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ABSTRACT. The fast dynamo acting in a turbulent flow explains the
origin of magnetic fields in astrophysical objects. Stellar cycles and
large—scale magnetic fields in spiral galaxies reflect the behaviour of a
mean magnetic field. Intermittent magnetic structures in clusters of
galaxies are associated with random magnetic field.

1. THE CONCEPT OF THE FAST DYNAMO

Astrophysics differs from the laboratory physics first of all by the
astronomical scale. It creates new qualities. One of them, a triumph of
plasma hydrodynamical motions over the molecular dissipation can explain
the origin of magnetic fields in many astrophysical bodies like stars and
galaxies.

The inductive action of motions has a characteristic time ¢/v, where
g and v are the scale and amplitude of the velocity field. A character-
istic dissipation time is g¢%/v,,, where Vv, is a magnetic diffusivity. The
dimensionless ratio of the times, {v/v,, called the magnetic Reynolds
number R, is very large for astrophysical conditions. For example, in the
solar convective shell it is 10%. The magnetic field appears to be practi-
cally frozen in the flow.

Frozenness of the magnetic field prevents a creation of new magnetic
lines needed for the field amplification in a regular flow, say, when the
streamlines lie on stationary surfaces. A finite R, gives the possibility
to create magnetic lines however a rate of the magnetic field growth is
very small at large R,, (the slow dynamo, Zeldovich and Ruzmaikin, 1980).

Fortunately, astrophysical flows are highly turbulent because the
Reynolds number at the same scale is also very large. In the highly con-
ducting flows the rate of magnetic field growth tends to a finite value
when R, goes to infinity. It may seem paradoxical but the complexity of
the flow simplifies the problem of magnetic field generation. The idea is
similar to that used in the central limit theorem of the probability
theory where a large number of random quantities results in appearance
of a regular mean arithmetic value and the normal distribution for
deviations from this value. In fact, random flow has a characteristic
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correlation time T (a memory time). During this time the random flow acts
on an initial magnetic field at a given fluid particle rather systemati-
cally turning the field by some angle and amplifying or weakeaning its
intensity. The resulting magnetic field can be considered as initial one
for the next independent step with the same duration T and so on. After
a large number of such steps one will obtain a product of independent
random operators acting on the initial magnetic field. The products can
acquire the very large values at some places of sufficiently big volume.
Moreover, it can be shown for some natural conditions imposed on the
velocity field that almost every product will grow when the number of
steps, i.e. the time, increases. However, each realization has its own rate
of growth so that the resulting magnetic structure becomes intermittent
(Molchanov et al., 1984).

By visual demonstration one may imagine a set of flux tubes distrib-
uted in the large volume. At some places the tubes expand, take the
eight form, and fold to double the field strength and the magnetic flux
through their cross—sections (Zeldovich's eight dynamo). At many other
places the parts of tubes with opposite field directions meet each other
giving rise to reconnections which destroy the tubes and diminish the
magnetic energy (Figure 1). All it takes place in a "well mixed" isotropic
random flow.

When the velocity field has a non zero correlation <v rotv> called a
magnetic helicity, the averaged, mean magnetic field can be excited. The
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Figure 1. A simple demonstration of the magnetic loop transformations
by random flow.
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regular components of the velocity field, for example a differential rota-
tion, also contribute to generation of this field.

Analysis of the mean magnetic field behaviour is very similar con-
ceptually to thermodynamics: everything from the turbulence is hidden in
the coefficients like turbulent viscosity and mean helicity (Moffatt, 1978;
Parker, 1979; Krause and Rédler, 1980). However, this "magnetic thermo-
dynamics" can give suprising results, for example the strange attractor
behaviour for the mean solar magnetic field which manifests itself in the
form of the Grand Minima in the solar activity (Ruzmaikin, 1981;
Zeldovich et al., 1983; Weiss et al., 1984).

In this short review only some aspects of the astrophysical dynamos
are considered in particular the role of the mean magnetic field in the
stellar activity cycles and the large—scale magnetic structures in spiral
galaxies. The "small-scale", intermittent magnetic fields are discussed in
application to the clusters of galaxies (Sokoloff et al., this volume).

2. STELLAR ACTIVITY CYCLES

One old astromoner once told me that first and foremost of astronomy are
the stars. Paying tribute to this point of view it is natural to start with
a role of magnetic field in stars.

