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Abstract

Albedo is a key factor in modulating the absorption of solar radiation on ice surfaces. Satellite
measurements have shown a general reduction in albedo across the Greenland ice sheet over
the past few decades, particularly along the western margin of the ice sheet, a region known as
the Dark Zone (albedo < 0.45). Here we chose a combination of Landsat 4–8 and Sentinel
2 imagery to enable us to derive the longest record of albedo variations in the Dark Zone, running
from 1984 to 2020. We developed a simple, pragmatic and efficient sensor transformation to
provide a long time series of consistent, harmonized satellite imagery. Narrow to broadband
conversion algorithms were developed from regression models of harmonized satellite data
and in situ albedo from the Program for Monitoring of the Greenland Ice Sheet (PROMICE)
automatic weather stations. The albedo derived from the harmonized Landsat and Sentinel 2
data shows that the maximum extent of the Dark Zone expanded rapidly between 2005 and
2007, increasing to ∼280% of the average annual maximum extent of 2900 km2 to ∼8000 km2

since. The Dark Zone is continuing to darken slowly, with the average annual minimum albedo
decreasing at a rate of �−0.0006+ 0.0004 a−1 (p = 0.16, 2001–2020).

Introduction

Meltwater from the Greenland ice sheet (GrIS) has been one of the major contributors to glo-
bal sea-level rise in the past few decades (Shepherd and others, 2012, 2020; Khan and others,
2015). The absorption of solar radiation controls the surface ice melt, which is modulated by
the surface ice albedo (SIA) (Box and others, 2012), defined as the ratio of the total reflected to
the total incident solar radiation (Cogley and others, 2011). The SIA of the GrIS has been mea-
sured by remote-sensing platforms during the recent decades (Tedesco and others, 2015;
Shimada and others, 2016), and is a critical parameter in current GrIS melt models (van
Angelen and others, 2012; Shepherd and others, 2012). The darkening of surface ice, which
corresponds to a lowering of SIA, increases the absorption of solar radiation (Tedesco and
others, 2016; Box and others, 2017; Stibal and others, 2017; Cook and others, 2020) and
enhances melt rates (Naegeli and others, 2019). Satellite records have shown that the SIA of
the GrIS has declined at a rate of −0.028 ± 0.008 decade−1 over the past two decades since
2000 (He and others, 2013). Most distinctive is an area of surface ice with particularly low
albedo in the ablation zone along the western margin of the ice sheet, known as the Dark
Zone (Knap and Oerlemans, 1996; Wientjes and Oerlemans, 2010; Ryan and others, 2018).
It often grows to ∼20 km in width, extends for several hundred kilometers in length, and is
particularly prominent from 65◦ N to 70◦ N (Wientjes and others, 2011; Ryan and others,
2018).

Satellite imagery is commonly used to examine the albedo of the earth surface, and many
albedo products are available, including Moderate Resolution Imaging Spectroradiometer
(MODIS) products such as MOD10A1.006 Terra Snow Cover Daily Global 500 m (Hall and
others, 1995, 2016, 2018), which have been widely used in studies of snow and ice albedo
(Stroeve and others, 2006; van Angelen and others, 2012; Stroeve and others, 2013;
Shimada and others, 2016). Recently, albedo products have also been derived from the high
spectral-resolution sensor on Sentinel 3, which has been operational since 2016 (Wehrlé
and others, 2021). Longer time series of albedo variations can be obtained by merging data
from different products. For example, the Global LAnd Surface Satellites (GLASS) dataset pro-
vided a long time series (1981–2019) of albedo by merging albedo retrieved from Advanced
Very High Resolution Radiometer (AVHRR) and MODIS (Liu and others, 2013).

All albedo products have inherent limitations, because of their differing spatial, spectral and
temporal resolution and the active lifespan of the associated satellite. Satellite images with
coarser ground resolution (>102 m) effectively average out sub-pixel variations in surface con-
ditions and cannot resolve small-scale spatial patterns of albedo (Ryan and others, 2017). This
limits our ability to attribute albedo changes to specific surface processes and therefore our
understanding of the mechanisms of surface albedo change. For example, the AVHRR images
utilized in the GLASS albedo product have a spatial resolution of 1.1 km. MODIS has a
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resolution of 500 m for its albedo product MOD10A1.006 (Hall
and others, 1995, 2016), and Sentinel 3 has a resolution of
300 m, but these are all too coarse to resolve the important
10–100 m scale albedo variations that characterize small-scale,
localized melt processes (Naegeli and others, 2015, 2017). Better
spatial resolution, down to 10–30 m, is available from earth obser-
vatory satellites such as Landsat and Sentinel 2. Investigation of
historical albedo variations is often compromised by the lifetime
of individual satellites, and the launch of new satellites offers
new opportunities to extend albedo time series, such as albedo
data from Sentinel 3 which became available in 2016. Hence,
the marrying together, or harmonization of different remote-
sensing products is necessary to produce time series of longer
duration.

Here, we aim to maximize the duration and the spatial and
spectral resolution of albedo variations in the Dark Zone of the
GrIS, by harmonizing Landsat 8 and Sentinel-2 data. The com-
bination of Landsat and Sentinel 2 datasets (Fig. 1a) offers a favor-
able balance of spatial and temporal resolution. Hereafter, Landsat
4, 5, 7, 8 and Sentinel 2 data will be referred to as L4, L5, L7, L8
and S2, respectively. Landsat provides the most continuous Earth
observation record, with imagery dating back to 1972 (Williams
and others, 2006; Wulder and others, 2016). S2 imagery has better
spatial and temporal resolution than the Landsat series (Drusch
and others, 2012; Vuolo and others, 2016). Merging imagery
from multiple earth observation satellites is nuanced, and cannot
be undertaken by simply joining the target image collections due
to the differences in the spectral response, atmospheric correction,
field of view, spectral sensitivities (Fig. 1b), resolutions etc. of the
different satellite sensors, known as cross-sensor differences (Roy
and others, 2016a; Claverie and others, 2018). For this reason, we
developed a methodology to harmonize the L4–L8 and S2 data,
where ‘harmonization’ is defined here as the minimization of
cross-sensor differences via statistical sensor to sensor calibration.

Various attempts have been made to harmonize the Landsat
and S2 datasets in the past, but none have yet been optimized
for the entire duration of L4–L8 and S2 measurements over
bare ice- and/or snow-covered ice. For example, Roy and others
(2016a) established a statistical approach to harmonize the
comparable spectral bands of L7 and L8 images, but these
statistical sensor transformation functions were optimized for

the mid-latitudes in the conterminous USA (here defined, the
48 adjoining states, excluding Hawaii and Alaska), excluding
highly reflective surfaces such as snow. A more recent harmonized
Landsat and S2 (HLS) dataset (Claverie and others, 2018) pro-
vides seamless L8 and S2 imagery. However, the harmonized
dataset starts in April 2013 and does not include any Landsat ser-
ies data prior to L8, and so commences from April 2013 (Fig. 1a).
No study as yet has produced a reliable and efficient method of
cross-calibrating Landsat and S2 data to provide a continuous
and consistent, harmonized dataset that will enable rapid, yet
accurate monitoring and analysis of albedo variations over large
areas of ice/snow-covered earth surfaces, such as the ablation
zone of the GrIS.

