SIMILARITY OF OPERATORS ON TENSOR PRODUCTS OF SPACES AND MATRIX DIFFERENTIAL OPERATORS

MICHAEL GIL'

(Received 15 August 2017; accepted 7 February 2018; first published online 30 May 2018)

Communicated by A. Sims

Abstract

Let $\mathcal{H}=\mathbb{C}^{n} \otimes \mathcal{E}$ be the tensor product of a Euclidean space \mathbb{C}^{n} and a separable Hilbert space \mathcal{E}. Our main object is the operator $G=I_{n} \otimes S+A \otimes I_{\mathcal{E}}$, where S is a normal operator in \mathcal{E}, A is an $n \times n$ matrix, and $I_{n}, I_{\mathcal{E}}$ are the unit operators in \mathbb{C}^{n} and \mathcal{E}, respectively. Numerous differential operators with constant matrix coefficients are examples of operator G. In the present paper we show that G is similar to an operator $M=I_{n} \otimes S+\hat{D} \times I_{\mathcal{E}}$ where \hat{D} is a block matrix, each block of which has a unique eigenvalue. We also obtain a bound for the condition number. That bound enables us to establish norm estimates for functions of G, nonregular on the closed convex hull $\operatorname{co}(G)$ of the spectrum of G. The functions $G^{-\alpha}(\alpha>0)$ and $(\ln G)^{-1}$ are examples of such functions. In addition, in the appropriate situations we improve the previously published estimates for the resolvent and functions of G regular on $\operatorname{co}(G)$. Since differential operators with variable coefficients often can be considered as perturbations of operators with constant coefficients, the results mentioned above give us estimates for functions and bounds for the spectra of differential operators with variable coefficients.

2010 Mathematics subject classification: primary 47A80; secondary 47E05, 47A10, 47A60.
Keywords and phrases: matrix differential operators, tensor products of operators, operator functions, resolvent, spectrum perturbations.

1. Introduction and statement of the main result

Throughout this paper \mathcal{E} is a separable Hilbert space with a scalar product $\langle., .\rangle_{\mathcal{E}}$ and norm $\|.\|_{\mathcal{E}}=\sqrt{\langle., .\rangle_{E}}, \mathbb{C}^{n}$ is the n-dimensional complex Euclidean space with a scalar product $\langle., .\rangle_{n}$, the Euclidean norm $\|.\|_{n}=\sqrt{\langle., .\rangle_{n}}$ and $\mathcal{H}=\mathbb{C}^{n} \otimes \mathcal{E}$ is the tensor product of \mathbb{C}^{n} and \mathcal{E}. The scalar product in \mathcal{H} is defined by

$$
\left\langle h \otimes y, h_{1} \otimes y_{1}\right\rangle_{\mathcal{H}}=\left\langle y, y_{1}\right\rangle_{\mathcal{E}}\left\langle h, h_{1}\right\rangle_{n} \quad\left(y, y_{1} \in \mathcal{E} ; h, h_{1} \in \mathbb{C}^{n}\right)
$$

and the cross norm is $\|.\|_{\mathcal{H}}=\sqrt{\langle., .\rangle_{\mathcal{H}}} . I_{\mathcal{H}}, I_{\mathcal{E}}$ and I_{n} are the unit operators in \mathcal{H}, \mathcal{E} and \mathbb{C}^{n}, respectively. From the theory of tensor products we only need the basic definition and elementary facts which can be found in [5].

[^0]For an operator $B, \sigma(B)$ denotes the spectrum, $\|B\|$ is the operator norm, B^{*} is the adjoint operator, and $\operatorname{Dom}(B)$ is the domain.

Throughout this paper S is a normal operator in \mathcal{E} and A is an $n \times n$ matrix. Our main object is the operator

$$
\begin{equation*}
G=I_{n} \otimes S+A \otimes I_{\mathcal{E}} \tag{1.1}
\end{equation*}
$$

By $\|A\|_{F}$ we denote the Frobenius norm of $A:\|A\|_{F}:=\left(\text { Trace } A^{*} A\right)^{1 / 2} ; \lambda_{j}(A)(j=$ $1, \ldots, m ; m \geq 2$) are the different eigenvalues of $A ; \mu_{j}$ is the algebraic multiplicity of $\lambda_{j}(A)$. So

$$
\begin{equation*}
\delta:=\min _{j, k=1, \ldots, m ; k \neq j}\left|\lambda_{j}(A)-\lambda_{k}(A)\right|>0 \tag{1.2}
\end{equation*}
$$

and $\mu_{1}+\cdots+\mu_{m}=n$. Numerous differential operators with constant matrix coefficients can be represented as in (1.1). Moreover, various matrix differential operators with variable coefficients can be considered as perturbations of G (see the example below).

