which induces VI/.

We are going to extend this theorem to the class of tightly connected fundamental
inverse semigroups with no nontrivial isolated subgroups. A key role in the proof of
Result 3.3 was [4, Lemma 2], which can be modified to establish the following more
general result.

LEMMA 3.4. Let S be an inverse semigroup, let W be a lattice isomorphism of S
onto an inverse semigroup T, and let \jr : Ns U Es -*• NT U ET be the base partial
bijection associated with 4*. Suppose that t/r|£s is an isomorphism of Es onto ET.
Then (ex)\/f = (e\lr)(x^r) for any x e NSL) Es and any e e Es such that e is tightly
x -covered by xx~\

PROOF. In the following proof, reference to [4] means with respect to parts of the
proof (almost verbatim) of [4, Lemma 2]. Let x e NSU Es and e e Esbe such that e
is tightly x-covered by xx~l. Let U — {e, x) and V = (e\jr, xf). Then the restriction
of * to C(U) is a lattice isomorphism of U onto {/* = {ey/r) v (xxjs) = V. We show
that (ex)\/f = (e\lf)(xij/). This holds for x € Es, so assume that x e Ns. By [4], we
may suppose that xx~l <£ x~xx. By [4] also, (ex)\JrTZ(e\j/)(xtlr). Since e is tightly
x-covered by xx~\ either ex = e or ex e Ns-
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CASE I. Suppose ex = e. Then it is easily seen that e is a zero for all elements of (x)
so, in particular, e < x~lx2x~l. Note that x~lx2x~l < xx"1 since xx"1 •£ x~'x. It
follows that e = x~*x2x~l. Then e = x2x~1ex~1x1 — x2, so

U = (x) = {x, x~\ xx~\ x~{x, e]

is a five-element Brandt semigroup [12] which is strongly lattice determined (this can
be shown directly and also follows from [15, Theorem 42.4]). Therefore {ex)\jr =
ef = (eif)(xx//).

CASE II. Suppose ex e Ns. By Lemma 3.2, H" = {e} and so H^ = {e^}
since *|£(//w) is a lattice isomorphism of H" onto fl^ (see [8, Corollary 1.2]).
Hence {eTJr){x\jr) e NT or (e\jr)(x\lr) = ex/r. If (ef)(x-i/s) = eir, as in Case I,
e ^ is a zero for all elements of {x\/r}, which implies e < f for all / € £(x), and
e e (x) = U, whence ex € Df = H", a contradiction. Thus {e^r)(x^r) € A r̂,
so that (e\j/)(x\(r) = ux// where u € R" and u ^ e. By Result 2.3, u = ex" or
= ex~n for some integer n > 1. If u = ex, we are done. In all other cases, as in [4],
we have e = x~lx2x~l e (x). If (x) is combinatorial, {ex)\jf = (exjr)(x\j/) because
combinatorial monogenic inverse semigroups are strongly lattice determined (see [15,
Theorems 42.2 and 42.4]). Otherwise the kernel of (x) is a nontrivial (cyclic) group
which does not contain ex, so {ex)\jr = (e\/f)(x\jf) by [15, Lemma 42.7]. •

We are ready to prove the main result of this section.

THEOREM 3.5. Let S be a tightly connected fundamental inverse semigroup with no
nontrivial isolated subgroups, T an inverse semigroup, and * a lattice isomorphism
of S onto T. As above, let \jfE denote the E-bijection, \\r the base partial bijection,
and \jr the base bijection of S onto T associated with W. Suppose that \)rE is an
isomorphism of Es onto ET. Then \j/ is an isomorphism of S onto T. If S is
combinatorial or completely semisimple, then \\r is the unique isomorphism of S
onto T inducing ^ .

PROOF. Since xjr\NsUEs = ^ , w e will write s\fr instead of S\]J for any s e NS*J Es.
Take arbitrary x € Ns and f < xx~l. By assumption, there is a tight bypass
(/o, f\, •••, fn) from / = /o to xx"1 = /„ for some n > 1. For 0 < / < n,
set x, = fix. Then x,xf' = f for all 0 < / < n. Moreover, xt_! = fk-\Xk

and fk_\ is tightly x*-covered by fk for each 1 < k < n. Since xn = x € Ns,
there is a smallest m e { 1 , . . . , n] satisfying xm e Ns, so x, e Es for all i < m,
and Xj e Ns for all m < j < n. Since \j/E is an isomorphism of Es onto ET,
(fx)f = (Ufm-\x)f = ( / 0 x m _0^ = (/0y0C*m-iV0- Now using Lemma 3.4, we
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obtain