Broadband albedo is defined as the ratio of the total reflected
to the total incident solar radiation across the entire electromag-
netic spectrum (Cogley and others, 2011). By contrast, the short-
wave broadband albedo (SBA) generally used in glaciological
remote sensing refers to the commonly measured wavelength
range from 400 to 2400 nm only (Lucht and others, 2000). SBA
numerically approximates to broadband albedo because this
range contains the majority (.99%) of the solar radiation
received at the earth surface (Lucht and others, 2000; Naegeli
and others, 2017). Both the Landsat series and Sentinel 2 are
optical satellites and the sensors on board only measure desig-
nated ‘narrow’ bands within this range (Fig. 1b). Narrow to
broadband conversion is conducted by weighting the narrow
spectral bands with appropriate coefficients (Brest and Goward,
1987; Lucht and others, 2000), and is widely applied to estimate
the surface albedo from remote-sensing data (Qu and others,
2015). Many narrow to broadband conversion algorithms are
available to derive SBA from multispectral satellites such as
Landsat (Knap and others, 1999; Liang, 2001; Liang and others,
2003; Naegeli and others, 2017), S2 (Naegeli and others, 2017;
Li and others, 2018; Vanino and others, 2018), AVHRR
(Saunders, 1990; Russell, 1997; Liang, 2001) and VIIRS (Visible
Infrared Imaging Radiometer Suite) (Liang and others, 2005).
The implementation of narrow to broadband conversion algo-
rithms across sensors requires adjustment to assure data continu-
ity, since different sensors have different spectral resolutions
(Naegeli and others, 2017). Uncertainty in any of the albedo pro-
ducts is generally high for snow- and ice-covered high-latitude

a

b

Fig. 1. Availability of Landsat and Sentinel 2 imagery, and the band widths of interest in this study. (a) The timeline of data availability on Google Earth Engine. Data
for Greenland from Landsat 4/5 TM were available from 1984, and from the Sentinel 2 Level-2 product during 2019, as shown by black dotted line. (b) Band des-
ignations for sensors on Landsat 4/5 TM, Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI) and Sentinel 2 Multi-Spectral
Instrument (MSI), adapted from https://landsat.usgs.gov/spectral-characteristics-viewer). Only the bands of interest (blue, green, red, NIR, SWIR1 and SWIR2) are
shown here. Spectral wavelength (nm) is indicated by the box length and band names are labeled within the boxes.
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regions (Qu and others, 2015), with R2 values typically ranging
from 0.1 to 0.7 in the validation of satellite-derived snow/ice
albedo against in situ data (Stroeve and others, 2006;
Wright and others, 2014). None have been validated for snow
and ice surfaces, to the best of our knowledge, using a harmonized
long time series that combine Landsat and S2 datasets so far.
Therefore, this paper derives a new narrow to broadband conver-
sion algorithm to derive broadband albedo from harmonized
Landsat and S2 data.

This study consists of three main sections, namely the
harmonization of Landsat and S2 data, the development and
validation of a narrow to broadband algorithm for bare and
snow-covered ice and an initial examination of the spatial and
temporal variability of surface albedo in the Dark Zone using
this new surface albedo product.

Methodology

Imagery preprocessing

Data
The data used in this study were Landsat Level-2 Collection 2 Tier
1 surface reflectance and Sentinel 2 Level-2A orthorectified, atmo-
spherically corrected surface reflectance products in the Google
Earth Engine (GEE) (Gorelick and others, 2016) data catalog.
The processing was mostly done using geemap (Wu and others,
2019; Wu, 2020). All the reflectance bands were renamed to
blue, green, red, near infrared (NIR) (near infrared), SWIR1
(shortwave infrared) and SWIR2 as labeled in Figure 1b.

The Landsat Collection 2, the second major effort of consolidat-
ing the Landsat global data archive, is designed to be interoperable
with S2 data products (Masek and others, 2020). Landsat data are
released in different processing levels. Geometric correction is
normally considered unnecessary for Level-1 Precision and
Terrain Correction (Level-1TP) data (Zhu, 2017). The Level-2
Landsat surface reflectance data use the Level-1 data as input
(U.S. Geological Survey, 2021c). Level-1 images with solar zenith
angle >76◦ are precluded (U.S. Geological Survey, 2021c).
Furthermore, the Tier 1 data are the image collection of highest
available radiometric and geolocation quality (GEOMETRIC_
RMSE_MODEL <12m) (U.S. Geological Survey, 2017; Zhu,
2017). The Landsat Collection 2 surface reflectance data consist
of images acquired by L4–L8 (Fig. 1a) at 30m resolution. L4 and
L5 carried the same instrument payload, Thematic Mapper (TM)
(Williams and others, 2006). The spectral resolution of L4/5 TM
images is similar to L7 Enhanced Thematic Mapper Plus (ETM
+) data (Fig. 1b), and L7 ETM+ data are considered comparable
to L4/5 TM images (Vogeler and others, 2018). Improvements
were made to L8 Operational Land Imager (OLI) in radiometric
resolution, geolocation accuracy, signal to noise characteristics
and acquisition rates (Fahnestock and others, 2016; Roy and others,
2016a). Generally, the bands of Landsat data become spectrally
narrower from L4 to L8 (Fig. 1b). The L4/5 TM and L7 ETM+ sur-
face reflectance data are processed by the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) algorithm
(Masek and others, 2006), while L8 OLI surface reflectance images
are processed by the Land Surface Reflectance Code (LaSRC) algo-
rithm (Vermote and others, 2016, 2018).

The Sentinel 2 mission consists of two polar orbiting satellites
(Sentinel-2A and Sentinel-2B) with an optical imaging sensor
Multi-Spectral Instrument (MSI) onboard (Vuolo and others,
2016; Louis and others, 2019). The atmospherically corrected S2
Level-2A surface reflectance product is the highest level product
processed by the European Space Agency (ESA) using Sen2Cor
(S2 Level-2A processor) (Main-Knorn and others, 2017), and
has been available since June 2017. A product with global

coverage was not available before December 2018 (Louis and
others, 2019), and a product for Greenland is only available
from 2019 onward. The spatial resolution is 10 m for bands in
the visible and NIR range (B2–B4) and 20 m in the SWIR
range (B11, B12).

Clouds and cloud shadow mask
Clouds and cloud shadows in Landsat data were masked by the
function, Fmask (Zhu and Woodcock, 2014a; Zhu and others,
2015a), which is provided in the QA_PIXEL band that accompan-
ies the surface reflectance data. Pixels affected by the scan line
corrector error on L7 can be treated as clouds (Zhu and
Woodcock, 2014a, 2014b) and masked out. S2 surface reflectance
(Level-2A) images with more than 50% cloud coverage were
excluded from the analysis. The QA60 band provides the bitmask
of cirrus and other cloud, and was used for the cloud mask on
S2 imagery.

Radiometric saturation
Sensor saturation often occurs when there are highly reflective
surfaces, and particularly when sensing snow (Feng and others,
2013; Roy and others, 2016b; Dwyer and others, 2018).
Saturated pixel values are not sensitive to increases in surface
reflectance beyond a certain threshold (Zhao and others, 2016).
Radiometrically saturated pixels were masked by the bitmask in
Landsat’s QA_RADSAT band for each individual spectral band.
Saturation is flagged either if the pixel value reaches the maximum
value during data capture or in the processed product (Roy and
others, 2010; U.S. Geological Survey, 2021a, 2021b). Saturation
in S2 imagery is determined by the scene classification (SCL)
algorithm of Sen2Cor (Main-Knorn and others, 2017). The satur-
ation mask is stored in the SCL band. Invalid surface reflectance
values (<0 or >1) are discarded as computational artifacts (U.S.
Geological Survey, 2021c).

Data harmonization

Band to band regression
Band to band regression (Eqn (1)) aims to find the association
between the target satellite spectral data (aSR

band) and the corre-
sponding reference product (aSRref

band ):

aSRref
band = slope · aSR

band + offset (1)

The slope and offset of the band to band regressions are used in
sensor transformation to obtain calibrated surface reflectance (SR)
(aSRcal

band ). This process of the cross-sensor calibration is often
referred to as ‘harmonization’.