Observations show that magnetic fields provide activity in stars and
also in the area around them. For a long time the solar activity cycle
was the only observed magnetic cycle. Measurements of H and K lines of
singly ionized calcium in a variety of late-type stars reveal cyclic
variations of the emission with the periods 7-12 years (Wilson, 1978;
Baliunas and Vaughan, 1985).

The mean magnetic field is self-excited in a stellar convective,
turbulent shell due to two sources: the mean helicity and differential
rotation. In spite of lack of a developed theory of turbulent convection
it is possible to make some crude estimates of distributions of the
sources.

According to the mixing—-length theory of the stellar convective zones
(Baker and Tamesvary, 1966) distribution of the turbulent diffusivity, v,,
is almost uniform. As shown by modern helioseismology the gradients of
the solar angular velocity, 0, are pronounced near the bottom of the
convective shell.

The mean helicity arises due to the action of rotation (through the
Coriolis force) on convecting stratified fluid. When the lifetime of the
main vortices, ¢/v, is shorter than the period of the rotation, 071!, i.e.
the Rossby number is large, the correlator a = —-t<v rotv> is approxi-
mately equal to £0. In the opposite case, for a small Rossby number, an
averaging over the rotation period gives a = v. The expected distribution
of the mean helicity along the depth of the convective zone is shown in
Figure 2. It is a very good hydrodynamical problem to calculate this
distribution more professionally.

After taking into account the condition vt = gv = constant one
obtains &pax = V(rmax) = 0!/2. Another important conclusion from Figure 2
is: the mean helicity maximum is shifted to the star surface for slowly
rotating stars, and it is near the bottom of the convective zone for the

https://doi.org/10.1017/5S0074180900189636 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900189636

86

[Xmax PR ]

I
Thottom Mmax RO

Figure 2. The schematic diagram of the mean helicity distribution in
stellar convective shell. The mean helicity reaches its maximum at a
radius r,,, where v is of the order of £q.

fast rotating stars. Thus, in the case of slow rotators the mean magnetic
field is generated by spatially separated sources (vQ and «), for the fast
rotating convective zones the field is excited by overlapping sources.

The intensity of the sources is characterized by the dimensionless
dynamo number:

D =a v0 R* yt~2 = 3/2 (1)

Solutions of the mean dynamo equations have the form of magnetic
waves. The period of the oscillations, which can be identified with the
observed stellar cycle period, differently depends on the dynamo number
in two above mentioned cases: T « D™2/3 « 9~! for the slowly rotating
stars, and T « In~! D (i.e. practically independent of the angular veloc-
ity) in the case of the fastly rotating stars of the same spectral type
(Kleeorin et al., 1983; Kleeorin and Ruzmaikin, 1988). This result can be
directly confronted with observations. Dynamo models for the stars of
different spectral types are considered by Belvedere et al. (1980).

Other manifestations of stellar activity are hot coronae observed in
X-rays. The most probable mechanism for the corona heating is associ-
ated with reconnections in magnetic loops detached from the magnetic
field generated in the star convective zone. Efficiency of the energy
release is proportional to 1072 B?/8T (Va/Lyigop) (Galeev et al., 1981).
According to a simple non-linear dynamo model, the magnetic field
amplitude is proportional to D/2, Combining this result with the scaling
law (1) one obtains

LX « B3 « 99/4 (2)
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(Kleeorin and Ruzmaikin, 1988). It is close to a 0% dependence (9/4 =
2 + 1/4) as pointed out by Pallavichini et al. (1981).

3. GEOMETRY OF THE GALACTIC DYNAMO

The only dynamo region we are living within is the Galactic one. It gives
a unique possibility for observers to study the velocity and magnetic
field distributions in the dynamo region and leaves no room for ambigu-
ous theoretical speculations.

Distributions of the gas angular velocity along the disk radius in
spiral galaxies, the rotation curves, are known from the 21 cm radio
observations. However, the distributions of the mean helicity are yet a
matter of theoretical speculations (Ruzmaikin et al., 1988).

It is a very important but not simple problem to find a way to
determine the mean helicity directly from the observed velocity field.