Two operators A and B acting in \mathcal{H} are said to be similar if there exists a boundedly invertible bounded operator T such that $A=T^{-1} B T$. The constant $\kappa_{T}=\left\|T^{-1}\right\|\|T\|$ is called the condition number. The condition number is important in various applications. We refer the reader to [3], where condition number estimates are suggested for combined potential boundary integral operators in acoustic scattering, and [24], where condition numbers are estimated for second-order elliptic operators. Conditions that provide the similarity of various operators to normal and selfadjoint ones were considered by many mathematicians; see $[2,6,16-19,21-23]$ and references given therein. In many cases, the condition number must be numerically calculated; see, for example, [1, 22]. The interesting generalization of condition numbers of bounded linear operators in Banach spaces was explored in [15]. Bounds for condition numbers of unbounded operators with Hilbert-Schmidt and Shatten-von Neumann hermitian components have been established in [10] and [13]. The paper [12] deals with bounded perturbations of unbounded normal operators.

Let P_{j} be the orthogonal invariant projection of A corresponding to $\lambda_{j}(A)$:

$$
0=P_{0} \mathbb{C}^{n} \subset P_{1} \mathbb{C}^{n} \subset P_{2} \mathbb{C}^{n} \subset \cdots \subset P_{m} \mathbb{C}^{n}=\mathbb{C}^{n}
$$

and $P_{j} A P_{j}=A P_{j}(j=1, \ldots, m)$. Put

$$
\hat{D}=\sum_{j=1}^{m} \Delta P_{j} A \Delta P_{j} \quad\left(\Delta P_{j}=P_{j}-P_{j-1}\right)
$$

that is, \hat{D} is the block diagonal matrix each of whose blocks $A_{j j}:=\Delta P_{j} A \Delta P_{j}$ has only one eigenvalue. In the present paper we show that G is similar to the operator

$$
M=I_{n} \otimes S+\hat{D} \otimes I_{\mathcal{E}}
$$

and obtain a bound for the condition number. That bound enables us to establish norm estimates for the functions of G, which are nonregular on the closed convex hull $\operatorname{co}(G)$
of the spectrum of G. The functions $G^{-\alpha}(\alpha>0)$ and $(\ln G)^{-1}$ are examples of such functions. In addition, in the appropriate situations we improve the estimates for the resolvent and functions of G, regular on the $\operatorname{co}(G)$; see [14].

The following quantity (the departure from normality) plays an essential role hereafter:

$$
g(A):=\left[\|A\|_{F}^{2}-\sum_{k=1}^{m} \mu_{k}\left|\lambda_{k}(A)\right|^{2}\right]^{1 / 2}
$$

$g(A)$ enjoys the following properties:

$$
g^{2}(A) \leq 2\left\|A_{I}\right\|_{F}^{2} \quad\left(A_{I}=\left(A-A^{*}\right) / 2 i\right) \quad \text { and } \quad g^{2}(A) \leq\|A\|_{F}^{2}-\mid \text { trace } A^{2} \mid
$$

see [8, Section 2.1]. If A is normal, then $g(A)=0$. In addition, denote

$$
\begin{gathered}
d_{j}:=\sum_{k=0}^{j} \frac{j!}{((j-k)!k!)^{3 / 2}} \quad(j=0, \ldots, n-2) \\
\theta(A):=\sum_{k=0}^{n-2} \frac{d_{k} g^{k}(A)}{\delta^{k+1}} \quad \text { and } \quad \gamma(A):=\left(1+\frac{g(A) \theta(A)}{\sqrt{m-1}}\right)^{2(m-1)}
\end{gathered}
$$

It is not hard to check that $d_{j} \leq 2^{j}$. Now we are in a position to formulate our main result.

Theorem 1.1. Let the operator G be defined as in (1.1). Then there is a bounded and boundedly invertible operator T_{0} acting in \mathcal{H}, such that the equality

$$
\begin{equation*}
T_{0}^{-1} G T_{0}=M \tag{1.3}
\end{equation*}
$$

is valid. Moreover,

$$
\begin{equation*}
\kappa\left(T_{0}\right):=\left\|T_{0}\right\|\left\|T_{0}^{-1}\right\| \leq \gamma(A) \tag{1.4}
\end{equation*}
$$

This theorem is proved in the next two sections. Note that we do not assume that the spectrum consists of simple eigenvalues or M is normal. Theorem 1.1 is sharp: if A is normal, then we have $\gamma(A)=1$.

2. Auxiliary results

Put $Q_{k}=I-P_{k}, B_{k}=Q_{k} A Q_{k}, A_{j k}=\Delta P_{j} A \Delta P_{k}$ and $C_{k}=\Delta P_{k} A Q_{k}(j, k=1, \ldots, m)$. Represent A, B_{j} and C_{j} in block form as

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \cdots & A_{1 m} \\
0 & A_{22} & A_{23} & \cdots & A_{2 m} \\
. & . & . & \cdots & . \\
0 & 0 & 0 & \cdots & A_{m m}
\end{array}\right), \\
B_{j}=Q_{j} A Q_{j}=\left(\begin{array}{ccccc}
A_{j+1, j+1} & A_{j+1, j+2} & \cdots & A_{j+1, m} \\
0 & A_{j+2, j+2} & \cdots & A_{j+2, m} \\
\cdot & . & \cdots & . \\
0 & 0 & . & A_{m m}
\end{array}\right)
\end{gathered}
$$

and

$$
C_{j}=\Delta P_{j} A Q_{j}=\left(A_{j, j+1} A_{j, j+2} \cdots A_{j, m}\right) \quad(j \leq m-1)
$$