The selection of aSR
band and aSRref

band takes both the satellite sensor
specification and the operation timeline into consideration. L8
was chosen as the aSRref

band for the following reasons. First, L8 OLI
data have improved radiometric resolution, geolocation accuracy,
signal to noise characteristics and acquisition rates (Fahnestock
and others, 2016; Roy and others, 2016a). Second, the operational
timeline of L8 overlaps with both L7 and S2 (Fig. 1a). The L4, L5,
L7 and S2 datasets were selected to be calibrated target aSR

band. The
L4–L7 Collection 2 SR products are all processed by the same
LEDAPS algorithm (Masek and others, 2006; U.S. Geological
Survey, 2021c), and the L7 ETM+ data are considered to be com-
parable to the L4/5 TM data (Vogeler and others, 2018). Hence,
the band to band regression of L7 with L8 is considered represen-
tative for the characterization of TM data to OLI data as well. The
processing procedures described by Roy and others (2016a) were
used to generate the band to band regressions, modified for use
with snow- and ice-covered surfaces.
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Paired pixel analysis
The area of interest (aoi) (Fig. 2) spans the whole of western
GrIS and includes the entire Dark Zone. Ice-free areas and
water were masked out using the ice mask built from the
Greenland Ice & Ocean Mask – Greenland Mapping Project
(GIMP) (Howat and others, 2014). The time of interest was
determined by selecting 2 years when the timelines of L7 and
S2 missions overlapped with L8, namely 2013 and 2020,
respectively (Fig. 1a). All the available preprocessed images
acquired on the same day were mosaiced into one image
scene for L7, L8 and S2 data, respectively. The characterization
of L7 to L8 entailed pairing each of the daily mosaics of L7 with
a scene of L8 by a 24 h forward time search window. The
matched image pairs were resampled to 600 m for the band to
band regression analysis. All the paired pixel values were
extracted for each spectral band, respectively (Fig. 3). Both the
ordinary least square regression model (OLS) and the reduced
major axis regression model (RMA) were applied. The same
processing procedures were followed for quantifying associa-
tions between S2 and L8 data (Fig. 4). The 2013 melt season
(May to August) was selected for the comparison of L7 with
L8, and 2020 for the comparison of S2 with L8. Finally, a
noise filter mask (Eqn (2)) was applied to remove the paired
pixels if the difference between the values was greater than
their average (Roy and others, 2016a):

|aSR
band − aSRref

band |
0.5|aSR

band + aSRref
band |

, 1 (2)

The filter was originally built for the blue band alone, the
shortest wavelength of Landsat bands, which is reported to be
the most sensitive to atmospheric effects (Roy and others,
2014, 2016a). However, we found that the single blue band filter
greatly reduces the total number of usable paired pixels in other
bands due to the saturation effect (Fig. 3). Hence, it was modi-
fied here as a dynamic spectral band filter to adapt to the relative
differences in each individual band, instead of only the one sin-
gle band filter being applied to all spectral bands. The modified
filter rejects paired pixel values in each band where the differ-
ence is .100% of the average. The slopes and intercept of the
optimal band to band regression model applied to the filtered
data were selected to statistically harmonize the Landsat and
S2 dataset.

Narrow to broadband conversion algorithm and validation

The conversion of spectral bands into albedo can be performed by
several methods, including surface bidirectional reflectance distri-
bution function (BRDF) angular modeling, direct-estimation
algorithms and narrow to broadband conversion algorithms
(Qu and others, 2015; Roy and others, 2016b). More commonly,
satellite reflectance data are converted to albedo by statistically
weighting the narrow spectral bands to point field measurements
(Brest and Goward, 1987; Lucht and others, 2000) or radiative
transfer simulations (Liang, 2001), known as narrow to broad-
band conversion. Liang (2001) and Liang and others (2003) devel-
oped and validated a narrow to broadband conversion algorithm
(Eqn (3)) for Landsat TM/ETM+ data, which is currently one of
the most widely used algorithms for calculating albedo. Naegeli
and others (2017) extended the usage of this formula to L8 and
S2 over ice-covered surfaces. Therefore, Eqn (3) was chosen as
the reference narrow to broadband conversion algorithm to evalu-
ate the performance of the algorithms developed in our study. The
derived albedo was also compared with the MOD10A1.006 albedo

product:

aref = 0.356 · ablue + 0.130 · ared + 0.373 · anir

+ 0.085 · aswir1 + 0.072 · aswir2 − 0.0018
(3)

In situ albedometer measurements, collected from the array
of automatic weather stations (AWSs) of the Program for
Monitoring of the Greenland Ice Sheet (PROMICE) (van As
and Fausto, 2011), were used to generate equations that convert
multispectral, or ‘narrow-band’, reflectance to broadband albedo.
The narrow to broadband conversion algorithm was determined
by fitting a multiple linear regression (MLR) to the pixel values
of different band combinations and the PROMICE AWS albedo
data (after Liang, 2001 and Liang and others, 2003).

Satellite data to compare with the in situ measurements was
produced as follows. First, the timestamps of PROMICE AWS
hourly records and harmonized satellite data were compared
and matched, provided the difference was <1 h. PROMICE
AWS data from records with cloud cover percentages >50%
reported by PROMICE AWS were discarded, if clouds had not
been detected by the cloud mask of satellite data. The
PROMICE AWSs are located in areas where ice flow is <100 m
a−1 (Solgaard and others, 2021), equivalent to a ground sampling
distance of <4 pixels on Landsat. The coordinates of each station
were averaged by year and used to extract the pixel values via a 90
m spatial element window (3 by 3 Landsat pixels), averaged for

Fig. 2. Highlighted area in western Greenland is the aoi for acquiring paired pixels.
Locations of PROMICE automatic stations (https://promice.org/PromiceDataPortal/
#Automaticweatherstations) are marked on the map. Basemap is the ArcticDEM
mosaic (Porter and others, 2018) created by the University of Minnesota Polar
Geospatial Center from DigitalGlobe, Inc. imagery and it is superimposed on the
Google hybrid satellite map tile layer.
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each satellite spectral band. A similar procedure was applied to
extract the snow albedo tile in the MODIS Terra Snow Cover
Daily (MOD10A1.006) product (Hall and others, 1995, 2016),
but the pixel value was extracted at a scale of 500 m to match
with the spatial resolution of the MODIS image.

The paired SR values and in situ albedos were randomly split
into training (67%) and testing (33%) datasets. The MLR models
were trained to predict the albedo using the extracted SR pixel
values against the ‘groundtruth’ PROMICE albedos. The relations
between the harmonized satellite data and in situ albedo records
were then statistically compared to derive the coefficients for the
narrow to broadband conversion. These are referred to as narrow-
band to broadband conversion functions, which are optimized for
the GrIS ablation zone using the harmonized Landsat and S2
dataset.

Results

Surface reflectance transformation regression model

Regression models of the association of L7 and S2 with L8 data
are displayed in Figures 3 and 4, respectively. The paired observa-
tions generally have a linear relationship, but there is a spread of
data around the 1:1 line (white line in Figs 3 and 4). The time per-
iods used were of equal length, but the number of paired
resampled pixels (n in Figs 3 and 4) in the regression models of

S2 with L8 was nearly two orders of magnitude greater than for
L7 with L8 across all spectral bands. The triangular-shaped data
cloud is the result of the noise filter (Eqn (2)) and is most evident
in Figure 4, where more observations were available. A subset of
SR values for the L7 NIR band between 0.8 and 0.9 are not sen-
sitive to L8 (Fig. 3d). These pixel values are likely to be the con-
sequence of sensor saturation (Roy and others, 2016a). Similar
phenomena were observed in the green and red bands of L7,
although there were fewer saturated pixels, and the saturation
threshold was higher (aSR

band . 0.9). The SWIR 2 band of S2
saw a cluster of scattered data for SR values >0.7, but the corre-
sponding L8 SR values that are as low as 0.4 (Fig. 4f).

The regression models have different patterns for the
visible-near infrared (VIS-NIR) range (blue, green, red and
NIR) and shortwave infrared bands (SWIR1, SWIR2). Bands
(aSR

band) in the VIS-NIR range on L7 tend to underestimate the sur-
face reflectance compared to L8 (Figs 3a–d). This is also true for
the VIS-NIR bands of S2 and L8, as is indicated by the RMA
regression fits (Figs 4a–d, Table 1). The difference in SWIR
bands across sensors is generally minor (mean difference<0.02)
and the slopes of RMA regression are all close to, but are greater
than, 1.

