Toeplitz Algebras and Extensions of Irrational Rotation Algebras

Efton Park

Abstract

For a given irrational number θ, we define Toeplitz operators with symbols in the irrational rotation algebra \mathcal{A}_{θ}, and we show that the C^{*}-algebra $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$ generated by these Toeplitz operators is an extension of \mathcal{A}_{θ} by the algebra of compact operators. We then use these extensions to explicitly exhibit generators of the group $K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right)$. We also prove an index theorem for $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$ that generalizes the standard index theorem for Toeplitz operators on the circle.

Let \mathbb{T} denote the unit circle equipped with Haar measure, let $H^{2}(\mathbb{T})$ be the subspace of $L^{2}(\mathbb{T})$ consisting of functions that have a holomorphic extension to the unit disk, and let $P: L^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{T})$ be the orthogonal projection. The elements of $L^{\infty}(\mathbb{T})$ act on $L^{2}(\mathbb{T})$ by multiplication, and for f in $L^{\infty}(\mathbb{T})$, the operator $T_{f}=$ $P f: H^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{T})$ is called the Toeplitz operator with symbol f. These operators have been extensively studied by many researchers, and Toeplitz operators give rise to interesting C^{*}-algebras by taking a C^{*}-subalgebra \mathcal{A} of $L^{\infty}(\mathbb{T})$ and looking at the C^{*}-subalgebra $\mathcal{T}(\mathcal{A})$ of $\mathcal{B}\left(H^{2}(\mathbb{T})\right)$ generated by the set $\left\{T_{f}: f \in \mathcal{A}\right\}$.

Another collection of C^{*}-algebras that has attracted a great deal of attention are the irrational rotation algebras. Given an irrational number θ, we define \mathcal{A}_{θ} in the standard way: let V_{θ} be the unitary operator on $L^{2}(\mathbb{T})$ defined by $\left(V_{\theta} f\right)(z)=$ $f\left(e^{-2 \pi i \theta} z\right)$, and take \mathcal{A}_{θ} to be the C^{*}-subalgebra of $\mathcal{B}\left(L^{2}(\mathbb{T})\right)$ generated by $C(\mathbb{T})$ and V_{θ}.

In this paper we construct extensions of \mathcal{A}_{θ} by considering the C^{*}-algebra generated by a class of generalized Toeplitz operators. Specifically, for each X in \mathcal{A}_{θ}, define $T_{X}=P X: H^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{T})$, and let $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$ denote the C^{*}-subalgebra of $\mathcal{B}\left(H^{2}(\mathbb{T})\right)$ generated by the set $\left\{T_{X}: X \in \mathcal{A}_{\theta}\right\}$. We begin our study of these Toeplitz operators by showing that the norms of T and X are equal, which generalizes a classical result about Toeplitz operators. Next, we show that $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$ is an extension of \mathcal{A}_{θ} by the algebra of compact operators, and that $K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right)$ is generated as a group by this extension and a pullback of the corresponding extension of $\mathcal{A}_{-\theta}$ by the compacts. Finally, we consider the index theory of $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$. It is well known that an element T in $\mathcal{T}(C(\mathbb{T}))$ is Fredholm if and only if its symbol is invertible, and in this case, the index of T equals minus the winding number of its symbol; we generalize this theorem to operators in $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$.

Proposition 1 For all X in $\mathcal{A}_{\theta},\left\|T_{X}\right\|=\|X\|$.

