Toeplitz Algebras and Extensions of Irrational Rotation Algebras

Efton Park

Abstract. For a given irrational number θ , we define Toeplitz operators with symbols in the irrational rotation algebra \mathcal{A}_{θ} , and we show that the C^* -algebra $\mathcal{T}(\mathcal{A}_{\theta})$ generated by these Toeplitz operators is an extension of \mathcal{A}_{θ} by the algebra of compact operators. We then use these extensions to explicitly exhibit generators of the group $KK^1(\mathcal{A}_{\theta}, \mathbb{C})$. We also prove an index theorem for $\mathcal{T}(\mathcal{A}_{\theta})$ that generalizes the standard index theorem for Toeplitz operators on the circle.

Let \mathbb{T} denote the unit circle equipped with Haar measure, let $H^2(\mathbb{T})$ be the subspace of $L^2(\mathbb{T})$ consisting of functions that have a holomorphic extension to the unit disk, and let $P: L^2(\mathbb{T}) \to H^2(\mathbb{T})$ be the orthogonal projection. The elements of $L^{\infty}(\mathbb{T})$ act on $L^2(\mathbb{T})$ by multiplication, and for f in $L^{\infty}(\mathbb{T})$, the operator $T_f =$ $Pf: H^2(\mathbb{T}) \to H^2(\mathbb{T})$ is called the Toeplitz operator with symbol f. These operators have been extensively studied by many researchers, and Toeplitz operators give rise to interesting C^* -algebras by taking a C^* -subalgebra \mathcal{A} of $L^{\infty}(\mathbb{T})$ and looking at the C^* -subalgebra $\mathcal{T}(\mathcal{A})$ of $\mathcal{B}(H^2(\mathbb{T}))$ generated by the set $\{T_f: f \in \mathcal{A}\}$.

Another collection of C^* -algebras that has attracted a great deal of attention are the irrational rotation algebras. Given an irrational number θ , we define \mathcal{A}_{θ} in the standard way: let V_{θ} be the unitary operator on $L^2(\mathbb{T})$ defined by $(V_{\theta}f)(z) = f(e^{-2\pi i\theta}z)$, and take \mathcal{A}_{θ} to be the C^* -subalgebra of $\mathcal{B}(L^2(\mathbb{T}))$ generated by $C(\mathbb{T})$ and V_{θ} .

In this paper we construct extensions of \mathcal{A}_{θ} by considering the C^* -algebra generated by a class of generalized Toeplitz operators. Specifically, for each X in \mathcal{A}_{θ} , define $T_X = PX \colon H^2(\mathbb{T}) \to H^2(\mathbb{T})$, and let $\mathcal{T}(\mathcal{A}_{\theta})$ denote the C^* -subalgebra of $\mathcal{B}(H^2(\mathbb{T}))$ generated by the set $\{T_X : X \in \mathcal{A}_{\theta}\}$. We begin our study of these Toeplitz operators by showing that the norms of T and X are equal, which generalizes a classical result about Toeplitz operators. Next, we show that $\mathcal{T}(\mathcal{A}_{\theta})$ is an extension of \mathcal{A}_{θ} by the algebra of compact operators, and that $KK^1(\mathcal{A}_{\theta}, \mathbb{C})$ is generated as a group by this extension and a pullback of the corresponding extension of $\mathcal{A}_{-\theta}$ by the compacts. Finally, we consider the index theory of $\mathcal{T}(\mathcal{A}_{\theta})$. It is well known that an element T in $\mathcal{T}(C(\mathbb{T}))$ is Fredholm if and only if its symbol is invertible, and in this case, the index of T equals minus the winding number of its symbol; we generalize this theorem to operators in $\mathcal{T}(\mathcal{A}_{\theta})$.

Proposition 1 For all X in A_{θ} , $||T_X|| = ||X||$.

Received by the editors October 24, 2003; revised August 30, 2004.

AMS subject classification: Primary: 47B35; secondary: 46L80.