Since B_{j} is a block triangular matrix, it is not hard to see that

$$
\sigma\left(B_{j}\right)=\bigcup_{k=j+1}^{m} \sigma\left(A_{k k}\right)=\bigcup_{k=j+1}^{m} \lambda_{k}(A) \quad(j=1, \ldots, m-1)
$$

see [9, Lemma 2.1]. So due to (1.2),

$$
\begin{equation*}
\sigma\left(B_{j}\right) \cap \sigma\left(A_{j j}\right)=\emptyset \quad(j=1, \ldots, m-1) \tag{2.1}
\end{equation*}
$$

Under this condition, the equation

$$
\begin{equation*}
A_{j j} X_{j}-X_{j} B_{j}=-C_{j} \quad(j=1, \ldots, m-1) \tag{2.2}
\end{equation*}
$$

has a unique solution; see, for example, [4]. The following result has been proved in [9, Lemma 2.2].

Lemma 2.1. Let conditions (2.1) hold and X_{j} be a solution to (2.2). Then

$$
\begin{equation*}
\left(I-X_{m-1}\right)\left(I-X_{m-2}\right) \cdots\left(I-X_{1}\right) A\left(I+X_{1}\right)\left(I+X_{2}\right) \cdots\left(I+X_{m-1}\right)=\hat{D} . \tag{2.3}
\end{equation*}
$$

Take

$$
\begin{equation*}
T=\left(I+X_{1}\right)\left(I+X_{2}\right) \cdots\left(I+X_{m-1}\right) \tag{2.4}
\end{equation*}
$$

It is simple to see that the inverse to $I+X_{j}$ is the matrix $I-X_{j}$; see [9]. Thus,

$$
T^{-1}=\left(I-X_{m-1}\right)\left(I-X_{m-2}\right) \cdots\left(I-X_{1}\right)
$$

and (2.3) can be written as

$$
\begin{equation*}
T^{-1} A T=\operatorname{diag}\left(A_{k k}\right)_{k=1}^{m}=\hat{D} \tag{2.5}
\end{equation*}
$$

By the inequalities between the arithmetic and geometric means, we get

$$
\begin{equation*}
\|T\| \leq \prod_{j=1}^{m-1}\left(1+\left\|X_{j}\right\|\right) \leq\left(1+\frac{1}{m-1} \sum_{j=1}^{m-1}\left\|X_{j}\right\|\right)^{m-1} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T^{-1}\right\| \leq\left(1+\frac{1}{m-1} \sum_{k=1}^{m-1}\left\|X_{k}\right\|\right)^{m-1} \tag{2.7}
\end{equation*}
$$

3. Proof of Theorem 1.1

Lemma 3.1. Let condition (1.2) be fulfilled. Then there is an invertible $n \times n$ matrix T, such that (2.5) holds with

$$
\kappa_{T}=\|T\|\left\|T^{-1}\right\| \leq \gamma(A) .
$$

Proof. Consider the Sylvester equation

$$
\begin{equation*}
Z X-X \tilde{Z}=C \tag{3.1}
\end{equation*}
$$

where $Z \in \mathbb{C}^{n_{1} \times n_{1}}, \tilde{Z} \in \mathbb{C}^{n_{2} \times n_{2}}$ and $C \in \mathbb{C}^{n_{1} \times n_{2}}$ are given; $X \in \mathbb{C}^{n_{1} \times n_{2}}$ should be found. Assume that the eigenvalues $\lambda_{k}(Z)$ and $\lambda_{j}(\tilde{Z})$ of Z and \tilde{Z}, respectively, satisfy the condition.

$$
\rho_{0}(Z, \tilde{Z}):=\operatorname{dist}(\sigma(Z), \sigma(\tilde{Z}))=\min _{j, k}\left|\lambda_{k}(Z)-\lambda_{j}(\tilde{Z})\right|>0
$$

Then Equation (3.1) has a unique solution X [4]. Corollary 6.2 in [11] implies the inequality

$$
\|X\|_{F} \leq\|C\|_{F} \sum_{p=0}^{n_{1}+n_{2}-2} \frac{1}{\rho_{0}^{p+1}(Z, \tilde{Z})} \sum_{k=0}^{p}\left(\begin{array}{l}
p
\end{array}\right) \frac{g^{k}(\tilde{Z}) g^{p-k}(Z)}{\sqrt{(p-k)!k!}}
$$

and therefore

$$
\begin{equation*}
\|X\|_{F} \leq\|C\|_{F} \sum_{p=0}^{n_{1}+n_{2}-2} \frac{d_{p} \hat{g}^{p}}{\rho_{0}^{p+1}(Z, \tilde{Z})}, \tag{3.2}
\end{equation*}
$$

where $\hat{g}=\max \{g(Z), g(\tilde{Z})\}$.
Let us return to Equation (2.2). In this case $Z=A_{j j}, \tilde{Z}=B_{j}, C=-C_{j}, n_{1}=$ $\mu_{j}, n_{2}=\operatorname{dim} Q_{j} \mathbb{C}^{n}$, and due to (1.2), $\rho_{0}\left(A_{j j}, B_{j}\right) \geq \delta(j=1, \ldots, m)$. In addition, $\mu_{j}+\operatorname{dim} Q_{j} \mathbb{C}^{n} \leq n$. Now (3.2) implies