[^0]Proof Obviously $\left\|T_{X}\right\| \leq\|X\|$. To obtain the reverse inequality, consider $X \in \mathcal{A}_{\theta}$ of the form

$$
X=\sum_{k=m}^{M} \sum_{l=n}^{N} a_{k l} z^{k} V_{\theta}^{l}
$$

Fix $\epsilon>0$, and choose $\rho=\sum_{j=r}^{R} c_{j} z^{j}$ in $L^{2}(\mathbb{T})$ such that $\|\rho\|_{2}=1$ and $\|X \rho\|_{2}>$ $\|X\|-\frac{\epsilon}{2}$. Then

$$
\begin{aligned}
X \rho & =\left(\sum_{k=m}^{M} \sum_{l=n}^{N} a_{k l} z^{k} V_{\theta}^{l}\right)\left(\sum_{j=r}^{R} c_{j} z^{j}\right) \\
& =\sum_{k=m}^{M} \sum_{l=n}^{N} \sum_{j=r}^{R} a_{k l} c_{j} e^{-2 \pi i l j \theta} z^{k+j} \\
& =\sum_{h=m+r}^{M+R}\left(\sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j) l} c_{j} e^{-2 \pi i l j \theta}\right) z^{h}
\end{aligned}
$$

whence

$$
\|X \rho\|_{2}^{2}=\sum_{h=m+r}^{M+R}\left|\sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j) l} c_{j} e^{-2 \pi i l j \theta}\right|^{2} .
$$

A similar computation shows that for every natural number q,

$$
\begin{aligned}
\left\|X\left(\rho z^{q}\right)\right\|_{2}^{2} & =\sum_{h=m+r}^{M+R}\left|\sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j) l} c_{j} e^{-2 \pi i l(j+q) \theta}\right|^{2} \\
& =\sum_{h=m+r}^{M+R}\left|\sum_{l=n}^{N} \sum_{j=r}^{R} a_{(h-j) l} c_{j} e^{-2 \pi i l j \theta}\left(e^{-2 \pi i q \theta}\right)^{l}\right|^{2} .
\end{aligned}
$$

By choosing q so that $q \theta$ is sufficiently close to an integer, we can make $\left(e^{-2 \pi i q \theta}\right)^{l}$ close to 1 for all $n \leq l \leq N$. Therefore, there exists a natural number q so that $\left\|X\left(\rho z^{q}\right)\right\|_{2}>\|X \rho\|_{2}-\frac{\epsilon}{2}$. Furthermore, we can choose an arbitrarily large value of q with this property. For q sufficiently large,

$$
\left\|T_{X}\left(\rho z^{q}\right)\right\|_{2}=\left\|P X\left(\rho z^{q}\right)\right\|_{2}=\left\|X\left(\rho z^{q}\right)\right\|_{2}
$$

and because $\left\|\rho z^{q}\right\|_{2}=\|\rho\|_{2}=1$,

$$
\left\|T_{X}\right\| \geq\left\|T_{X}\left(\rho z^{q}\right)\right\|_{2}=\left\|X\left(\rho z^{q}\right)\right\|_{2}>\|X \rho\|_{2}-\frac{\epsilon}{2}>\|X\|-\epsilon
$$

Therefore $\left\|T_{X}\right\| \geq\|X\|$, and the continuity of the norm implies that this inequality holds for all X in A_{θ}.

Theorem 2 There is a short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T}\left(\mathcal{A}_{\theta}\right) \xrightarrow{\sigma} \mathcal{A}_{\theta} \longrightarrow 0
$$

where \mathcal{K} denotes the algebra of compact operators and σ has the property that $\sigma\left(T_{X}\right)=$ X for all X in \mathcal{A}_{θ}.