Keywords: Toeplitz operators, irrational rotation algebras, index theory.

[©]Canadian Mathematical Society 2005.

Proof Obviously $||T_X|| \leq ||X||$. To obtain the reverse inequality, consider $X \in A_\theta$ of the form

$$X = \sum_{k=m}^{M} \sum_{l=n}^{N} a_{kl} z^{k} V_{\theta}^{l}.$$

Fix $\epsilon > 0$, and choose $\rho = \sum_{j=r}^{R} c_j z^j$ in $L^2(\mathbb{T})$ such that $\|\rho\|_2 = 1$ and $\|X\rho\|_2 > \|X\| - \frac{\epsilon}{2}$. Then

$$\begin{split} X\rho &= \left(\sum_{k=m}^{M}\sum_{l=n}^{N}a_{kl}z^{k}V_{\theta}^{l}\right)\left(\sum_{j=r}^{R}c_{j}z^{j}\right) \\ &= \sum_{k=m}^{M}\sum_{l=n}^{N}\sum_{j=r}^{R}a_{kl}c_{j}e^{-2\pi i lj\theta}z^{k+j} \\ &= \sum_{h=m+r}^{M+R}\left(\sum_{l=n}^{N}\sum_{j=r}^{R}a_{(h-j)l}c_{j}e^{-2\pi i lj\theta}\right)z^{h}, \end{split}$$

whence

$$||X\rho||_{2}^{2} = \sum_{h=m+r}^{M+R} \left| \sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j)l} c_{j} e^{-2\pi i l j \theta} \right|^{2}.$$

A similar computation shows that for every natural number *q*,

$$\|X(\rho z^{q})\|_{2}^{2} = \sum_{h=m+r}^{M+R} \left| \sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j)l} c_{j} e^{-2\pi i l(j+q)\theta} \right|^{2}$$
$$= \sum_{h=m+r}^{M+R} \left| \sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j)l} c_{j} e^{-2\pi i lj\theta} \left(e^{-2\pi i q\theta} \right)^{l} \right|^{2}$$

By choosing q so that $q\theta$ is sufficiently close to an integer, we can make $(e^{-2\pi i q\theta})^l$ close to 1 for all $n \leq l \leq N$. Therefore, there exists a natural number q so that $||X(\rho z^q)||_2 > ||X\rho||_2 - \frac{\epsilon}{2}$. Furthermore, we can choose an arbitrarily large value of q with this property. For q sufficiently large,

$$||T_X(\rho z^q)||_2 = ||PX(\rho z^q)||_2 = ||X(\rho z^q)||_2,$$

and because $\|\rho z^q\|_2 = \|\rho\|_2 = 1$,

$$||T_X|| \ge ||T_X(\rho z^q)||_2 = ||X(\rho z^q)||_2 > ||X\rho||_2 - \frac{\epsilon}{2} > ||X|| - \epsilon.$$

Therefore $||T_X|| \ge ||X||$, and the continuity of the norm implies that this inequality holds for all *X* in A_{θ} .

Toeplitz Algebras and Extensions of Irrational Rotation Algebras

Theorem 2 There is a short exact sequence

 $0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T}(\mathcal{A}_{\theta}) \xrightarrow{\sigma} \mathcal{A}_{\theta} \longrightarrow 0,$

where \mathcal{K} denotes the algebra of compact operators and σ has the property that $\sigma(T_X) = X$ for all X in \mathcal{A}_{θ} .