$$
\begin{equation*}
\left\|X_{j}\right\|_{F} \leq\left\|C_{j}\right\|_{F} \sum_{k=0}^{n-2} \frac{d_{k} \hat{g}_{j}^{k}}{\delta^{k+1}} \tag{3.3}
\end{equation*}
$$

where $\hat{g}_{j}=\max \left\{g\left(B_{j}\right), g\left(A_{j j}\right)\right\}$. By Schur's theorem, for any operator A in \mathbb{C}^{n}, there is an orthogonal normal basis (Schur's basis) $\left\{e_{k}\right\}_{k=1}^{n}$, in which A is represented by a triangular matrix; see [7]. That is,

$$
A e_{k}=\sum_{j=1}^{k} a_{j k} e_{j} \quad \text { with } a_{j k}=\left(A e_{k}, e_{j}\right)(j=1, \ldots, n)
$$

So $A=D_{A}+V_{A}\left(\sigma(A)=\sigma\left(D_{A}\right)\right)$ with a normal (diagonal) matrix D_{A} defined by $D_{A} e_{j}=a_{j j} e_{j}(j=1, \ldots, n)$ and a nilpotent (strictly upper-triangular) matrix V_{A} defined by $V_{A} e_{k}=a_{1 k} e_{1}+\cdots+a_{k-1, k} e_{k-1}(k=2, \ldots, n), V_{A} e_{1}=0 . D_{A}$ and V_{A} will be called the diagonal part and nilpotent part of A, respectively. Note that Schur's basis is not unique. Besides, $g(A)=\left\|V_{A}\right\|_{F}$. In addition, simple calculations show that the nilpotent part V_{j} of $A_{j j}$ is $\Delta P_{j} V_{A} \Delta P_{j}$ and the nilpotent part W_{j} of B_{j} is $Q_{j} V_{A} Q_{j}$. So V_{j} and W_{j} are mutually orthogonal, and

$$
\begin{equation*}
g\left(A_{j j}\right)=\left\|V_{j}\right\|_{F} \leq\left\|V_{A}\right\|_{F}=g(A), \quad g\left(B_{j}\right)=\left\|W_{j}\right\|_{F} \leq\left\|V_{A}\right\|_{F}^{2}=g(A) . \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4) it follows that

$$
\begin{equation*}
\left\|X_{j}\right\|_{F} \leq\left\|C_{j}\right\|_{F} \sum_{k=0}^{n-2} \frac{d_{k} g^{k}(A)}{\delta^{k+1}}=\left\|C_{j}\right\|_{F} \theta(A) . \tag{3.5}
\end{equation*}
$$

It can be directly checked that

$$
\left\|C_{j}\right\|_{F}^{2}=\sum_{k=j+1}^{m}\left\|A_{j k}\right\|_{F}^{2}
$$

and

$$
\sum_{i=1}^{m-1} \sum_{k=i+1}^{m}\left\|A_{i k}\right\|_{F}^{2}=\sum_{i=1}^{m} \sum_{k=i}^{m}\left\|A_{i k}\right\|_{F}^{2}-\sum_{k=1}^{m}\left\|A_{k k}\right\|_{F}^{2}=\|A\|_{F}^{2}-\sum_{k=1}^{m}\left\|A_{k k}\right\|_{F}^{2} .
$$

Since $\left\|A_{k k}\right\|_{F} \geq \mu_{k}\left|\lambda_{k}(A)\right|$, we have

$$
\sum_{j=1}^{m-1} \sum_{k=j+1}^{m}\left\|A_{j k}\right\|_{F}^{2} \leq g^{2}(A)
$$

and consequently,

$$
\begin{equation*}
\sum_{k=1}^{m-1}\left\|C_{k}\right\|_{F}^{2} \leq g^{2}(A) \tag{3.6}
\end{equation*}
$$

Furthermore, take T as in (2.4). Then (2.6), (2.7) and (3.5) imply

$$
\|T\| \leq\left(1+\frac{1}{m-1} \sum_{k=1}^{m-1}\left\|X_{k}\right\|_{F}\right)^{m-1} \leq\left(1+\frac{\theta(A)}{m-1} \sum_{k=1}^{m-1}\left\|C_{k}\right\|_{F}\right)^{m-1}
$$

and

$$
\left\|T^{-1}\right\| \leq\left(1+\frac{\theta(A)}{m-1} \sum_{k=1}^{m-1}\left\|C_{k}\right\|_{F}\right)^{m-1}
$$

But by the Schwarz inequality and (3.6),

$$
\left(\sum_{j=1}^{m-1}\left\|C_{j}\right\|_{F}\right)^{2} \leq(m-1) \sum_{j=1}^{m-1}\left\|C_{j}\right\|_{F}^{2} \leq(m-1) g^{2}(A) .
$$

Thus,

$$
\|T\|^{2} \leq\left(1+\frac{\theta(A)}{\sqrt{m-1}} g(A)\right)^{2(m-1)}=\gamma(A)
$$

and $\left\|T^{-1}\right\|^{2} \leq \gamma(A)$. Now (2.5) proves the lemma.
Lemma 3.2. Let there be a matrix T such that (2.5) holds. Then (1.3) is valid with $T_{0}=T \otimes I_{\mathcal{E}}$.