Proof Because the Toeplitz algebra $\mathcal{T}(C(\mathbb{T}))$ contains \mathcal{K} as an ideal, so does $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$. Define a map $\xi: \mathcal{A}_{\theta} \rightarrow \mathcal{T}\left(\mathcal{A}_{\theta}\right) / \mathcal{K}$ by the formula $\xi(X)=T_{X}+\mathcal{K}$. Clearly ξ is $*$-linear, and Proposition 1 implies that ξ is continuous. The commutator $[P, f]$ is compact for each f in $C(\mathbb{T})$ [Do, Proposition 7.12] and it is easy to check that $\left[P, V_{\theta}\right]=0$. Thus $[P, X]$ is compact for all X in \mathcal{A}_{θ}, and therefore ξ is an algebra homomorphism. The image of ξ contains all the cosets $T_{X}+\mathcal{K}$, whence ξ is surjective. Furthermore, \mathcal{A}_{θ} is simple, so ξ is injective as well. We can therefore define $\sigma: \mathcal{T}\left(\mathcal{A}_{\theta}\right) \rightarrow \mathcal{A}_{\theta}$ as $\xi^{-1} \pi$, where $\pi: \mathcal{T}\left(\mathcal{A}_{\theta}\right) \rightarrow \mathcal{T}\left(\mathcal{A}_{\theta}\right) / \mathcal{K}$ is the quotient map, and the short exact sequence follows.

Corollary 3 For each natural number n, there is a short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathrm{M}\left(n, \mathcal{T}\left(\mathcal{A}_{\theta}\right)\right) \xrightarrow{\sigma} \mathrm{M}\left(n, \mathcal{A}_{\theta}\right) \longrightarrow 0
$$

where σ has the property that $\sigma\left(T_{X}\right)=X$ for all X in $\mathrm{M}\left(n, \mathcal{A}_{\theta}\right)$.
Proof Tensoring through by $\mathrm{M}(n, \mathbb{C})$ preserves exact sequences, and

$$
\mathrm{M}(n, \mathcal{K}) \cong \mathcal{K}
$$

Corollary 4 An operator T in $\mathrm{M}\left(n, \mathcal{T}\left(\mathcal{A}_{\theta}\right)\right)$ is Fredholm if and only if $\sigma(T)$ is invertible.

Proposition 5 For each irrational number $\theta, K_{0}\left(\mathcal{T}\left(\mathcal{A}_{\theta}\right)\right) \cong K_{0}\left(\mathcal{A}_{\theta}\right) \cong \mathbb{Z}+\theta \mathbb{Z}$ and $K_{1}\left(\mathcal{T}\left(\mathcal{A}_{\theta}\right)\right) \cong \mathbb{Z}$.

Proof Apply the K-theory six-term exact sequence to the short exact sequence from Theorem 2. The operator T_{z} is in $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$ and has index minus one, so the index map $\partial: K_{1}\left(\mathcal{A}_{\theta}\right) \rightarrow K_{0}(\mathcal{K})$ is surjective. The desired results follow from the facts $K_{0}\left(\mathcal{A}_{\theta}\right) \cong \mathbb{Z}+\theta \mathbb{Z}$ and $K_{1}\left(\mathcal{A}_{\theta}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$ [Da, Example VII.5.2].

The short exact sequence in the statement of Theorem 2 defines an element [$\left.\mathcal{T}\left(\mathcal{A}_{\theta}\right)\right]$ of $K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right)$, and it is natural to ask about other elements of this group. By the universal coefficient theorem [RS, Theorem 1.17], there is an isomorphism $\gamma: K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right) \rightarrow \operatorname{Hom}\left(K_{1}\left(\mathcal{A}_{\theta}\right), \mathbb{Z}\right)$, and $\operatorname{Hom}\left(K_{1}\left(\mathcal{A}_{\theta}\right), \mathbb{Z}\right)$ is in turn isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$. Let $\delta: K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ be the composition of these two isomorphisms. Then $\delta\left[\mathcal{T}\left(\mathcal{A}_{\theta}\right)\right]=\left(\right.$ index T_{z}, index $\left.T_{V_{\theta}}\right)=(-1,0)$.