The correlation coefficient (R) of most regression models is
>0.74, with significant p-values <0.0001 (Table I). The best fit
RMA and OLS line, red and black lines in Figures 3 and 4 respect-
ively, intersect at the mean of the plotted pixel values, which were

Fig. 3. Scatterplots of paired Landsat 8 OLI surface reflectance vs Landsat 7 ETM+ surface reflectance for the spectral bands of interest (left to right plot panels:
blue, green, red, NIR, SWIR1 and SWIR2). All the paired pixels acquired between May and September 2019 in the aoi were resampled to 600 m. Extracted pixel values
of L8 were compared against L7 by both OLS regression model (red line) and RMA regression model (black line). The 1:1 reference line is white. The colorbar shows
the log-transformed number of paired pixels of each selected spectral band. The total number of paired pixels (n) is shown in each plot. Histograms of the paired
pixel values and the response of the OLS and RMA regressions are shown in the panels below the respective plots.
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at high SR values (>0.6) in the VIS-NIR bands (Smith, 2009; Roy
and others, 2016a). The RMA slopes of SWIR bands are remark-
ably close to unity, apart from the SWIR1 band of L7 and L8. The
best fit RMA and OLS lines intersect at low SR values in the SWIR
bands. The intercepts of the RMA models are closer to zero across
all sensors. The RMA model assumes uncertainties exist both on
the predictor and the predictand variable (Smith, 2009; Friedman
and others, 2013), and therefore is more suitable for statistically
calibrating the SR data from different sensors compared to the
OLS model. The RMA band to band transformation was thus
used to generate a harmonized, consistent time series of
Landsat and S2 datasets.

Narrow to broadband conversion algorithm and albedo
validation

Evaluation of predicted albedo
Three different combinations of bands were tested to predict the
broadband albedo, each developed from the training datasets:
(1) Eqn (4) uses all available bands (αtotal); (2) Eqn (5) uses
four bands in the VIS-NIR range (αvis-nir) and (3) Eqn (6)
uses three bands in the visible range (VIS) (αvis). A reference
albedo was also calculated using the harmonized Landsat and
S2 dataset to help evaluate the performance of Eqns (4)–(6).
The reference algorithm Eqn (3) uses all available bands except
the green band (SR_B2, Fig. 1b) The model performances were

evaluated using the testing datasets and the results are shown in
Figure 5:

atotal = 0.8706 · ablue + 2.7889 · agreen − 4.6727 · ared

+ 1.6917 · anir + 0.0318 · aswir1 − 0.5348 · aswir2

+ 0.2438

(4)

avis-nir = 0.7963 · ablue + 2.2724 · agreen − 3.8252 · ared

+ 1.4143 · anir + 0.2053
(5)

avis = 1.4680 · ablue − 1.0160 · agreen + 0.1225 · ared

+ 0.0600
(6)

The model performances were evaluated using the testing
datasets and the results are shown in (Fig. 5). The predicted
albedo (Figs 5a–c) and the reference predicted albedo (Figs
5d, e) calculated from Eqn (3) are all quite linearly correlated
with the groundtruth albedo, with slopes close to the slope of
unity and intercepts close to zero. The scatterplot of reference
albedo (αref) against ground-truth albedo is more scattered
(Fig. 5e) because it is not optimized for snow and ice surfaces.

Fig. 4. Scatterplots of paired Landsat 8 OLI surface reflectance vs Sentinel 2 Level-2A surface reflectance for the spectral bands of interest (left to right plot panels:
blue, green, red, NIR, SWIR1 and SWIR2). All the paired pixels acquired between May and September 2020 in the aoi were resampled to 600 m. Extracted pixel values
of L8 were compared against S2 by both OLS regression model (red line) and RMA regression model (black line). The 1:1 reference line is white. The colorbar shows
the log-transformed number of paired pixels of each selected spectral band. The total number of paired pixels (n) is shown in each plot. Histograms of the paired
pixel values and the response of the OLS and RMA regressions are shown in the panels below the respective scatterplots.
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A few outliers appear when the AWS albedo is *0.85 with all
predicted albedos (Figs 5a–c, e). These high-albedo outliers
were all measured in the melt season, and could be caused by
fresh snowfall in the vicinity of AWS in the period (a time gap
of up to 1 h) between the acquisition time of the satellite image
and the recording at the AWS sensor. It could also be attributed
to the small footprints of the AWS albedometers recording loca-
lized snow patches in an otherwise larger, mostly snow-free local
as measured by satellite. The high AWS albedo outliers may also
be associated with cloud contamination during the given time
window.

The correlations between the predicted albedo and PROMICE
AWS albedo for the total bands model (Eqn (4), Fig. 5a) and
VIS-NIR bands model (Eqn (5), Fig. 5b) are highly significant
(p-values <0.0001), with R2 values both of ≥0.68. The R2 of the
visible band model (Eqn (6)) and the reference albedo αref (Eqn
(3)) are 0.58 and 0.53, respectively. The number of observations
(n) varies greatly depending on the different combinations of uti-
lized bands. The albedo estimated from the total bands (αtotal, Eqn
(4)) has the highest explanatory power (R2 = 0.69) but more than
half of the usable data is lost due to sensor saturation compared
with the αvis-nir and αvis models. Snow surfaces have higher vis-
ible albedo and lower NIR albedo (Liang, 2001), and αvis does not
take the NIR band into consideration. The latter might affect its
ability to predict albedo at albedos >0.7 (Fig. 5c).

There is a strong linear relationship between the MODIS
albedo (αmodis) and the PROMICE AWS albedo (R2 = 0.69,
Fig. 5d), but αmodis tends to overestimate albedo at lower values
(amodis & 0.4) as shown in Figure 5d. This is a known issue as
the pixel size of MODIS is too large to capture the highly hetero-
geneous nature of the ice surface albedo as the melt season pro-
gresses (Ryan and others, 2017). Stroeve and others (2013) also
found that the MODIS MCD43 albedo product was positively
biased (+0.022 on average) compared to in situ AWS data on
the GrIS. The predicted albedo products obtained from the har-
monized Landsat and S2 data do not have this bias (Figs 5a–c)
due to the improved spatial resolution. However, the daily cover-
age of MODIS albedo has an advantage over the albedo predicted
from the harmonized dataset as the number of observations (n =

9696) between the MODIS albedo and the matched PROMICE
AWS albedo is nearly one order of magnitude more than all the
other groups (Fig. 5).

The optimal narrow to broadband conversion algorithm can
be determined by finding both the best fit model and the best
band combinations. The different band combinations directly
affect the total number of usable observations (Figs 5a–c). It
helps to potentially increase the available number of observations
by using just the VIS-NIR spectral subsets (Ernst and others,
2018), since the data saturation mask in the SWIR bands
(SWIR1 and SWIR2) reduced the total amount of usable data
by more than 55%. However, further reducing the NIR band
does not help improve the model performance.
The combination of VIS-NIR bands yielded promising results
and allows the maximum utilization of the available data without
compromising the reliability of the albedo product. Hence, the
VIS-NIR narrow to broadband conversion formula (Eqn (5)) is
considered to be the optimal solution, explaining ∼68% of the
albedo variability, and is used to derive albedo in this new
product.

Point scale albedo at UPE_L station
An albedo time series, plotted as an orange line in Figure 6a, at
the location of PROMICE AWS UPE_L (Fig. 2) was extracted
to highlight the utility of the new product. The long time series
of harmonized albedo lies mostly within the range of 0.4–0.8.
The seasonal minimum albedo is relatively constant, usually
within the range at ∼0.4–0.5. The seasonal maximum values
have declined since 2013. This is most likely caused by the sensor
saturation mask, which removed invalid SR values. Bright sur-
faces, such as snow, may result in SR values >1, which are com-
putational artifacts (U.S. Geological Survey, 2021c). Cloud and
saturation-free observations (clear observations) acquired during
June–July–August (JJA) are marked as red dots in Figure 6c.
Only two data points are available outside JJA in the 2 year period
since the launch of L8 in 2013, highlighting the reduced frequency
of high-albedo values before the onset of the melt season (March
to May). The agreement between the satellite-derived albedo and
in situ measurement (blue line in Figs 6a, c) is generally good.