Proof. Indeed, we have

$$
\left(T^{-1} \otimes I_{\mathcal{E}}\right)\left(I_{n} \otimes S+A \otimes I_{\mathcal{E}}\right)\left(T \otimes I_{\mathcal{E}}\right)=I_{n} \otimes S+\left(T^{-1} A T\right) \otimes I_{\mathcal{E}}=I_{n} \otimes S+\hat{D} \otimes I_{\mathcal{E}}
$$

This proves the result.
The assertion of Theorem 1.1 follows from Lemmas 3.1 and 3.2.

4. Applications to operator functions

Let $E(s)$ be the orthogonal resolution of the identity of S defined on $\sigma(S)$, such that

$$
S=\int_{\sigma(S)} s d E(s)
$$

Then the operators G and M defined in Section 1 can be written as

$$
\begin{equation*}
G=\int_{\sigma(S)}\left(s I_{n}+A\right) \otimes d E(s) \quad \text { and } \quad M=\int_{\sigma(S)}\left(s I_{n}+\hat{D}\right) \otimes d E(s) . \tag{4.1}
\end{equation*}
$$

Let $f(z)$ be a scalar function, regular on $\sigma(G)$, and

$$
\begin{equation*}
\sup _{s \in \sigma(S)} \max _{j=1, \ldots, m}\left|f^{(k)}\left(\lambda_{j}(A)+s\right)\right|<\infty \quad\left(k=1, \ldots, \mu_{j}-1\right) \tag{4.2}
\end{equation*}
$$

Define $f\left(A+s I_{n}\right)(s \in \sigma(S))$ in the usual way via the Cauchy integral [4] and consider the operator function

$$
f(G)=\int_{\sigma(S)} f\left(s I_{n}+A\right) \otimes d E(s)
$$

Similarly,

$$
f(M)=\int_{\sigma(S)} f\left(s I_{n}+\hat{D}\right) \otimes d E(s)
$$

Note that the considerably more general operator functions on tensor products of spaces have been considered in [20] and references given therein.

By Lemma 3.1, $f\left(s I_{n}+A\right)=T^{-1} f\left(s I_{n}+\hat{D}\right) T$ and therefore $f(G)=T_{0}^{-1} f(M) T_{0}$. So by (1.4) we have $\|f(G)\|_{\mathcal{H}} \leq \kappa\left(T_{0}\right)\|f(M)\|_{\mathcal{H}} \leq \gamma(A)\|f(M)\|_{\mathcal{H}}$. It is not hard to see that

$$
\|f(M)\|_{\mathcal{H}} \leq \sup _{s \in \sigma(S)}\left\|f\left(s I_{n}+\hat{D}\right)\right\|_{n} .
$$

Since $A_{j j}$ are mutually orthogonal, we have

$$
f\left(\hat{D}+s I_{n}\right)=\sum_{k=1}^{m} \Delta P_{j} f\left(A_{j j}+s I_{n}\right) \quad \text { and } \quad\left\|f\left(\hat{D}+s I_{n}\right)\right\|_{n}=\max _{j}\left\|\Delta P_{j} f\left(A_{j j}+s I_{n}\right)\right\|_{n}
$$

We thus arrive at the following theorem.
Theorem 4.1. Let $f(z)$ be a scalar function, regular on a neighborhood of $\sigma(G)$, and let condition (4.2) hold. Then

$$
\|f(G)\| \leq \kappa\left(T_{0}\right) \sup _{s \in \sigma(S)} \max _{j}\left\|\Delta P_{j} f\left(A_{j j}+s I_{n}\right)\right\|_{n} .
$$

Due to [8, Corollary 2.7.2], we have

$$
\left\|f\left(A_{j j}+s I_{n}\right)\right\|_{\mu_{j}} \leq \sum_{k=0}^{\mu_{j}-1}\left|f^{(k)}\left(\lambda_{j}(A)+s\right)\right| \frac{g^{k}\left(A_{j j}\right)}{(k!)^{3 / 2}} .
$$

Taking into account (3.4), we get

$$
\left\|f\left(A+s I_{n}\right)\right\|_{n} \leq \gamma(A) \max _{j} \sum_{k=0}^{\mu_{j}-1}\left|f^{(k)}\left(\lambda_{j}(A)+s\right)\right| \frac{g^{k}(A)}{(k!)^{3 / 2}}
$$

Now Theorem 4.1 immediately implies our next result.
Corollary 4.2. Under the hypothesis of Theorem 4.1,

$$
\|f(G)\| \leq \gamma(A) \sup _{s \in \sigma(S)} \max _{j} \sum_{k=0}^{\mu_{j}-1}\left|f^{(k)}\left(\lambda_{j}(A)+s\right)\right| \frac{g^{k}(A)}{(k!)^{3 / 2}} .
$$

In the following examples the operator G is defined by (1.1) (and therefore, by (4.1)).