We construct another element of $K K^{1}\left(\mathcal{A}_{\theta}, \mathrm{C}\right)$ in the following way. From [Da, Corollary VI.5.3 and Theorem VI.1.4] we know that for each irrational number θ,
there is a C^{*}-algebra isomorphism $\mu: \mathcal{A}_{\theta} \rightarrow \mathcal{A}_{-\theta}$ such that $\mu\left(V_{\theta}\right)=z$ and $\mu(z)=$ $V_{-\theta}$; obviously these two facts completely determine μ. From Theorem 2 we have a short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T}\left(\mathcal{A}_{-\theta}\right) \xrightarrow{\sigma} \mathcal{A}_{-\theta} \longrightarrow 0
$$

that defines an element $\left[\mathcal{T}\left(\mathcal{A}_{-\theta}\right)\right]$ in $K K^{1}\left(\mathcal{A}_{-\theta}, \mathbb{C}\right)$. Let $\mu^{*}: K K^{1}\left(\mathcal{A}_{-\theta}, \mathbb{C}\right) \rightarrow$ $K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right)$ be the map that μ induces on $K K$-theory. Then $\mu^{*}\left[\mathcal{T}\left(\mathcal{A}_{-\theta}\right)\right]$ is in $K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right)$, and an easy computation shows that $\delta\left(\mu^{*}\left[\mathcal{T}\left(\mathcal{A}_{-\theta}\right)\right]\right)=(0,-1)$. Therefore $\left[\mathcal{T}\left(\mathcal{A}_{\theta}\right)\right]$ and $\mu^{*}\left[\mathcal{T}\left(\mathcal{A}_{-\theta}\right)\right]$ generate the group $K K^{1}\left(\mathcal{A}_{\theta}, \mathbb{C}\right)$.

We next consider index theory. The index of Fredholm operators in the algebra $M_{n}(\mathcal{T}(C(\mathbb{T})))$ can be computed in terms of the winding number of the determinant of the symbol, and we can extend this result to Fredholm operators in $M_{n}\left(\mathcal{T}\left(\mathcal{A}_{\theta}\right)\right)$. Define

$$
\mathcal{A}_{\theta}^{\infty}=\left\{\sum_{k \in \mathbb{Z}} f_{k} V_{\theta}^{k}: f_{k} \in C^{\infty}(\mathbb{T}),\left\{\left\|f_{k}\right\|\right\}_{k \in \mathbb{Z}} \text { rapidly decreasing }\right\}
$$

and

$$
\Omega^{1}\left(\mathcal{A}_{\theta}^{\infty}\right)=\left\{\sum_{k \in \mathbb{Z}} \omega_{k} V_{\theta}^{k}: \omega_{k} \in \Omega^{1}(\mathbb{T}),\left\{\left\|\omega_{k}\right\|\right\}_{k \in \mathbb{Z}} \text { rapidly decreasing }\right\}
$$

It is straightforward to check that $\mathcal{A}_{\theta}^{\infty}$ is a dense subalgebra of \mathcal{A}_{θ} that is closed under the holomorphic functional calculus. The vector space $\Omega^{1}\left(\mathcal{A}_{\theta}^{\infty}\right)$ can be given the structure of a left $\mathcal{A}_{\theta}^{\infty}$-module in the following way [C, Example 2(b), pp. 183184]: let $\phi_{\theta}: \mathbb{T} \rightarrow \mathbb{T}$ be the diffeomorphism $\phi_{\theta}(z)=e^{-2 \pi i \theta} z$. Then given $\sum_{k \in \mathbb{Z}} f_{k} V_{\theta}^{k}$ in $\mathcal{A}_{\theta}^{\infty}$ and $\sum_{l \in \mathbb{Z}} \omega_{l} V_{\theta}^{l}$ in $\Omega^{1}\left(\mathcal{A}_{\theta}^{\infty}\right)$, define

$$
\left(\sum_{k \in \mathbb{Z}} f_{k} V_{\theta}^{k}\right) \cdot\left(\sum_{l \in \mathbb{Z}} \omega_{l} V_{\theta}^{l}\right)=\sum_{k, l \in \mathbb{Z}} f_{k}\left(\left(\phi_{\theta}^{*}\right)^{k} \omega_{l}\right) V_{\theta}^{k+l}
$$