Table 1. Surface reflectance sensor transformation functions with the regression coefficients of each band to band regression model (OLS and RMA) are
summarized in the table

Band Regression type Regression coefficients Paired pixels count (n) R (P≪ 0.0001) RMSE Mean difference

Blue L7 vs L8 RMA L8 = 1.1017 ⋅ L7− 0.0084 87 023 0.80 0.1358 0.0656
L7 vs L8 OLS L8 = 0.8827 ⋅ L7 + 0.1510
S2 vs L8 RMA L8 = 1.0849 ⋅ S2 + 0.0210 7 093 591 0.80 0.1407 0.0842
S2 vs L8 OLS L8 = 0.8639 ⋅ S2 + 0.1855

Green L7 vs L8 RMA L8 = 1.0840 ⋅ L7− 0.0065 151 161 0.77 0.1286 0.0565
L7 vs L8 OLS L8 = 0.8395 ⋅ L7 + 0.1771
S2 vs L8 RMA L8 = 1.0590 ⋅ S2 + 0.0167 10 496 934 0.78 0.1249 0.0623
S2 vs L8 OLS L8 = 0.8262 ⋅ S2 + 0.1965

Red L7 vs L8 RMA L8 = 1.0610 ⋅ L7 + 0.0022 174 402 0.74 0.1325 0.0474
L7 vs L8 OLS L8 = 0.7877 ⋅ L7 + 0.2048
S2 vs L8 RMA L8 = 1.0759 ⋅ S2 + 0.0155 13 207 115 0.77 0.1308 0.0726
S2 vs L8 OLS L8 = 0.8246 ⋅ S2 + 0.2047

NIR L7 vs L8 RMA L8 = 1.2100 ⋅ L7− 0.0768 277 074 0.78 0.1432 0.0595
L7 vs L8 OLS L8 = 0.9487 ⋅ L7 + 0.0928
S2 vs L8 RMA L8 = 1.1583 ⋅ S2− 0.0693 32 157 181 0.85 0.1048 0.0483
S2 vs L8 OLS L8 = 0.9838 ⋅ S2 + 0.0604

SWIR1 L7 vs L8 RMA L8 = 1.2039 ⋅ L7− 0.0314 261 157 0.59 0.0361 −0.0135
L7 vs L8 OLS L8 = 0.7091 ⋅ L7 + 0.0119
S2 vs L8 RMA L8 = 1.0479 ⋅ S2− 0.0112 27 130 955 0.76 0.023 −0.0085
S2 vs L8 OLS L8 = 0.7917 ⋅ S2 + 0.0030

SWIR2 L7 vs L8 RMA L8 = 1.2402 ⋅ L7− 0.0022 367 345 0.78 0.0309 0.0115
L7 vs L8 OLS L8 = 0.9720 ⋅ L7 + 0.0130
S2 vs L8 RMA L8 = 1.0152 ⋅ S2− 0.0000 35 816 180 0.83 0.0206 0.0008
S2 vs L8 OLS L8 = 0.8410 ⋅ S2 + 0.0091

Also shown are the number of paired resampled 600 m pixels (n), the correlation coefficient R and the RMSE and the mean difference between aSR
band and aSRref

band .
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A frequency of ≥7 clear observations per year with a ratio of
the std dev. to the mean of acquisition date difference (data
irregularity) of ≤2.5 are recommended for robust time series of
Landsat data (Zhang and others, 2011). This is clearly not the

case for the time series shown in Figure 6a. The entire time series
is highly imbalanced. The data density does not meet the recom-
mended threshold (≥7 a−1) until the launch of L7 in 1999. The
availability of S2 data greatly increases the temporal resolution,

Fig. 5. Comparison and validation of broadband albedo products. Scatterplots of: (a) the predicted albedo (Eqn (4)) using all available bands (αtotal, R
2 = 0.69, n =

1704); (b) the predicted albedo (Eqn (5)) using VIS-NIR bands (αvis-nir, R
2 = 0.68, n = 3733); (c) the predicted albedo (Eqn (6)) using Visible bands (αvis, R

2 = 0.58, n =
3735); (d) snow albedo product from MOD10A1.006 (αmodis, R2 = 0.69, n = 9696) and (e) the reference predicted albedo (Eqn (3)) using the narrow to band conver-
sion algorithm (Liang, 2001; Liang and others, 2003; Naegeli and others, 2017) (αref, R2 = 0.53, n = 1704). All satellite-derived albedo datasets were extracted at a
scale of 90 m except MODIS, which was obtained at 500 m. The predicted albedo was compared against the corresponding PROMICE broadband albedo records
(y-axis in all plots). The red line is the linear regression model fit. The clear observations (n) for all three band combinations were split into training (67%) and
testing (33%) datasets. The performance of the reference albedo was evaluated using the same testing datasets as the total bands albedo model (a).

Fig. 6. Point scale time series analysis of harmonized satellite albedo at PROMICE AWS UPE_L (Fig. 2). (a) Time series of albedo from all available harmonized
satellite datasets and broadband albedo measurements at UPE_L station. (b) Histogram of harmonized data availability. The color of the bars changes when
Landsat 4/5 (blue), Landsat 7 (gray), Landsat 8 (green) and Sentinel 2 (orange) become available (Fig. 1a). The vertical scales for the period up to 2019 and
from 2019 onward are different. (c) Subset of the albedo time series (2011–2015). The start of Landsat 8 data acquisition (11 April 2013) is indicated by the
black dashed line. The derived albedo between June to August (JJA) is marked in red. (d) Subset of albedo time series for JJA 2020.
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as the frequency of clear observation approaches .100 a−1 from
2019 (Fig. 6b). We caution that data availability requires particu-
lar attention when analyzing long-term time series of albedo, such
as reported here.

Spatial comparison of harmonized and MODIS albedo
The spatial resolution of albedo products can make a substantial
impact on our understanding of the surface albedo dynamics. For
example, Figure 7 compares the harmonized satellite albedo prod-
uct (Fig. 7a) with the MODIS albedo product (Fig. 7b) near the
PROMICE AWS KAN_M, averaged for the period 15–31 July
2015. Tedstone and others (2017) note that 2015 was a year
with excessive snowfall before the onset of the melt season. The
general spatial pattern of both albedo products coincides, showing
bright ridges stretching from southeast to northwest. However,
the MODIS albedo imagery does not reflect the finer scale vari-
ability that the harmonized satellite albedo reveals. The latter
clearly demonstrates finer topographical impacts on ice surface
albedo, for example, variations along supraglacial melt channels,
allowing better quantification of small-scale local melt processes.

Albedo variations in the Dark Zone

Maximum extent of Dark Zone
The area of the GrIS Dark Zone can be quantitatively defined by
determining the area below a particular albedo threshold.
Threshold values in other studies have varied from 0.4 to 0.53.
Oerlemans and Vugts (1993) and Wientjes and others (2011)
found the average in situ albedo from a site in the Dark Zone
was ∼0.41, whereas >0.53 was considered to be brighter ice.
Shimada and others (2016) delineated the extent of dark ice by
using an arbitrary threshold on a single MODIS surface reflect-
ance band (a0.62−0.67mm , 0.4), while Tedstone and others
(2017) suggested (a0.62−0.67mm , 0.45) would be more appropri-
ate for capturing dark ice pixels. Here, we follow Tedstone and
others (2017) and use a threshold of 0.45 (avis-nir , 0.45). We
define the maximum area of the Dark Zone as the sum of the
areas of pixels with a minimum albedo of <0.45 in July and
August. There is an imbalance in data availability across the
time series (Zhang and others, 2011), due to the limitation of
the low frequency of Landsat images (Fig. 6b) prior to the launch
of L7. Consequently, the duration of dark ice pixels before 1999 is
difficult to estimate.

The imbalanced data availability creates challenges in the ana-
lysis and interpretation of time series. The temporal coverage
becomes progressively denser as the time series progresses and
newer satellites, with improved sensors aboard, become available.
Multi-year aggregated values (1984–90, 1991–95, 1996–2000) of
albedo were used in the period with less frequent imagery to
address this issue. The maximum extent of the Dark Zone before
2001 was determined by finding the minimum aggregated albedo
of each period that was <0.45 in an attempt to minimize gaps in
the time series.