x m _ \ f = ( f m - i x m ) f = {fm-.\\jf){xmf) = (fm-\\l/){fmxm+l)\lr = •••

It follows that (fx)xfr — (/oVr)(/»i-iVf)(*Vr) = (fijr)(xf), and since ifr preserves
7^-classes, we also have {xx~lx)^r = x\j/ = (x^f)(x\j/)~l(x\j/) = {xx~x)\}rx\j/.
Therefore (gx)\/r = {g\lr)(xf) for all g < xx~\ and by Lemma 2.2, (x~lex)\jt =
(xf)-\ef){xf) for z\\ e e Es.

Now take an arbitrary group element a e S. Let us show that (a~1ea)\jr =
{a\j/)~\ef){af) for all e e Es. If a e Es, this holds because \j/E is an isomorphism
of Es onto ET- Thus we may assume that a £ Es. Denote aa~x by / . Recall that
we have fixed an element rf e Ns H /?/ and that there is a unique q 6 //r/ such that
a — rfq~K To shorten notation, set r = rf. Take an arbitrary e e Es. It follows
from the first paragraph of the proof that (qr~lerq~l)\Jr = (qij/)(r~xer)\lf(q\l;)~x

and (r~ler)\J/ = (r\jf)~l(e\ls)(rijf) because r and q are nongroup elements of S and
'. Therefore

(a'lea)f = ((rq~lylerq~[)f = (qr~lerq~l)r(f

We have shown that (s~xes)ijr = (s\Jr)~l(e-i(r)(sxlr) for all s € S and all e 6 Es. Since
5 is a fundamental inverse semigroup, according to Result 2.1, \jr is an isomorphism
of 5 onto T.

If 5 is combinatorial, then \jr = yr and by Result 3.3, ^ is the unique isomor-
phism of 5 onto T inducing * . Suppose that 5 is completely semisimple. By [10,
Lemma 2.4], * is induced by rj/. Hence, in view of Ershova's result cited earlier (see
[15, Proposition 43.7.3]), \jt is the unique isomorphism of 5 onto T inducing * . This
completes the proof. •

4. 7M-determinability

Let 5 be an inverse semigroup. In this paper, we define a partial automorphism of
5 to be any isomorphism between its inverse subsemigroups and denote by VA(S) the
set of all partial automorphisms of 5. It is easy to see that with respect to composition
VA{S) is an inverse submonoid of Ts. We call VA{S) the partial automorphism
monoid of S. The group of units of VA(S) is Aut(S), the automorphism group of 5,
and the semilattice of idempotents of VA(S) is a lattice isomorphic to C(S).
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Let S and T be inverse semigroups. If VA(S) = VA(T), then S and T are
said to be VA-isomorphic, and any isomorphism of VA(S) onto VA(T) is called a
VA-isomorphism of S onto 7 . Let <t> be a "P./4-isomorphism of S onto T. We say
that O is induced by a bijection ^ : 5 —>• T if <!> = (<?• <p)|-p.4(S), that is, if for all
a € VA(S) and *, y e 5, we have xa = y if and only if (*<p)(a<I>) = v«p. Let £
be any bijection of 5 onto T. It is clear that (£ D %)\-PA(S) is a "P-4-isomorphism of S
onto T precisely when VA{S){% a £) = " P ^ ( r ) . In particular, any isomorphism (or
anti-isomorphism) of 5 onto T induces a 7-M-isomorphism of S onto T. An inverse
semigroup 5 is called VA-determined if it is isomorphic to any inverse semigroup
•p.4-isomorphic to S, and strongly V A-determined if each ^^-isomorphism of S
onto an inverse semigroup T is induced by an isomorphism of S onto T.

Let S and T be 7^.4-isomorphic inverse semigroups and <t> a "P«4-isomorphism of 5
onto T. For any H < S, define //4>* by the formula 1W4> = 1^*.. Then <t>* is a
lattice isomorphism of S onto 7\ We will denote by cpE the E-bijection and by (p the
base partial bijection associated with <P*, and say that ipE and <p are associated with <I>.
As shown in Section 3, if S has no nontrivial isolated subgroups, we can extend <p to
the base bijection (p of 5 onto T associated with <!>*, and again we will say that <p is
associated with the ^^-isomorphism <t.