We also have an exterior derivative map $d: \mathcal{A}_{\theta}^{\infty} \rightarrow \Omega^{1}\left(\mathcal{A}_{\theta}^{\infty}\right)$ given by the formula

$$
d\left(\sum_{k \in \mathbb{Z}} f_{k} V_{\theta}^{k}\right)=\sum_{k \in \mathbb{Z}}\left(d f_{k}\right) V_{\theta}^{k},
$$

where the d on the right-hand side is the ordinary exterior derivative. We then extend d to map from $M_{n}\left(\mathcal{A}_{\theta}^{\infty}\right)$ to $\mathrm{M}\left(n, \Omega^{1}\left(\mathcal{A}_{\theta}^{\infty}\right)\right)$ by applying d entrywise. We impose the relation $(d z) V_{\theta}=e^{2 \pi i \theta} V_{\theta}(d z)$; a straightforward computation shows that $d(X Y)=$ $(d X) Y+X(d Y)$ for all X and Y in $\mathrm{M}\left(n, \mathcal{A}_{\theta}^{\infty}\right)$.

For each natural number n, define $\nu: M_{n}\left(\Omega^{1}\left(\mathcal{A}_{\theta}^{\infty}\right)\right) \rightarrow \Omega^{1}(\mathbb{T})$ as

$$
\nu\left(\sum_{k \in \mathbb{Z}} \omega_{k} V_{\theta}^{k}\right)=\operatorname{Tr} \omega_{0},
$$

where Tr is the ordinary matrix trace. Then define $\widetilde{\mathrm{Ch}}: \mathrm{GL}\left(n, \mathcal{A}_{\theta}^{\infty}\right) \rightarrow \Omega^{1}(\mathbb{T})$ by the formula

$$
\widetilde{\mathrm{Ch}}(X)=-\frac{1}{2 \pi i} \nu\left(X^{-1} d X\right)
$$

Lemma 6 Let $\left\{X_{t}\right\}_{t \in[0,1]}$ be a smooth path in $\operatorname{GL}\left(n, \mathcal{A}_{\theta}^{\infty}\right)$. Then

$$
\frac{\partial}{\partial t} \widetilde{\mathrm{Ch}}\left(X_{t}\right)=d\left(-\frac{1}{2 \pi i} \nu\left(X_{t}^{-1} \frac{\partial X_{t}}{\partial t}\right)\right)
$$

Proof A simple computation shows that $\frac{\partial}{\partial t} d X_{t}=d\left(\frac{\partial X_{t}}{\partial t}\right)$. Therefore, using the cyclic property of the trace, we have

$$
\begin{aligned}
\frac{\partial}{\partial t} \widetilde{\mathrm{Ch}}\left(X_{t}\right) & =\frac{\partial}{\partial t}\left(-\frac{1}{2 \pi i} \nu\left(X_{t}^{-1} d X_{t}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\frac{\partial}{\partial t}\left(X_{t}^{-1} d X_{t}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\frac{\partial}{\partial t}\left(X_{t}^{-1}\right) d X_{t}+X_{t}^{-1} \frac{\partial}{\partial t}\left(d X_{t}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(-X_{t}^{-1} \frac{\partial X_{t}}{\partial t} X_{t}^{-1} d X_{t}+X_{t}^{-1} d\left(\frac{\partial X_{t}}{\partial t}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(-X_{t}^{-1} d X_{t} X_{t}^{-1} \frac{\partial X_{t}}{\partial t}+X_{t}^{-1} d\left(\frac{\partial X_{t}}{\partial t}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(d\left(X_{t}^{-1}\right) \frac{\partial X_{t}}{\partial t}+X_{t}^{-1} d\left(\frac{\partial X_{t}}{\partial t}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(d\left(X_{t}^{-1} \frac{\partial X_{t}}{\partial t}\right)\right) \\
& =d\left(-\frac{1}{2 \pi i} \nu\left(X_{t}^{-1} \frac{\partial X_{t}}{\partial t}\right)\right)
\end{aligned}
$$