The time series of the Dark Zone’s maximum area shows that
there have been three distinct stages (Fig. 8). The first stage
(1984–2004) shows an area that is relatively low, with an average
maximum extent of 2900 km2. None of the individual images that
were used to produce the aggregated data had anomalously large
surface areas. The Dark Zone rapidly expanded, approximately
tripling in area, during the second stage, from 2005 to 2007,
which coincides with the cumulative GrIS mass balance changing
from close to zero to increasingly negative (Shepherd and others,
2020). The maximum extent of the Dark Zone is more stable
again in the third stage (2008–20), with a mean annual area of
8300 km2, some 280% that of the average value from 1984 to
2004. The satellites in operation during the transition were L5

and L7 (Fig. 1a), and the increase in the area of the Dark Zone
cannot be an artifact of either harmonization or of satellite
change. Inter annual variations persist, but there’s no clear
trend. The Dark Zone contracted during 2015 to below 2500
km2, as a consequence of increased mass accumulation.
Increased snowfall in late winter and spring that delayed the even-
tual exposure of surface ice (Tedstone and others, 2017). The
impact of the later winter snowfall is also evident in the albedo
map at the KAN_M station (Fig. 7), where it was still surrounded
by high-albedo snow surfaces in late July 2015.

The definition of the Dark Zone relies on a single July and
August minimum albedo threshold. This definition is sensitive
to short-term darkening events that the increased frequency of
S2 SR imagery has revealed since 2019. The great improvement
in data frequency results in an apparent increase in maximum
extent of the Dark Zone of ∼5000 km2 in 2020–21 (Fig. 8).

Albedo trend of Dark Zone
Albedo trends can be detected at both the point scale and the
regional scale with the harmonized Landsat and S2 datasets. An
example of point scale albedo trend analysis is given in Figures
9a–c, which shows the albedo anomalies in July and August
2005–20 at three PROMICE AWSs, UPE_L, KAN_M and
NUK_L (Figs 9a–c). The albedo anomaly was calculated by sub-
tracting the 20 year (1984–2004) average albedo in July and
August from the individual albedo measurements. Negative and
positive anomalies represent darker and lighter than average,
respectively. The three stations all lie on the western margin of
the GrIS (Fig. 2) and are scattered from north to south, with
UPE_L close to the northern edge of the Dark Zone.

The albedo anomalies at the three sites vary. Those at UPE_L
are below or close to zero for the first 2 years (2005–06), and then
gradually increase in the following years (Fig. 9a). The cumulative
sum curve of monthly anomalies reversed about 2012 (Fig. 9d).
Ice loss rate from the GrIS decreased after reaching a peak in
2012, due to changes in atmospheric circulation, which resulted
in lower temperatures and increased precipitation (Shepherd
and others, 2020). There are only limited observations of the har-
monized satellite albedo at KAN_M, where the ice surface is dar-
ker than the baseline most of the time. Hence, the majority of
anomalies are <0 (Fig. 9b). Caution is needed in interpretation
of these data, because the baseline may be biased due to the
low data frequency from 1984 to 2004. The scatter in the range
of anomalies increases after the marked darkening in 2016. It
has progressively become darker over time with a darkening
rate of ∼−0.0003 a−1. The mean of the albedo anomalies at
NUK_L is below zero (Fig. 9c). The average lowering of albedo
(Fig. 9d) at the NUK_L site is less than KAN_M (−0.0002 a−1).
This point scale study reveals that albedo change is highly variable
in space and time, and that the harmonized satellite albedo prod-
uct allows the inspection of the spatial and temporal variability of
albedo at unprecedented resolution.

A final example of the utility of the harmonized albedo prod-
uct is an examination of whether the Dark Zone is progressively
darkening over time. Figure 10 shows that the average annual
minimum albedo of the Dark Zone during July and August,
defined by the albedo threshold αvis-nir < 0.45, has been declining
gradually over time (Fig. 10). The darkening rate is
∼−0.0006+ 0.0004 a−1 between 2001 and 2020. However, the
darkening is not spatially uniform across the Dark Zone.

Figure 11a shows the spatial cumulative albedo anomalies
across the Dark Zone. The region of interest (shadowed area in
Fig. 11g) was restricted to the latitude between 63◦ N and 71◦

N, which was adopted from Wientjes and others (2011) and
Ryan and others (2018) and adjusted by visual examination of
the albedo product. The ice mask was obtained from GIMP
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(Howat and others, 2014) but small glaciers not connected with
the GrIS were excluded. Negative trending albedo anomalies
denote darkening and are mostly observed in the northern and
central Dark Zone, north of �66◦ N. The northeastern edge of
the Dark Zone shows a darkening trend with a cumulative albedo
anomaly of ∼−3. The southern and the most northern parts of
the Dark Zone, by contrast, exhibit slight brightening with cumu-
lative albedo anomalies that are slightly positive.

The extent of the Dark Zone is highly variable, both spatially and
temporarily (Fig. 8), and hence the occurrence of the dark ice also
evolves over time (Figs 11b, c, f). The frequency of dark ice occur-
rence is calculated by normalizing the number of years with annual
albedo minima <0.45 (July–August) to the total number of years
with valid observations (number of clear observations >0). This is
to exclude the potential data gaps (see the section on narrow to
broadband conversion results). The occurrence of dark ice between
2005–20 is higher in the center of the Dark Zone, where ice
becomes persistently dark (Fig. 11c), while more than half (59%)
of the surrounding ice areas have a dark frequency <0.5. The
Dark Zone is relatively small in the first stage (1984–2004), and

the frequency of dark ice (1984–2020) is lower compared to
2004–20 (Fig. 11f). The Mann–Kendall’s test is a non-parametric
rank correlation test for trend detection (Mann, 1945; Kendall,
1975; Morell and Fried, 2009), and is commonly used in time series
analysis of geospatial data. A positive tau value corresponds to an
increasing trend over time and a negative tau value corresponds
to a decreasing trend. Figure 11e shows a darkening trend in the
periphery of the Dark Zone and is close to neutral in the center.
However the trends are not statistically significant (p < 0.05) for
the majority of pixels, perhaps due to imbalanced data density in
our harmonized dataset. This emphasizes the importance of tem-
poral resolution of the utilized dataset in time series analysis.

Discussion

We have produced a harmonized time series of albedo variations
on the GrIS from 1984 to 2020. The data harmonization was
achieved by cross calibrating L4–L7 and S2 spectral bands to L8
SR bands using band to band regression coefficients. The RMA
regression model was chosen for the cross-sensor transformation
functions because it was computationally less intensive, yet still
sufficient for harmonizing the Landsat and S2 image collections.
The narrow to broadband conversion algorithm was built by
regression analysis of harmonized satellite data and in situ albedo
measurements from PROMICE AWS. The conversion algorithm
was built with VIS-NIR bands (Eqn (5)) and outperforms other
models and reference albedo products. The time series of derived
albedo enables us to investigate albedo dynamics at both point
and regional scales.

Data density

One of the issues that limits quantitative analysis of the variations
is the non-uniform availability of clear observations, which results

Fig. 8. Annual maximum extent of the GrIS Dark Zone (defined by αmin < 0.45 for each
year). Multi-year aggregated time series (1984–90, 1991–95, 1996–2000) of albedo was
used in the period with less frequent imagery. Area differences arise due to the avail-
ability of S2 imagery, which are shown by orange dots.

Fig. 7. Maps of albedo at PROMICE AWS KAN_M station: (a) harmonized satellite albedo (30 m resolution) and (b) MODIS albedo (MOD10A1.006, 500 m resolution).
The location of the KAN_M station is shown by the red dot. Both maps show the average albedo between 15 and 31 of July 2015.
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in gaps in the time series (Zhang and others, 2011). For example,
the Landsat dataset is affected by sensor saturation, cloud masking
(Ernst and others, 2018; Zhu, 2019) and the scan line error on L7
ETM+ (Maxwell and others, 2007; Chen and others, 2011; Zhu
and others, 2015b), which may confound simple band to band
regression and the time series analysis of albedo. One way of deal-
ing with time series data with irregular data density is to aggregate
a longer time span of data for periods with fewer available images.

