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A BASICALLY DISCONNECTED NORMAL SPACE & WITH
pe — @ =1

ERIC K. van DOUWEN

0. Definitions. All spaces considered are completely regular. C*(X) denotes
the set of bounded continuous real-valued functions in X. A subspace S of X
is called C*-embedded in X if for every f € C*(S) there is ¢ € C*(X) with
oIS = /.

A space X is called almost compact if |X — X| < 1; basically disconnected
if every cozero-set has open closure; extremally disconnected if every open set has
open closure; an F-space if every cozero-set is C*-embedded; small if
|C*(X)| = 2¢; and weakly Lindelof if every open cover has a subfamily % with
|| < wand U % dense. A point p of a space X is called a P-point of X if every
Gs-set in X which contains p is a neighborhood of p.

w(X) denotes the weight of X.

We identify cardinals with initial ordinals.

1. Introduction. In this note we complete the proof of the following
theorem, begun in [6] and [7].

TaEOREM. Each of the following statements is equivalent to CH:
(a) Every small countably compact normal F-space is compact.
(b) Every small locally compact normal F-space is a-compact.
(c) Every small F-space is weakly Lindeldf.

To this end we construct the following example.

Example. There is an almost compact basically disconnected normal non-
compact space & with w(8®) = w»-2¢ such that the point of & — ® is a P-point
of B®.

Remarks. (1) Every basically disconnected space is an F-space, [3, 14 N.4].

(2) Every almost compact space is locally compact and every almost com-
pact normal space is countably compact.

3) |C*(@)] = |C*(BP)| so |[C*(@)| = wy-2¢ since wy-2¢ = [C*(BD)| =

(w2 . 2"’)"’ = Wy * 2"’.

In [1] it is shown that another statement about F-spaces, proved from CH
in the literature, also is in fact equivalent to CH.

The example is of interest for yet another reason. Woods has asked if there
is a real (= not requiring additional set theoretic axioms) example of a
extremally disconnected locally compact space that is normal but not para-
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compact, |7]. Kunen and Parsons construct an example that is not real since
it uses a weakly compact cardinal in [5]. Kunen constructs a real extremally
disconnected normal space that is not paracompact (not even collectionwise
Hausdorff) in [4]. His example is not locally compact. Our example comes close
to answering Woods' question. It is not extremally disconnected but it is at
least basically disconnected.

2. The example. (4) Let P be the subspace of all P-points (whether isolated
or not) of ws + 1, the ordinals =Zw, equipped with the order topology.
IEquivalently

P = {a £ w: cfa # wl.
Throughout this section ~ is the closure operator in P.
Definition. & = BP — {w,}.

Nonstandard Convention. We use the usual notation for intervals to denote
the traces on P of intervals in w, 4+ 1. For example, if a, 8 < w,, then

(@, 8] = {£ € Pra < § < B

(not necessarily «, 8 € P).

(B) We first show that ® is almost compact and normal. This depends on
the following easy observation, the proof of which is omitted; cf. [3, 6].

LeMMA. The space X is almost compact and normal if and only if any lwo
noncompact closed subsets of X have nonempty intersection.

So let A and B be noncompact closed subsets of . We use a well known type
of argument to show that 4 M B # .

Since wy € A M B, and since { (o, ws]™: @ < ws} is a neighborhood base in
BP of ws, there is a strictly increasing wi-sequence (y;: £ < w1) of ordinals
<w, such that (yg ve1]™ intersects both 4 and B for all £ < w;. Let ¢ =
SUPt<wyye. Then o € P — {wy} € &, hence ¢ € A M B since A and B are
closed and since { (v, ¢]7: ¥ < ¢} is a neighborhood base in & for o.

(C) Clearly a (noncompact) almost compact space has precisely one com-
pactification, [3, 6], hence
P = BP.

An immediate consequence is that & is basically disconnected: just note that
X is basically disconnected if and only if 8X is, for all X, [3, 6M.1].