RESULT 4.1 (A corollary to [14, Main Theorem]). Let S be a semilattice and T an
inverse semigroup. Then VA{S) = VA(T) if and only if either S = T or S is a
chain and T = Sd. Moreover, any V A-isomorphism <$>ofS onto T is induced by the
E-bijection <pE associated with <t>, and cpE is either an isomorphism or, if S is a chain
and T = Sd, a dual isomorphism of S onto T.

Using Result 4.1 and Theorem 3.5, we can easily prove the following theorem which
establishes 'P^-determinability of tightly connected fundamental inverse semigroups
having no nontrivial isolated subgroups (with the exception of chains that are VA-
determined up to a dual isomorphism) and thus extends [4, Theorem 8].

THEOREM 4.2. Let S be a tightly connected fundamental inverse semigroup with no
nontrivial isolated subgroups and T an inverse semigroup. Then VA(S) = VA{T)
if and only if either S = T or (S, <) and (7\ <) are dually isomorphic chains. More
specifically, let Q be a VA-isomorphism of S onto T. As above, denote by <p the
base partial bijection and by (p the base bijection of S onto T associated with <J>.
Then either (S, <) and (T, <) are dually isomorphic chains and <p is the unique dual
isomorphism of(S, <) onto (T, <) inducing 4>, or (p is an isomorphism ofS onto T.
IfS is combinatorial or completely semisimple, then <p is the unique isomorphism ofS
onto T inducing <t>.

PROOF. Let <1> be a 'P.A-isomorphism of 5 onto T. According to [4, Lemma 7],
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the restriction of <t> to VA(ES) is a T^-isomorphism of Es onto ET. Hence, by
Result 4.1, either <pE is an isomorphism of Es onto ET, or (Es, <) and (ET, <) are
dually isomorphic chains and <pE is a dual isomorphism of Es onto ET. If the latter
holds, then according to the argument in the last paragraph of the proof of Theorem 8
of [4], we have S = Es and T = £>, so that (S, <) and (7\ <) are dually isomorphic
chains, and <p (= ipE) is the unique dual isomorphism of (5, <) onto (7\ <) inducing O.

Now suppose that <pE is an isomorphism of Es onto ET. Then, by Theorem 3.5,
<p is an isomorphism of 5 onto T. If S is combinatorial, then <p = cp and, by [4,
Theorem 8], <p is the unique isomorphism of 5 onto T inducing <J>. If 5 is completely
semisimple, according to Theorem 3.5, <p induces 4>*. Similarly to the combinatorial
case, this implies that <p induces 4> (see the corresponding part of the proof of [4,
Theorem 8]). This completes the proof. •

In [4, Proposition 9], we constructed examples of '?M-isomorphic (and thus lattice
isomorphic) completely semisimple combinatorial inverse semigroups which are not
isomorphic, thereby showing that the requirement that 5 in [4, Theorems 5 and 8]
be shortly connected is essential. Of course, the same examples show that the re-
quirement that 5 in Theorems 3.5 and 4.2 be tightly connected is essential as well.
Furthermore, by [4, Proposition 10], there exist finite (and thus shortly connected)
fundamental inverse semigroups, containing nontrivial isolated subgroups, which are
T^-isomorphic but not isomorphic. It is easily seen that the inverse semigroups, con-
structed in [4, Proposition 10], are tightly connected. This shows that the requirement
that a tightly connected fundamental inverse semigroup S in Theorems 3.5 and 4.2
have no nontrivial isolated subgroups is also essential.

We turn now to the problem of determinability of inverse semigroups by partial
automorphism monoids in the class of all semigroups. Let S be any (not necessarily
inverse) semigroup. We will say that an isomorphism between subsemigroups of S
is a partial s-automorphism of 5. (We regard 0 as a subsemigroup of 5, so it is
also a partial ^-automorphism of S.) Let VSA(S) denote the set of all partial s-
automorphisms of S. It is easily seen that with respect to composition VSA(S) is an
inverse submonoid of I 5 whose semilattice of idempotents is isomorphic to the lattice
of all subsemigroups of 5. If T is a semigroup and 4> an isomorphism of VSA(S)
onto VSA(T), we say that <J> is a VSA-isomorphism of S onto T. It is clear that if S
is an inverse semigroup, then VA(S) is an inverse submonoid of VSA(S).

RESULT 4.3 ([3, Lemma 2.3]). If S and T are inverse semigroups and <J> is a
VSA-isomorphism ofS onto T, then <t>\vA(S) is a VA-isomorphism of S onto T.