Proof Because the Toeplitz algebra $\mathcal{T}(C(\mathbb{T}))$ contains \mathcal{K} as an ideal, so does $\mathcal{T}(\mathcal{A}_{\theta})$. Define a map $\xi \colon \mathcal{A}_{\theta} \to \mathcal{T}(\mathcal{A}_{\theta})/\mathcal{K}$ by the formula $\xi(X) = T_X + \mathcal{K}$. Clearly ξ is *-linear, and Proposition 1 implies that ξ is continuous. The commutator [P, f] is compact for each f in $C(\mathbb{T})$ [Do, Proposition 7.12] and it is easy to check that $[P, V_{\theta}] = 0$. Thus [P, X] is compact for all X in \mathcal{A}_{θ} , and therefore ξ is an algebra homomorphism. The image of ξ contains all the cosets $T_X + \mathcal{K}$, whence ξ is surjective. Furthermore, \mathcal{A}_{θ} is simple, so ξ is injective as well. We can therefore define $\sigma \colon \mathcal{T}(\mathcal{A}_{\theta}) \to \mathcal{A}_{\theta}$ as $\xi^{-1}\pi$, where $\pi \colon \mathcal{T}(\mathcal{A}_{\theta}) \to \mathcal{T}(\mathcal{A}_{\theta})/\mathcal{K}$ is the quotient map, and the short exact sequence follows.

Corollary 3 For each natural number n, there is a short exact sequence

 $0 \xrightarrow{\quad \sigma \quad} \mathfrak{K} \xrightarrow{\quad \sigma \quad} \mathrm{M}\left(n, \mathfrak{T}(\mathcal{A}_{\theta})\right) \xrightarrow{\quad \sigma \quad} \mathrm{M}\left(n, \mathcal{A}_{\theta}\right) \xrightarrow{\quad \sigma \quad} 0,$

where σ has the property that $\sigma(T_X) = X$ for all X in $M(n, A_\theta)$.

Proof Tensoring through by $M(n, \mathbb{C})$ preserves exact sequences, and

$$\mathbf{M}(n,\mathcal{K})\cong\mathcal{K}.$$

Corollary 4 An operator T in $M(n, T(A_{\theta}))$ is Fredholm if and only if $\sigma(T)$ is invertible.

Proposition 5 For each irrational number θ , $K_0(\mathfrak{T}(\mathcal{A}_\theta)) \cong K_0(\mathcal{A}_\theta) \cong \mathbb{Z} + \theta\mathbb{Z}$ and $K_1(\mathfrak{T}(\mathcal{A}_\theta)) \cong \mathbb{Z}$.

Proof Apply the *K*-theory six-term exact sequence to the short exact sequence from Theorem 2. The operator T_z is in $\mathcal{T}(\mathcal{A}_{\theta})$ and has index minus one, so the index map $\partial : K_1(\mathcal{A}_{\theta}) \to K_0(\mathcal{K})$ is surjective. The desired results follow from the facts $K_0(\mathcal{A}_{\theta}) \cong \mathbb{Z} + \theta\mathbb{Z}$ and $K_1(\mathcal{A}_{\theta}) \cong \mathbb{Z} \oplus \mathbb{Z}$ [Da, Example VII.5.2].

The short exact sequence in the statement of Theorem 2 defines an element $[\mathcal{T}(\mathcal{A}_{\theta})]$ of $KK^1(\mathcal{A}_{\theta}, \mathbb{C})$, and it is natural to ask about other elements of this group. By the universal coefficient theorem [RS, Theorem 1.17], there is an isomorphism $\gamma: KK^1(\mathcal{A}_{\theta}, \mathbb{C}) \to \text{Hom}(K_1(\mathcal{A}_{\theta}), \mathbb{Z})$, and $\text{Hom}(K_1(\mathcal{A}_{\theta}), \mathbb{Z})$ is in turn isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$. Let $\delta: KK^1(\mathcal{A}_{\theta}, \mathbb{C}) \to \mathbb{Z} \oplus \mathbb{Z}$ be the composition of these two isomorphisms. Then $\delta[\mathcal{T}(\mathcal{A}_{\theta})] = (\text{index } T_z, \text{ index } T_{V_{\theta}}) = (-1, 0).$