The improved radiometric resolution of L8 OLI and Landsat 9
(L9) reduces the error caused by saturation over snow (Wang and
others, 2016; Masek and others, 2020). However, the saturation
bitmask of Landsat and S2 still masks out large areas of inland
Greenland where albedo is high (Fig. 11g).

The temporal coverage of L8 and S2 substantially improves the
monitoring ability and enables us to capture the seasonal evolu-
tion of albedo. The temporal resolution of Landsat and S2
when combined is .100 a−1. Recently released Landsat
Collection 2 data are used, and there is also scope for the incorp-
oration of L9 data in future. All Landsat data acquired from 2022
will be processed and available only in Collection 2 (Masek and
others, 2020).

Data harmonization

Harmonization of the surface reflectance products of Landsat
Collection 2 and S2 is achieved by using statistical sensor trans-
formation functions optimized for ice/snow. This allows us to
generate a consistent long time series of satellite observations

that can be applied to a wide range of applications in glaciological
remote sensing. The processing procedures are mostly adapted
from Roy and others (2016a) and adjustments were made to
account for the high spatial and temporal variability of snow-
and ice-covered surfaces.

The band to band regression (Figs 3, 4) is more scattered in
comparison to the analysis of mid-latitude areas (Roy and others,
2016a). The time window of pairing the reference SR band
(aSRref

band ) and the matched target SR data (aSR
band) is 24 h. The ice

surface is highly dynamic during the melt season and the paired
pixel values are more dispersed due to the rapid changes within
the 1 d time window. The cross-sensor comparison of SR values
reveals that L8 is generally higher than L7 and S2 across all
bands. The spectral conversion function that harmonizes the
SWIR1 band from the L4–L7 to the L8 has a lower R value
(0.59). Therefore, special attention needs to be given to the har-
monization of Landsat TM/ETM+ SWIR1 dataset.

The regression fits would have zero intercepts and all data
points would reside on the 1:1 reference line if the sensors were
identical and images were acquired at the same time (Roy and
others, 2016a). However, sensors do not make simultaneous mea-
surements and the difference between acquisition time can be up
to 24 h. Hence, the band to band regressions are not forced
through 0 due to the cross-sensor differences.

Sensor saturation still persists on the VIS-NIR bands in the
pixel-by-pixel analysis of Landsat data after the saturation mask
is applied (Fig. 3). The bitmask that comes with Landsat’s
QA_RADSAT is insufficient to fully exclude the influence of
radiometric saturation, but it is as adequate because the saturated
pixels at higher SR values (>0.8 or >0.9) was just a small fraction
of the total usable data. The impact of sensor saturation is mini-
mized in the comparison of S2 and L8 (Fig. 4) due to the similar-
ity in their absolute radiometric resolution (Pahlevan and others,
2018).

Narrow to broadband conversion

The narrow to broadband conversion formulas were built from
the relations between the satellite pixel values and in situ albedo
measurements. The predicted albedo from these algorithms
(Eqns (4–6)) were compared to the MODIS albedo product
(MOD10A1.006) and a broadband estimation algorithm from

Fig. 9. Albedo anomalies in July and August (2005–20) at three PROMICE AWSs: (a) UPE_L (72.8932, −54.2955, 220 m a.s.l.); (b) KAN_M (67.0670, −48.8355, 1270 m
a.s.l.) and (c) NUK_L (64.4822, −49.5358, 530 m a.s.l.). The albedo anomaly is calculated by subtracting the 20 year (1984–2004) average albedo in July and August
from individual values. Linear trend lines are shown. The data are instantaneous for subfigures a–c. The cumulative monthly albedo anomalies are displayed in the

bottom right (d).

Fig. 10. Annual variability of the minimum albedo in July–August recorded within the
Dark Zone (2001–20). The aoi is shown in Figure 11. The linear fitting (slope: −0.0006
± 0.0004, p− value = 0.16) line is also illustrated.
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the literature (Eqn (3)). The validation with in situ measurement
is good, with R2 > 0.68 for total and VIS-NIR band models (Eqns
(4)–(5)). The optimal narrow to broadband conversion algorithm
took both the model performance and data density issues into
account. The algorithm that utilizes the VIS-NIR bands alone
(Eqn (5)) was chosen since it allows the utilization of more of
the available datasets (Fig. 5) (Ernst and others, 2018) without
compromising the reliability of the derived albedo. A key benefit
is that more clear observations have become available (Ernst and
others, 2018) and are not lost due to data saturation on the
SWIR1/2 bands.

The spatial window size for extracting the time series dataset at
the point scale is of vital importance (Pahlevan and others, 2018).
It has a direct impact on the capacity of satellite data to reveal
local scale surface processes. The higher spatial resolution of
Landsat and S2 helps overcome the overestimation of albedo
from satellite images with coarser resolution, for example, the
overestimation of albedo below 0.4 by the MODIS albedo product
(Fig. 5). A 90 m spatial window (equivalent to 3 by 3 Landsat pix-
els or 9 by 9 S2 pixels in the VIS-NIR bands) was used to extract
the pixel values for generating the point scale albedo. We note
that seasonal analysis may require a change in the window size
as the homogeneity of ice surface albedo varies significantly dur-
ing the melt season.

Uncertainties in the albedo validation may arise from the
groundtruth observations. The PROMICE AWS albedo measure-
ments were used as ‘absolute’ groundtruth data in training the
narrow to broadband conversion algorithm and the albedo valid-
ation. The mismatch between the spatial resolution of the satellite
imagery and the footprint of the local AWS sensor can affect the

validation of the albedo product (Stroeve and others, 2006; Ryan
and others, 2017). How representative the ice surface near the
AWS is would also affect the performance of the albedo product
(Fig. 7).

Time series analysis of albedo dynamics

The evolution of the maximum extent of the Dark Zone on the
GrIS has undergone three different stages. On average, the max-
imum area of the Dark Zone during the third stage (2008–20)
was �280% larger compared to the first stage (1984–2004). The
second transitional stage coincides with a period when the cumu-
lative surface mass balance (SMB) of the GrIS changed from being
in a state of balance to increasingly negative, driven by oceanic
and atmospheric warming (Shepherd and others, 2012, 2020).
However, the subsequent variations in the SMB are not matched
by variations in the extent of the Dark Zone. Instead, the max-
imum extent of the Dark Zone has remained relatively stable
since the last expansion in 2005–07. A clear trend in the spatial
coverage was not found in the inter-annual variations after the
expansion, even though the mass loss rate of GrIS peaks in
2012 and has declined since (Shepherd and others, 2020).

There have been dramatic inter-annual variations in the extent
and persistence of the Dark Zone during the past two decades,
which can be seen in MODIS albedo products (Shimada and
others, 2016; Tedstone and others, 2017). The Dark Zone area
estimated from MODIS expands during 2007, 2010, 2011, 2012,
2014 and 2016 (Tedstone and others, 2017). This is in good agree-
ment with our findings (Fig. 8), with only one exception in 2011.
The minimum area of the Dark Zone in the third stage occurred

Fig. 11. Time series analysis of the Dark Zone on the GrIS. The cumulative monthly albedo anomalies were calculated using the monthly average albedo of July and
August from 2005 to 2020 (a). The occurrence of dark ice shows how frequently an area gets dark in 2005–20 (b). The classification map of occurrences (c) is based
on the threshold listed in the top right chart (d). The pie chart (d) summarizes the area comparison of each occurrence class. The Mann–Kendall’s tau value of the
albedo acquired in July and August 1984–2020 (e) shows the trend in albedo change. The overall occurrence of dark ice including the first stage (1984–2020) is
shown in (f). The study area was highlighted on the base map of average albedo (g) in July–August 2015.
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in 2015 (Fig. 8), and was linked with delayed exposure of bare ice
due to the increased snowfall events and mass accumulation
before the onset of the melt season (Tedstone and others,
2017). However, the definition of the Dark Zone using a single
annual minimum albedo threshold is sensitive to the frequency
of satellite observations. The revisiting time of Landsat is 16 d
(8 d with two Landsat satellites) may not be able to capture the
short-term (<8 or <16 d of Landsat’s revisiting time) darkening
event, whereas the combination of Landsat and S2 has a higher
temporal resolution (3–5 d). The increased frequency of data col-
lection resulted in the Dark Zone apparently expanding by ∼5000
km2 larger in comparison with the Landsat alone estimate. The
optimal Dark Zone definition likewise must vary depending on
the temporal and spatial resolution of the available data.
Therefore, a single canonical value is likely less appropriate
than case-use specific definitions. The threshold we applied is a
compromise between the empirical albedo value from the litera-
ture and the imbalanced data density of available satellite imagery.