Combining Theorem 4.2 with a corollary of Theorem 4.13 of [5], we can prove our
final new result.
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THEOREM 4.4. Let Sbea tightly connected fundamental inverse semigroup with no
nontrivial isolated subgroups, and let T be an arbitrary semigroup. Then VSA(S) =
VSA{T) if and only if either S = T or (S, <) and (T, <) are dually isomorphic
chains.

PROOF. Suppose that VSA(S) = VSA{T), and let <!> be a •PSAisomorphism of
S onto T. Since S has no nontrivial isolated subgroups, by [5, Corollary 4.14 (b)], T is
an inverse semigroup with no nontrivial isolated subgroups. By Result 4.3, ^\VA{S) is
a ^-isomorphism of S onto T. Therefore, by Theorem 4.2, either S = T or (5, <)
and (T, <) are dually isomorphic chains. The converse is obvious. •

5. Concluding remarks and open questions

Following Jones [10], we will say that an inverse semigroup S is faintly archimedean
if whenever an idempotent e of S is strictly below every idempotent of a bicyclic or
free inverse subsemigroup {x} of S, then e < x, and quasi-archimedean if it is faintly
archimedean and {x) is combinatorial for every x e Ns. Thus a combinatorial inverse
semigroup is quasi-archimedean if and only if it is faintly archimedean. Jones proved
[10, Theorem 4.3] that if a combinatorial inverse semigroup 5 is quasi-archimedean
and * is a lattice isomorphism of S onto an inverse semigroup T such that the E-
bijection ifrE is an isomorphism of Es onto ET, then the base bijection \fr is the unique
isomorphism of 5 onto T inducing * . Comparing this theorem with Result 3.3 (which
is Theorem 5 of [4]), it is natural to wonder how they are related. It was shown in
[5] that for a combinatorial inverse semigroup 5 neither of the two properties, shortly
connected and quasi-archimedean, implies the other, so neither of the two theorems,
Theorem 5 of [4] and Theorem 4.3 of [10], is a corollary of the other one.

It was shown in [10, Theorem 4.5] that if S is a completely semisimple, quasi-
archimedean inverse semigroup, in which every noncombinatorial D-class contains
at least three idempotents, and * is a lattice isomorphism of 5 onto an inverse
semigroup T such that \[rE is an isomorphism of Es onto ET, then the base bijection
•ty is the unique isomorphism of S onto T inducing *I> (we express this briefly by
saying that 5 is strongly lattice determined 'modulo semilattices'). Now let 5 be
the semigroup constructed in the example preceding Lemma 3.2. Being finite, S is
quasi-archimedean and completely semisimple, but since Deo is its noncombinatorial
£>-class with just two idempotents, neither Theorem 4.3 nor Theorem 4.5 of [10] can
be used for deciding whether S is lattice determined. On the other hand, 5 is a tightly
connected fundamental inverse semigroup with no nontrivial isolated subgroups, so
it is strongly lattice determined 'modulo semilattices' by Theorem 3.5 of this paper.
Of course, lattice determinability of this semigroup S follows also from the theorem
stated in Remark 2 on page 408 of [4]: if E is a semilattice such that the group of
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automorphisms of each principal ideal of E is finite, then the Munn semigroup TE

of E is lattice determined.
We conclude with two open questions. In view of Theorem 3.5, we would like to

specialize Question 43.7 of [15] as follows.

QUESTION 5.1. Under what conditions is it true that, in the notation and under
the assumptions of Theorem 3.5, the base bijection xfr, which is an isomorphism of S
onto T, induces W (and thus is the only isomorphism of S onto T inducing

Of course, finding an answer to Question 5.1 will help answering a similar question
regarding Theorem 4.2. Finally, of particular interest to us is the following.

QUESTION 5.2. Is it true that a fundamental inverse semigroup S with no non-
trivial isolated subgroups, which is shortly connected but not necessarily tightly
connected, is lattice determined 'modulo semilattices' (that is, under the assumption
that the corresponding E-bijection is an isomorphism), and is it true that such a
semigroup S (assuming it is not a chain with respect to the natural order relation) is
VA-determinedl

REMARK. After this paper had been submitted for publication, Peter Jones noted
that an inverse semigroup S is tightly connected if and only if it is shortly connected
and NSUES is its order ideal, giving an alternative characterization of tightly connected
inverse semigroups.
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