We construct another element of $KK^1(\mathcal{A}_{\theta}, \mathbb{C})$ in the following way. From [Da, Corollary VI.5.3 and Theorem VI.1.4] we know that for each irrational number θ ,

uiz Aigeoras ana Extensions of Irrational Rotation Aige

there is a C^* -algebra isomorphism $\mu: \mathcal{A}_{\theta} \to \mathcal{A}_{-\theta}$ such that $\mu(V_{\theta}) = z$ and $\mu(z) = V_{-\theta}$; obviously these two facts completely determine μ . From Theorem 2 we have a short exact sequence

$$0 \xrightarrow{\quad \sigma \quad} \mathcal{K} \xrightarrow{\quad \sigma \quad} \mathcal{I}(\mathcal{A}_{-\theta}) \xrightarrow{\quad \sigma \quad} \mathcal{A}_{-\theta} \xrightarrow{\quad \sigma \quad} 0$$

that defines an element $[\mathcal{T}(\mathcal{A}_{-\theta})]$ in $KK^1(\mathcal{A}_{-\theta}, \mathbb{C})$. Let $\mu^* \colon KK^1(\mathcal{A}_{-\theta}, \mathbb{C}) \to KK^1(\mathcal{A}_{\theta}, \mathbb{C})$ be the map that μ induces on KK-theory. Then $\mu^*[\mathcal{T}(\mathcal{A}_{-\theta})]$ is in $KK^1(\mathcal{A}_{\theta}, \mathbb{C})$, and an easy computation shows that $\delta(\mu^*[\mathcal{T}(\mathcal{A}_{-\theta})]) = (0, -1)$. Therefore $[\mathcal{T}(\mathcal{A}_{\theta})]$ and $\mu^*[\mathcal{T}(\mathcal{A}_{-\theta})]$ generate the group $KK^1(\mathcal{A}_{\theta}, \mathbb{C})$.

We next consider index theory. The index of Fredholm operators in the algebra $M_n(\mathcal{T}(C(\mathbb{T})))$ can be computed in terms of the winding number of the determinant of the symbol, and we can extend this result to Fredholm operators in $M_n(\mathcal{T}(\mathcal{A}_\theta))$. Define

$$\mathcal{A}_{\theta}^{\infty} = \left\{ \sum_{k \in \mathbb{Z}} f_k V_{\theta}^k : f_k \in C^{\infty}(\mathbb{T}), \{ \|f_k\| \}_{k \in \mathbb{Z}} \text{ rapidly decreasing} \right\}$$

and

$$\Omega^{1}(\mathcal{A}_{\theta}^{\infty}) = \left\{ \sum_{k \in \mathbb{Z}} \omega_{k} V_{\theta}^{k} : \omega_{k} \in \Omega^{1}(\mathbb{T}), \{ \|\omega_{k}\| \}_{k \in \mathbb{Z}} \text{ rapidly decreasing} \right\}.$$

It is straightforward to check that $\mathcal{A}_{\theta}^{\infty}$ is a dense subalgebra of \mathcal{A}_{θ} that is closed under the holomorphic functional calculus. The vector space $\Omega^{1}(\mathcal{A}_{\theta}^{\infty})$ can be given the structure of a left $\mathcal{A}_{\theta}^{\infty}$ -module in the following way [C, Example 2(b), pp. 183– 184]: let $\phi_{\theta} \colon \mathbb{T} \to \mathbb{T}$ be the diffeomorphism $\phi_{\theta}(z) = e^{-2\pi i \theta} z$. Then given $\sum_{k \in \mathbb{Z}} f_k V_{\theta}^k$ in $\mathcal{A}_{\theta}^{\infty}$ and $\sum_{l \in \mathbb{Z}} \omega_l V_{\theta}^l$ in $\Omega^{1}(\mathcal{A}_{\theta}^{\infty})$, define

$$\left(\sum_{k\in\mathbb{Z}}f_kV_{\theta}^k\right)\cdot\left(\sum_{l\in\mathbb{Z}}\omega_lV_{\theta}^l\right)=\sum_{k,l\in\mathbb{Z}}f_k\left((\phi_{\theta}^*)^k\omega_l\right)V_{\theta}^{k+l}.$$