The shape of the galactic disk plays an important role in galactic
dynamos. In our Galaxy, for example, the disk cannot be considered as a
limiting case of an ellipsoid as soon as its meridional cross—section has a
hyperboloidal form, i.e. the thickness of the disk increases outside
(Figure 3). The dynamo models for an axisymmetric disk was studied in
detail (Ruzmaikin et al., 1988).

Figure 8. The shape of the gas disk in the Galaxy. The arrows show
directions for B., B, and circles for By components of the mean magnetic
field.

Observational discovery of global magnetic structures in a number of
spiral galaxies (see reviews Sofue et al., 1986; Beck, 1986; and M.
Krause, this volume) is an essential step in development of modern
astrophysics of galaxies. The main modes suggested by the observations
are the axisymmetric, m = 0, and bisymmetric, m = 1, ones. The dynamo
in an axisymmetric differentially rotating gas disk excites, as the first
preferable mode, the axisymmetric magnetic field. There are two galaxies,
M31 and IC 342, where the observed magnetic configurations are the axi-
symmetric ones. However, the structures in M81 and in M51 are the bi-
symmetric modes (M. Krause, this volume). These results are a challenge
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to theoreticians. It is necessary to leave the full axisymmetry of the
disk. Among the ways to do it there are: to take into account the spiral
structure, the tidal disturbances of the disk, ete.

An interesting observational problem is to determine a distribution of
B, component along the disk. The theory predicts the even symmetry (the
same signs over and under the disk) in the thin disk approximation. In
the central part of the galaxy this approximation does not work, and in
the thick disk here a dynamo probably will excite the odd mode of the
poloidal magnetic field as preferable. The observations evidence in favor
of the odd poloidal field in the central part of the Galaxy (Sofue et al.,
Reich, this volume).

The other interesting problem both from the observational and theo-
retical points of views is a study of magnetic fields in dwarf galaxies in
which the rotation almost uniform and a ratio of the tubulent and rota-—
tional velocities is much larger than in spirals (U. Klein, private com-
munication). LMC having many attractive features (R. Wielebinski, private
discussion) is a separate headache for the dynamo experts.

4. INTERMITTENT MAGNETIC FIELDS IN CLUSTERS OF GALAXIES

The non-thermal radio emission from several clusters of galaxies evidence
on the presence of magnetic fields in them. The origin of these fields is
discussed in detail in the recent paper by Ruzmaikin, Shukurov and
Sokoloff (1989), see also Sokoloff et al. (this volume).

The gas motions needed to generate the magnetic fields appear in the
turbulent wakes behind the galaxies moving through the cluster. Over-
lapping wakes give a picture of well developed turbulence of the
Kolmogorov type. For example, in the Coma cluster 150 galaxies moving
with a speed of about 103 km/s and having the initial wake radius
10 kpc can fill with this turbulence a volume of 300 kpc in size. A
turbulent velocity at the energy-range scale is of about 400 km/s. In the
Cygnus A cluster a number of galaxies observed is much less compared to
the Coma cluster. A careful analysis is needed to explain the origin of
turbulence here.

There is no mean helicity in the clusters of galaxies so that the
generation of the mean magnetic field is not possible. Instead the
turbulence generates the spatially and temporary intermittent magnetic
fields (see Section 1 and Figure 1). The field distribution can be
considered as relatively strong concentrated ropes of a skin-layer
thickness gR,~'/2, where g is a characteristic scale of the turbulence,
with a weak background field in between. A strength of the field in the
ropes can be estimated from the condition of equipartition betweeen the
magnetic and kinetic energy densities, Heq x 2 pG. A contribution of the
intermittent magnetic field to the line of sight Faraday rotation measure
is, of course, very small, <H2>1/2 % 0.2 pG.

The dynamo process to generate the intermittent magnetic fields is
surely acting in the high magnetic Reynolds plasmas in the convective
shells of stars (it may explain the origin of the starspots), in the
galaxies (to create small scale structures in the galactic magnetic field)
and in the astrophysical jets.
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KULSRUD: Is the root mean square field arising from dynamo action much
larger than the mean field? If it is, the back reaction of the field
becomes important before the mean_field becomes appreciable. Thus, the
dynamo theory should show (AB)2 « B2 to be effective.

RUZMAIKIN: Yes, it can be larger. The distribution of the fluctuative field
is typically intermittent, i.e. it concentrates into strong ropes or layers
with a large space between them. After averaging one obtains a low mean
field. To support this mean field a mean helicity is needed.
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