Example 4.3. Let $\alpha(S):=\sup _{s \in \sigma(S)} \mathfrak{R} \sigma(S)<\infty$. Then the semigroup $e^{t G}$ of G is representable by

$$
e^{t G}=\int_{\sigma(S)} e^{\left(s I_{n}+A\right) t} \otimes d E(s), \quad t \geq 0
$$

Now Corollary 4.2 implies

$$
\left\|e^{t G}\right\| \leq \gamma(A) e^{(\alpha(A)+\alpha(S)) t} \sum_{k=0}^{\hat{\mu}-1} t^{k} \frac{g^{k}(A)}{(k!)^{3 / 2}} \quad(t \geq 0)
$$

where $\alpha(A)=\max _{k} \Re \lambda_{k}(A)$ and $\hat{\mu}=\max _{j} \mu_{j}$.
Example 4.4. Let

$$
\xi_{0}:=\inf _{j=1, \ldots, m, s \in \sigma(S)}\left|\lambda_{j}(A)+s\right|>0 .
$$

Define the fraction power by

$$
G^{-v}=\int_{\sigma(S)}(s I+A)^{-v} \otimes d E(s) \quad(0<v<1)
$$

Here the fraction power of the nonsingular matrix is defined in the standard way; see, for example, [7]. Since

$$
\sup _{j=1, \ldots, m ; z \in \sigma(S)}\left|\frac{d^{k}}{d z^{k}} \frac{1}{\left(z+\lambda_{j}(A)\right)^{v}}\right| \leq \frac{v(v+1) \cdot(v+k-1)}{\xi_{0}^{k+v}} \quad(j=1, \ldots, m ; k=1,2, \ldots),
$$

by Corollary 4.2,

$$
\left\|G^{-v}\right\| \leq \gamma(A) \sum_{k=0}^{\hat{\mu}-1} \frac{g^{k}(A) v(v+1) \cdot(v+k-1)}{\xi_{0}^{k+v}(k!)^{3 / 2}}
$$

Similarly, one can estimate the function

$$
(\ln G)^{-1}=\int_{\sigma(S)}\left(\ln \left(s I_{n}+A\right)\right)^{-1} \otimes d E(s)
$$

provided the condition $\xi_{0}>0$ holds. The matrix logarithm is defined in that standard way; see, for example, [4, Section V.1].

Furthermore, it is simple to see that the resolvent of G is representable by

$$
\begin{equation*}
\left(G-\lambda I_{\mathcal{H}}\right)^{-1}=\int_{\sigma(S)}\left(s I_{n}+A-\lambda I_{n}\right)^{-1} \otimes d E(s) \quad(\lambda \notin \sigma(G)) \tag{4.3}
\end{equation*}
$$

Theorem 4.1 yields

$$
\left\|R_{z}(G)\right\|_{\mathcal{H}} \leq \kappa\left(T_{0}\right) \sup _{s \in \sigma(S)} \max _{j}\left\|\Delta P_{j}\left(A_{j j}-\left(\lambda-s I_{\mu_{j}}\right)\right)^{-1}\right\|_{\mu_{j}} .
$$

Due to [11, Theorem 1.1],

$$
\left\|\left(A_{j j}-\left(\lambda-s I_{\mu_{j}}\right)\right)^{-1}\right\|_{\mu_{j}} \leq \sum_{k=0}^{\mu_{j}-1} \frac{g^{k}\left(A_{j j}\right)}{\rho^{k+1}\left(A_{j j}+s I_{\mu_{j}}, \lambda\right) \sqrt{k!}},
$$

where $\rho(B, \lambda)$ denotes the distance between $\lambda \in \mathbb{C}$ and the spectrum of an operator B. Clearly, $\rho\left(A_{j j}+s I_{\mu_{j}}, \lambda\right)=\left|\lambda_{j}(A)+s-\lambda\right| \geq \rho(G, \lambda)(j=1, \ldots, m ; s \in \sigma(S))$. Now Corollary 4.2 implies our next result.

Corollary 4.5. We have

$$
\left\|R_{z}(G)\right\|_{\mathcal{H}} \leq \gamma(A) \sum_{k=0}^{\hat{\mu}-1} \frac{g^{k}(A)}{\rho^{k+1}(G, \lambda) \sqrt{k!}} \quad(\lambda \notin \sigma(G)) .
$$

5. Spectrum perturbations

Corollary 4.5 enables us to investigate spectrum perturbations. Let G and \tilde{G} be linear operators in \mathcal{H} with

$$
\begin{equation*}
\operatorname{Dom}(\tilde{G})=\operatorname{Dom}(G) \quad \text { and } \quad q:=\|G-\tilde{G}\|_{\mathcal{H}}<\infty . \tag{5.1}
\end{equation*}
$$

Introduce the quantity

$$
s v_{G}(\tilde{G}):=\sup _{s \in \sigma(\tilde{G})} \inf _{t \in \sigma(G)}|t-s|
$$

(the spectral variation of \tilde{G} with respect to G). We need the following technical lemma.
Lemma 5.1. Let condition (5.1) hold and

$$
\left\|R_{\lambda}(G)\right\| \leq \psi\left(\frac{1}{\rho(G, \lambda)}\right) \quad(\lambda \notin \sigma(G))
$$

where $\psi(x)$ is a monotonically increasing continuous function of a nonnegative variable x, such that $\psi(0)=0$ and $\psi(\infty)=\infty$. Then $s v_{G}(\tilde{G}) \leq z(\psi, q)$, where $z(\psi, q)$ is the unique positive root of the equation $q \psi(1 / z)=1$.