Another consequence is that the point in & — ® is w,, which is a P-point
in 8P, hence in 3.

(D) It remains to calculate w(8®). Denote the family of clopen sets of a
space X by CO(X). Recall the following facts, which we will use without
explicit reference.
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Fact 1. w(X) = |CO(X)| if X is an infinite compact zero-dimensional space.
Fact 2. |[CO(X)| £ w(X)* if X is any Lindeldf space.

Since 8® is zero dimensional, being basically disconnected, and since
BP = 8®, we have

w(d) = [COBP)| = [CO(P)|.
Claim. P is Lindelof.

By transfinite induction one can easily show that the subspace [0, «] of P
is Lindelof for all @ £ wy. In particular, P = [0, w.] is Lindelof.

P has w; isolated points and [0, ) is a clopen discrete subset of P, hence
[CO(P)| = wy - 2¢. But evidently w(P) = ws, hence |CO(P)| £ wy® = wy - 2.

This shows that w(8®) = ws - 2¢.

Corollary to proof. | ®| = 2%,

[0, w) is C*-embedded in & and [0, w)~ € ®, hence |[®| = [fN]| = 2%,
[3,9.3]. The argument above shows that @ ([0, a]7) < 0, = 2¢ if « < ws. Since
|X] £ 2% for every Hausdorff X, it follows that

[®] = |U {[0,a]: @ < wo}| £ wy - 2% = 22

3. The theorem. Woods proved that CH implies (a) and (b) in [7, 1.1],
and proved that CH implies the following statement

(@) If X s a small compact F-space, then S C X is C*-embedded in X (if
and) only if X is weakly Lindelif,

in[6, 2.3(3)]. Now observe that if V is any space then 8 Vissmall if (and only if)
Vis,and gV is an F-space if (and only if) Vis, [3, 14.25]. (This argument occurs
in the proof of [7, 1.1]). Hence (d) implies (c).

® is a countably compact locally compact normal F-space which is not
weakly Lindel6f, leave alone (¢-) compact, since the point of & — & is a
P-point. Since ® is small if (and only if) CH fails, it follows that each of (a),
(b) and (c¢) implies CH.

Remarks. (A) The proof that (d) implies (¢) can also be used to eliminate
“compact” from (d).

(B) In addition to (d), the interested reader can add several other more
technical statements to the list of equivalences of CH we gave, by looking up

[2, 4.3 and 4.4] and [7, 2.2].

4. Remarks. (4) The subspace X = P — {w»} occursin [3,9L] as an example
of a P-space that is not realcompact. Note that 83X = 8P, and that vX = P.

(B) The fact that (¢) and (b) of the theorem are equivalent to CH answers
a question of Woods, [7, 3.6].
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(C) The existence of ® also shows that the condition that the /*-space be
small is essential in (a) and (b) of the theorem, even under CH. This answers
a question implicit in [7, 3.5].

(D) 1t was known that (¢) of the theorem is false without additional axioms,
indeed is false without 2¢ < 2¢1; the discrete space with w; points is the
appropriate example, [7].

(E) Consider the following statements:

(e) every countable subset of a countably compact normal [-space has
compact closure;

(f) if Yisa dense C*-embedded subset of fw — w, then V = Bw — w;

(g) if X is countably compact and normal, and if o € X C Bw, then
X = Bw;

(h) if X is an infinite countably compact normal F-space, then |X| = 2%

Using 6.7, 9.3, 14.25, 14.27 and 14N.5 of [3] one can easily prove that CH
implies (e), since CH < (a) [7, 2.1], that CH implies (f) (2, 4.6a], since
CH & (c), that (¢) and (f) imply (g) and that (g) implies (k). So each of
(e), (f), (g) and (h) follows from CH. For each of (¢), (f), (g) and (k) it is

open if the statement is equivalent to CH, is strictly weaker than CH but not
true in ZFC, or is true in ZFC.

Added in print. 1 have recently shown that it is consistent with ZFC that
(/) of 4(E) is false.
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