We also have an exterior derivative map $d: \mathcal{A}^{\infty}_{\theta} \to \Omega^{1}(\mathcal{A}^{\infty}_{\theta})$ given by the formula

$$d\Big(\sum_{k\in\mathbb{Z}}f_kV_{ heta}^k\Big)=\sum_{k\in\mathbb{Z}}(df_k)V_{ heta}^k,$$

where the *d* on the right-hand side is the ordinary exterior derivative. We then extend *d* to map from $M_n(\mathcal{A}_{\theta}^{\infty})$ to $M(n, \Omega^1(\mathcal{A}_{\theta}^{\infty}))$ by applying *d* entrywise. We impose the relation $(dz)V_{\theta} = e^{2\pi i \theta}V_{\theta}(dz)$; a straightforward computation shows that d(XY) = (dX)Y + X(dY) for all *X* and *Y* in $M(n, \mathcal{A}_{\theta}^{\infty})$.

For each natural number *n*, define $\nu \colon M_n(\Omega^1(\mathcal{A}^\infty_\theta)) \to \Omega^1(\mathbb{T})$ as

$$\nu\Big(\sum_{k\in\mathbb{Z}}\omega_k V_\theta^k\Big)=\operatorname{Tr}\omega_0,$$

where Tr is the ordinary matrix trace. Then define \widetilde{Ch} : $GL(n, \mathcal{A}^{\infty}_{\theta}) \to \Omega^{1}(\mathbb{T})$ by the formula

$$\widetilde{\mathrm{Ch}}(X) = -\frac{1}{2\pi i}\nu(X^{-1}dX).$$

Toeplitz Algebras and Extensions of Irrational Rotation Algebras

Lemma 6 Let $\{X_t\}_{t \in [0,1]}$ be a smooth path in $GL(n, \mathcal{A}^{\infty}_{\theta})$. Then

$$\frac{\partial}{\partial t}\widetilde{\mathrm{Ch}}(X_t) = d\left(-\frac{1}{2\pi i}\nu\left(X_t^{-1}\frac{\partial X_t}{\partial t}\right)\right)$$

Proof A simple computation shows that $\frac{\partial}{\partial t} dX_t = d\left(\frac{\partial X_t}{\partial t}\right)$. Therefore, using the cyclic property of the trace, we have

$$\begin{split} \frac{\partial}{\partial t}\widetilde{\mathrm{Ch}}(\mathbf{X}_t) &= \frac{\partial}{\partial t} \left(-\frac{1}{2\pi i} \nu(\mathbf{X}_t^{-1} d\mathbf{X}_t) \right) \\ &= -\frac{1}{2\pi i} \nu \left(\frac{\partial}{\partial t} (\mathbf{X}_t^{-1} d\mathbf{X}_t) \right) \\ &= -\frac{1}{2\pi i} \nu \left(\frac{\partial}{\partial t} \left(\mathbf{X}_t^{-1} \right) d\mathbf{X}_t + \mathbf{X}_t^{-1} \frac{\partial}{\partial t} (d\mathbf{X}_t) \right) \\ &= -\frac{1}{2\pi i} \nu \left(-\mathbf{X}_t^{-1} \frac{\partial \mathbf{X}_t}{\partial t} \mathbf{X}_t^{-1} d\mathbf{X}_t + \mathbf{X}_t^{-1} d\left(\frac{\partial \mathbf{X}_t}{\partial t} \right) \right) \\ &= -\frac{1}{2\pi i} \nu \left(-\mathbf{X}_t^{-1} d\mathbf{X}_t \mathbf{X}_t^{-1} \frac{\partial \mathbf{X}_t}{\partial t} + \mathbf{X}_t^{-1} d\left(\frac{\partial \mathbf{X}_t}{\partial t} \right) \right) \\ &= -\frac{1}{2\pi i} \nu \left(d(\mathbf{X}_t^{-1}) \frac{\partial \mathbf{X}_t}{\partial t} + \mathbf{X}_t^{-1} d\left(\frac{\partial \mathbf{X}_t}{\partial t} \right) \right) \\ &= -\frac{1}{2\pi i} \nu \left(d\left(\mathbf{X}_t^{-1} \frac{\partial \mathbf{X}_t}{\partial t} \right) \right) \\ &= -\frac{1}{2\pi i} \nu \left(d\left(\mathbf{X}_t^{-1} \frac{\partial \mathbf{X}_t}{\partial t} \right) \right) \\ &= d\left(-\frac{1}{2\pi i} \nu \left(\mathbf{X}_t^{-1} \frac{\partial \mathbf{X}_t}{\partial t} \right) \right). \end{split}$$