For the proof see [8, Lemma 8.4.2]. Now let G be defined by (1.1). Then Corollary 4.5 and Lemma 5.1 imply $s v_{G}(\tilde{G}) \leq z(A, q)$, where $z(A, q)$ is the unique positive root of the equation

$$
q \gamma(A) \sum_{k=0}^{\hat{\mu}-1} \frac{g^{k}(A)}{z^{k+1} \sqrt{k!}}=1
$$

This equation is equivalent to the algebraic one

$$
z^{\hat{\mu}}=q \gamma(A) \sum_{k=0}^{\hat{\mu}-1} \frac{g^{k}(A) z^{\hat{\mu}-k-1}}{\sqrt{k!}} .
$$

Various estimates for the roots of algebraic equations are well known. For example, if

$$
\begin{equation*}
p(A, q):=q \gamma(A) \sum_{k=0}^{\hat{\mu}-1} \frac{g^{k}(A)}{\sqrt{k!}}<1 \tag{5.2}
\end{equation*}
$$

then, due to [8, Lemma 1.6.1], we have $z^{\hat{\mu}}(A, q) \leq p(A, q)$. So we arrive at the following result.

Corollary 5.2. Let G be defined by (1.1) and let condition (5.1) hold. Then $v_{G}(\tilde{G}) \leq$ $z(A, q)$. In particular, if condition (5.2) is fulfilled, then $s v_{G}^{\hat{\mu}}(\tilde{G}) \leq p(A, q)$.

6. Differential operators with matrix coefficients

In this section we apply our results to matrix differential operators. Here $\mathcal{E}=$ $L^{2}(0,1)$ (the space of scalar square integrable functions defined on $\left.[0,1]\right)$ and $\mathcal{H}=$ $\mathbb{C}^{n} \otimes \mathcal{E}=L^{2}\left([0,1], \mathbb{C}^{n}\right)$ (the space of square integrable functions defined on $[0,1]$ with values in $\left.\mathbb{C}^{n}\right)$. On the domain

$$
\operatorname{Dom}\left(\tilde{G}_{0}\right)=\left\{u \in \mathcal{H}: u^{\prime \prime} \in \mathcal{H} ; u(0)=u(1)=0\right\}
$$

consider the operator

$$
\tilde{G}_{0}=-\frac{d}{d x} a(x) \frac{d}{d x}+C(x) \quad(x \in(0,1))
$$

where $a(x)$ is a scalar positive function having a continuous derivative and $C(x)$ is a variable bounded measurable $n \times n$ matrix. Take $S=-(d / d x) a(x)(d / d x)$ with

$$
\operatorname{Dom}(S)=\left\{u \in L^{2}(0,1): u^{\prime \prime} \in L^{2}(0,1) ; u(0)=u(1)=0\right\} .
$$

In addition, $G_{0}=I_{n} \otimes S+I_{\mathcal{E}} \otimes A$ with some constant $n \times n$ matrix A and $\operatorname{Dom}\left(\tilde{G}_{0}\right)=$ $\operatorname{Dom}\left(G_{0}\right)=\operatorname{Dom}\left(S \otimes I_{n}\right)$. Then $q=\left\|G_{0}-\tilde{G}_{0}\right\|_{\mathcal{H}} \leq \sup _{x}\|C(x)-A\|_{n}$ and

$$
\sigma\left(G_{0}\right)=\left\{\lambda_{k}(S)+\lambda_{j}(A): k=1,2, \ldots ; j=1, \ldots, m\right\}
$$

Due to Corollary 5.2, $\operatorname{sv}_{G_{0}}\left(\tilde{G}_{0}\right) \leq z(A, q)$ and $z(A, q)$ can be estimated as in that corollary. Thus, the spectrum of \tilde{G}_{0} lies in the sets

$$
\left\{\mu \in \mathbb{C}:\left|\mu-\left(\lambda_{k}(S)+\lambda_{j}(A)\right)\right| \leq z(A, q): k=1,2, \ldots ; j=1, \ldots, m\right\}
$$

For example, if $a(x)=1$ identically, then $\lambda_{k}(S)=\pi k^{2}$.