The surface ice in the Dark Zone is darkening on average at a
rate of �−0.006 decade−1. He and others (2013) reported an
albedo decline at a rate of −0.028+ 0.008 decade−1 but this
rate of decline is for the entire GrIS. The decline in albedo is
higher because areas where ablation zone is annually expanding
are included, so capturing the large decline in albedo when the
mean summer ice surface is transiting from snow to bare ice.
Our lower rate is derived only from the albedo of bare ice in
the Dark Zone, defined with an upper threshold albedo of 0.45,
and is the average of the annual minimum albedo of all the
dark ice pixels.

The observed albedo trends vary geographically across the
Dark Zone. Overall the northeastern and central Dark Zone
showed a negative trend (cumulative albedo anomaly <−3), com-
pared to the southern region, where there is at best a slight
increase (cumulative albedo anomaly >0) (Figs 9, 11). The dar-
kening of the bare ice surfaces on the GrIS is caused by changes
to the ice surface architecture and the presence of light absorbing
impurities (LAIs) consisting of mineral dust, and pigmented snow
and glacial ice algal cells (Stibal and others, 2017; Williamson and
others, 2020; McCutcheon and others, 2021). Ryan and others
(2018) demonstrated that these types of LAIs could account for
73% of the spatial variability of surface albedo in the Dark
Zone. The lowering of albedo due to the increased bare ice area
driven by the enhanced melt is more significant in the snow-
covered regions at higher elevations on the GrIS. Interplay
between these factors may explain the variations in albedo
dynamics observed along the Western coast.

Future work

The harmonized Landsat and S2 dataset makes it possible to ana-
lyze time series of albedo at high (30 m) resolution, allowing
research on, for example, topographical controls on albedo and
feedback with local melt rates. It also enables us to obtain albedo
data at sites where no in situ measurements are available. Our
dataset can be used to analyze long spatiotemporal trends in albedo
in glacier ablation zones, especially Greenland’s Dark Zone, because
the inter-sensor differences are accounted for by our calibrations.
This work provides the community with the first medium reso-
lution albedo product optimized for the ablating parts of the west-
ern part of the GrIS. The narrow to broadband conversion
algorithm for predicting albedo is not yet validated in other areas.
Future work could extend the analysis and validate the harmonized
albedo product in glaciated areas outside Greenland.

The potential impact of L7’s orbit drift after its final ‘inclin-
ation’ maneuver, to minimize the impact of declining fuel on
board, was not considered. The drift of orbit results in an earlier

acquisition time of imagery. Qiu and others (2021) determined
that images collected until 2020 are still reliable but L7 may grad-
ually lose its science capability from 2021 onward. Future data
harmonization of images captured from 2021 until when L7
phased out and replaced by L9 must correct the deviations caused
by the continuously earlier acquisition (local revisiting) time of
L7. Studies that require accurate absolute radiometric values
may also discard L7 data acquired since 2021.

A comparison of cloud mask algorithms found that Sen2Cor
performed poorest among selected cloud detection algorithms
(Tarrio and others, 2020). Hence, a better cloud mask should
be included in the current workflow in the future.

We took advantage of existing high level SR products, which
include cloud and pixel saturation masks. The invalid SR values
(>1), after applying the scale and offsets, are discarded as compu-
tational artifacts generated during the atmospheric correction
(U.S. Geological Survey, 2021c). The invalid data points are
mostly found in the high-albedo range where the sensor is sensing
over bright objects such as snow. More usable data would be avail-
able for monitoring fresh snow-covered areas (α > 0.8) by improv-
ing the atmospheric correction.

Snow and ice surfaces have unique BRDF shapes. The differ-
ences in solar and view zenith angles between Landsat and S2
demand BRDF modeling (Claverie and others, 2018). Many cur-
rent albedo remote-sensing products (Claverie and others, 2015;
Li and others, 2018) rely on the MODIS BRDF product
(MCD43A1.006). The coarser spatial resolution of MODIS may
introduce artifacts in the harmonized Landsat and S2 datasets
(Claverie and others, 2018). The c-factor BRDF normalization
uses fixed BRDF global coefficients to provide consistent view
angle corrections (Roy and others, 2016b). It has been implemen-
ted and evaluated in Landsat and S2 products (Roy and others,
2017; Claverie and others, 2018) and was suggested by Qiu and
others (2021) for correcting the L7 images affected by orbital
drift. However, the global coefficients were retrieved over a wide
range of land cover types excluding snow/ice-covered areas.
Therefore, greater errors might be introduced to Landsat and S2
without BRDF coefficients optimized for snow and ice surfaces.
We hope to develop the c-factor BRDF normalization optimized
for snow/ice surfaces in future work to address this issue.

Conclusions

A simple, pragmatic and efficient statistical approach was tested
and validated to harmonize Landsat surface reflectance (Level-2,
Collection 2, Tier 1) and Sentinel 2 Level-2A orthorectified atmo-
spherically corrected surface reflectance products from 1984 to
2020. An RMAlinear regression model was considered as the opti-
mal sensor transformation function to cross calibrate L4–L7 and
S2 to L8. The sensor transformation functions may find applica-
tions in a wide range of glaciological remote-sensing activities. A
narrow to broadband algorithm was derived from the relations
between PROMICE AWS albedo measurements and the harmo-
nized satellite data. The predicted albedo from the combination
of VIS-NIR bands outperformed other predicted albedo products
and the MODIS-derived albedo (MOD10A1.006). The long time
series of albedo was reconstructed by applying the optimal
narrow to broadband formula to harmonized satellite data. The
maximum extent of the Dark Zone increased dramatically during
a transition period (2005–07) and stabilized at ∼8000 km2 in
subsequent years, some 2.8 times the average maximum area
from 1984 to 2004. Albedo trends vary geographically across
the Dark Zone. The overall darkening rate in the Dark Zone is
�−0.0006+ 0.0004 a−1 in 2001–20. Future research is likely to
focus on incorporating more satellite data and validating the
albedo product in other areas. This product aids the analysis of
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small-scale local melt processes and understanding of the pro-
cesses driving albedo variations.

Data. The source codes for data processing, analysis and an image harmoniza-
tion tutorial are available at GitHub: https://github.com/fsn1995/Remote-Sensing-
of-Albedo (doi: 10.5281/zenodo.7642574). The data harmonization and narrow to
broadband conversion discussed in this paper are implemented in a webapp
(https://fsn1995.users.earthengine.app/view/albedoinspector, Appendix A Fig. 12).
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Appendix A. Web application: Albedo Viewer

The albedo viewer (Fig. 12) is a Google Earth Engine App (https://fsn1995.
users.earthengine.app/view/albedoinspector) that allows users to interactively
inspect the time series of albedo by clicking on the map. The basemap is
ArcticDEM (Porter and others, 2018) and users could load the satellite
image of natural color composite and the derived albedo from the time of
interest via the drop down button. The time steps of image mosaic can also
be adjusted. All maps are masked by the Greenland Mapping Project
(GIMP) (Howat and others, 2014). Albedo data can also be downloaded as
csv for point scale and geotiff for spatial analysis via the app.

Fig. 12. Web application: Albedo Viewer. The web application is an Earth Engine App. It allows users to interactively inspect time series of albedo from the location
of interest and load the albedo and the natural color composite satellite image from the time of interest. Basemap is ArcticDEM mosaic (Porter and others, 2018)
and maps are masked by the Greenland Mapping Project (GIMP) (Howat and others, 2014). Landsat 7 images acquired after 2020 are excluded from the analysis due
to the orbit drift issue.
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