Proposition 7 The map \widetilde{Ch} induces a group homomorphism

Ch: $K_1(\mathcal{A}^{\infty}_{\theta}) \longrightarrow H^1(\mathbb{T}).$

Proof Let π denote the quotient map from $\Omega^1(\mathbb{T})$ to $H^1(\mathbb{T})$. We see from Lemma 6 that given a path $\{X_t\}$ in $GL(n, \mathcal{A}_{\theta}^{\infty})$, $\frac{\partial}{\partial t}\widetilde{Ch}(X_t)$ is identically zero in $H^1(\mathbb{T})$, whence $\pi \circ \widetilde{Ch}$ is homotopy invariant. Next, take *X* in $GL(n, \mathcal{A}_{\theta}^{\infty})$, and consider the matrix $\begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix}$ in $GL(n + 1, \mathcal{A}_{\theta}^{\infty})$. Then

$$\widetilde{\mathrm{Ch}} \begin{pmatrix} X & 0\\ 0 & 1 \end{pmatrix} = -\frac{1}{2\pi i} \nu \left(\begin{pmatrix} X & 0\\ 0 & 1 \end{pmatrix}^{-1} d \begin{pmatrix} X & 0\\ 0 & 1 \end{pmatrix} \right)$$
$$= -\frac{1}{2\pi i} \nu \left(\begin{pmatrix} X^{-1} & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} dX & 0\\ 0 & 0 \end{pmatrix} \right)$$
$$= -\frac{1}{2\pi i} \nu \begin{pmatrix} X^{-1} dX & 0\\ 0 & 0 \end{pmatrix}$$
$$= -\frac{1}{2\pi i} \nu \left(X^{-1} dX \right)$$
$$= \widetilde{\mathrm{Ch}}(X).$$

Thus \widetilde{Ch} commutes with the usual inclusion of $GL(n, \mathcal{A}_{\theta}^{\infty})$ into $GL(n + 1, \mathcal{A}_{\theta}^{\infty})$. Therefore $\pi \circ \widetilde{Ch}$ induces a map Ch from $K_1(\mathcal{A}_{\theta}^{\infty})$ to $H^1(\mathbb{T})$. Finally, to show that Ch is a homomorphism, it suffices to show that \widetilde{Ch} is a homomorphism:

$$\begin{split} \widetilde{\mathrm{Ch}}(XY) &= \widetilde{\mathrm{Ch}} \left(\begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Y \end{pmatrix} \right) \\ &= -\frac{1}{2\pi i} \nu \left(\left(\begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Y \end{pmatrix} \right)^{-1} d \begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Y \end{pmatrix} \right) \right) \\ &= -\frac{1}{2\pi i} \nu \left(\begin{pmatrix} X^{-1} & 0 \\ 0 & Y^{-1} \end{pmatrix} \begin{pmatrix} dX & 0 \\ 0 & dY \end{pmatrix} \right) \\ &= -\frac{1}{2\pi i} \nu \begin{pmatrix} X^{-1} dX & 0 \\ 0 & Y^{-1} dY \end{pmatrix} \\ &= -\frac{1}{2\pi i} \nu \begin{pmatrix} X^{-1} dX \end{pmatrix} - \frac{1}{2\pi i} \nu \begin{pmatrix} Y^{-1} dY \end{pmatrix} \\ &= \widetilde{\mathrm{Ch}}(X) + \widetilde{\mathrm{Ch}}(Y). \end{split}$$

We can now state the index theorem.