Furthermore, Example 4.3 gives us the norm estimate for the semigroup of $-G_{0}$, and the formula

$$
e^{-G_{0} t}-e^{-\tilde{G}_{0} t}=\int_{0}^{t} e^{-G_{0}\left(t-t_{1}\right)}\left(G_{0}-\tilde{G}_{0}\right) e^{-\tilde{G}_{0} t_{1}} d t_{1}
$$

enables us to estimate the semigroup of $-\tilde{G}_{0}$. Moreover, Example 4.4 gives us a norm estimate for the fractional powers of G_{0} and the relations

$$
\begin{aligned}
G_{0}^{-v}-\tilde{G}_{0}^{-v}= & \frac{\sin (\pi v)}{\pi} \int_{0}^{\infty} t^{-v}\left(\left(G_{0}+t I_{\mathcal{H}}\right)^{-1}-\left(\tilde{G}_{0}+t I_{\mathcal{H}}\right)^{-1}\right) d t \\
= & \frac{\sin (\pi v)}{\pi} \int_{0}^{\infty} t^{-v}\left(G_{0}+t I_{\mathcal{H}}\right)^{-1}\left(G_{0}-\tilde{G}_{0}\right)\left(\tilde{G}_{0}+t I_{\mathcal{H}}\right)^{-1} d t \\
& \quad\left(\inf \mathfrak{R} \sigma\left(G_{0}\right)>0, \inf \mathfrak{R} \sigma\left(\tilde{G}_{0}\right)>0\right)
\end{aligned}
$$

enable us to estimate the fractional powers of \tilde{G}_{0}.

References

[1] T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon and M. Lindner, 'Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation', Numer. Methods Partial Differential Equations 27 (2011), 31-69.
[2] J. A. van Casteren, 'Operators similar to unitary or selfadjoint ones', Pacific J. Math. 104(1) (1983), 241-255.
[3] S. N. Chandler-Wilde, I. G. Graham, S. Langdon and M. Lindner, 'Condition number estimates for combined potential boundary integral operators in acoustic scattering', J. Integral Equations Appl. 21 (2009), 229-279.
[4] Yu. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space (American Mathematical Society, Providence, RI, 1974).
[5] N. Dunford and J. T. Schwartz, Linear Operators, Part I. General Theory (Wiley Interscience, New York, 1966).
[6] M. M. Faddeev and R. G. Shterenberg, 'On similarity of differential operators to a selfadjoint one', Math. Notes 72 (2002), 292-303.
[7] F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1967).
[8] M. I. Gil', Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, 1830 (Springer, Berlin, 2003).
[9] M. I. Gil', 'A bound for condition numbers of matrices', Electron. J. Linear Algebra 27 (2014), 162-171.
[10] M. I. Gil', 'A bound for similarity condition numbers of unbounded operators with HilbertSchmidt Hermitian components', J. Aust. Math. Soc. 97 (2014), 331-342.
[11] M. I. Gil', 'Resolvents of operators on tensor products of Euclidean spaces', Linear Multilinear Algebra 64(4) (2016), 699-716.
[12] M. I. Gil', 'On condition numbers of spectral operators in a Hilbert space', Anal. Math. Phys. 5(4) (2015), 363-372.
[13] M. I. Gil', 'An inequality for similarity condition numbers of unbounded operators with Schattenvon Neumann Hermitian components', Filomat 30(13) (2016), 3415-3425.
[14] M. I. Gil', 'Kronecker's products and Kronecker's sums of operators', in: Contributions in Mathematics and Engineering: In Honor of Constantin Caratheodory (eds. P. Panos and T. Rassias) (Springer, Switzerland, 2016), 205-253.
[15] G. Chen, Y. Wei and Y. Xue, 'The generalized condition numbers of bounded linear operators in Banach spaces’, J. Aust. Math. Soc. 76 (2004), 281-290.
[16] I. M. Karabash, 'J-selfadjoint ordinary differential operators similar to selfadjoint operators', Methods Funct. Anal. Topology 6(2) (2000), 22-49.
[17] I. M. Karabash, A. S. Kostenko and M. M. Malamud, 'The similarity problem for J-nonnegative Sturm-Liouville operators', J. Differential Equations 246 (2009), 964-997.
[18] A. Kostenko, 'The similarity problem for indefinite Sturm-Liouville operators with periodic coefficients', Oper. Matrices 5(4) (2011), 707-722.
[19] A. Kostenko, 'The similarity problem for indefinite Sturm-Liouville operators and the HELP inequality', Adv. Math. 246 (2013), 368-413.
[20] V. G. Kurbatov and I. V. Kurbatova, 'Extended tensor products and an operator-valued spectral mapping theorem', Izv. Math. 79(4) (2015), 710-739.
[21] M. M. Malamud, 'Similarity of a triangular operator to a diagonal operator', J. Math. Sci. 115(2) (2003), 2199-2222.
[22] S. V. Parter and S.-P. Wong, 'Preconditioning second-order elliptic operators: condition numbers and the distribution of the singular values', J. Sci. Comput. 6(2) (1991), 129-157.
[23] B. Pruvost, 'Analytic equivalence and similarity of operators', Integral Equ. Oper. Theory 44 (2002), 480-493.
[24] M. Seidel and B. Silbermann, 'Finite sections of band-dominated operators, norms, condition numbers and pseudospectra', in: Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Operator Theory: Advances and Applications, 228 (eds. Yu. I. Karlovich, L. Rodino, B. Silbermann and I. M. Spitkovsky) (Birkhäuser/Springer, Basel, 2013), 375-390.

MICHAEL GIL', Department of Mathematics,
Ben Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
e-mail: gilmi@bezeqint.net

[^0]: (C) 2018 Australian Mathematical Publishing Association Inc.