Theorem 8 Take X in $GL(n, \mathcal{A}^{\infty}_{\theta})$. Then

index
$$T_X = \int_{\mathbb{T}} \operatorname{Ch}(X).$$

Proof We have two homomorphisms from $K_1(\mathcal{A}_{\theta}^{\infty})$ to \mathbb{C} : the index homomorphism, and the map $\int_{\mathbb{T}} Ch(-)$. By [Da, Example VIII.5.2], we know that $K_1(\mathcal{A}_{\theta}^{\infty}) \cong K_1(\mathcal{A}_{\theta})$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$, with generators *z* and V_{θ} . Thus to prove the theorem, it suffices to show that these homomorphisms agree on *z* and V_{θ} . First,

$$\int_{\mathbb{T}} Ch(z) = -\frac{1}{2\pi i} \int_{\mathbb{T}} \nu(z^{-1}dz) = -\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{dz}{z} = -1 = \text{index } T_z$$

Second,

$$\int_{\mathbb{T}} \operatorname{Ch}(V_{\theta}) = -\frac{1}{2\pi i} \int_{\mathbb{T}} \nu(V_{\theta}^{-1}(d1 V_{\theta})) = 0 = \operatorname{index} T_{V_{\theta}},$$

because V_{θ} commutes with *P*.

Example 9 Let

$$X = egin{pmatrix} zV_ heta & z^2V_ heta \ zV_ heta & 2z^2 \end{pmatrix}.$$

Then

$$X^{-1} = \frac{1}{2 - e^{2\pi i\theta}} \begin{pmatrix} 2e^{-4\pi i\theta}z^{-1}V_{\theta}^{-2} & -z^{-1}V_{\theta}^{-1} \\ -e^{-2\pi i\theta}z^{-2}V_{\theta}^{-1} & z^{-2} \end{pmatrix}$$

and

$$dX = \begin{pmatrix} (dz)V_{\theta}^2 & (2z\,dz)V_{\theta} \\ (dz)V_{\theta} & 4z\,dz \end{pmatrix}.$$

Thus

$$X^{-1}dX = \begin{pmatrix} z^{-1}dz & \star \\ \star & 2z^{-1}dz \end{pmatrix},$$

and so

index
$$T_X = \int_{\mathbb{T}} Ch(X) = -\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{3}{z} dz = -3.$$

We close with a question. A well-known fact about Toeplitz operators on the circle is that for all g, either ker $T_g = 0$ or ker $T_g^* = 0$ [Do, Proposition 7.4]; this immediately implies that $T \in \mathcal{T}(C(\mathbb{T}))$ is invertible if and only if index T = 0. The analogous statement about the kernels of Toeplitz operators with symbols in \mathcal{A}_{θ} is not true. For example, if we take $X = e^{-2\pi i \theta}I - V_{\theta}$, then f(z) = z is in the kernel of both T_X and T_X^* . This leaves the following open question:

Question 10 Are there Fredholm operators in $\mathcal{T}(\mathcal{A}_{\theta})$ that have index 0 and are not invertible?

Acknowledgement The author thanks the referee for helpful suggestions.

References

- [C] A. Connes, Noncommutative Geometry. Academic Press, San Diego, 1994.
- [Da] K. Davidson, C*-Algebras by Example. Fields Institute Monographs 6, American Mathematical Society, Providence, RI, 1996.
- [Do] R. Douglas, Banach Algebra Techniques in Operator Theory.Second edition. Graduate Texts in Mathematics 179, Springer-Verlag, New York, 1998.
- [RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55(1987), 431–474.

Department of Mathematics Texas Christian University Box 298900 Fort Worth, TX 76129 U.S.A. e-mail: e.park@tcu.edu