Proposition 7 The map $\widetilde{\mathrm{Ch}}$ induces a group homomorphism

$$
\mathrm{Ch}: K_{1}\left(\mathcal{A}_{\theta}^{\infty}\right) \longrightarrow H^{1}(\mathbb{T})
$$

Proof Let π denote the quotient map from $\Omega^{1}(\mathbb{T})$ to $H^{1}(\mathbb{T})$. We see from Lemma 6 that given a path $\left\{X_{t}\right\}$ in $\operatorname{GL}\left(n, \mathcal{A}_{\theta}^{\infty}\right), \frac{\partial}{\partial t} \widetilde{\mathrm{Ch}}\left(X_{t}\right)$ is identically zero in $H^{1}(\mathbb{T})$, whence $\pi \circ \widetilde{\mathrm{Ch}}$ is homotopy invariant. Next, take X in $\operatorname{GL}\left(n, \mathcal{A}_{\theta}^{\infty}\right)$, and consider the matrix $\left(\begin{array}{ll}X & 0 \\ 0 & 1\end{array}\right)$ in $\operatorname{GL}\left(n+1, \mathcal{A}_{\theta}^{\infty}\right)$. Then

$$
\begin{aligned}
\widetilde{\mathrm{Ch}}\left(\begin{array}{cc}
X & 0 \\
0 & 1
\end{array}\right) & =-\frac{1}{2 \pi i} \nu\left(\left(\begin{array}{cc}
X & 0 \\
0 & 1
\end{array}\right)^{-1} d\left(\begin{array}{cc}
X & 0 \\
0 & 1
\end{array}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\left(\begin{array}{cc}
X^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
d X & 0 \\
0 & 0
\end{array}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\begin{array}{cc}
X^{-1} d X & 0 \\
0 & 0
\end{array}\right) \\
& =-\frac{1}{2 \pi i} \nu\left(X^{-1} d X\right) \\
& =\widetilde{\mathrm{Ch}}(X)
\end{aligned}
$$

Thus $\widetilde{\mathrm{Ch}}$ commutes with the usual inclusion of $\operatorname{GL}\left(n, \mathcal{A}_{\theta}^{\infty}\right)$ into $\operatorname{GL}\left(n+1, \mathcal{A}_{\theta}^{\infty}\right)$. Therefore $\pi \circ \widetilde{\mathrm{Ch}}$ induces a map Ch from $K_{1}\left(\mathcal{A}_{\theta}^{\infty}\right)$ to $H^{1}(\mathbb{T})$. Finally, to show that Ch is a homomorphism, it suffices to show that $\widetilde{\mathrm{Ch}}$ is a homomorphism:

$$
\begin{aligned}
\widetilde{\mathrm{Ch}}(X Y) & =\widetilde{\mathrm{Ch}}\left(\left(\begin{array}{ll}
X & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & Y
\end{array}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\left(\left(\begin{array}{cc}
X & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & Y
\end{array}\right)\right)^{-1} d\left(\left(\begin{array}{cc}
X & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & Y
\end{array}\right)\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\left(\begin{array}{cc}
X^{-1} & 0 \\
0 & Y^{-1}
\end{array}\right)\left(\begin{array}{cc}
d X & 0 \\
0 & d Y
\end{array}\right)\right) \\
& =-\frac{1}{2 \pi i} \nu\left(\begin{array}{cc}
X^{-1} d X & 0 \\
0 & Y^{-1} d Y
\end{array}\right) \\
& =-\frac{1}{2 \pi i} \nu\left(X^{-1} d X\right)-\frac{1}{2 \pi i} \nu\left(Y^{-1} d Y\right) \\
& =\widetilde{\mathrm{Ch}}(X)+\widetilde{\mathrm{Ch}}(Y) .
\end{aligned}
$$

We can now state the index theorem.

Theorem 8 Take X in $\operatorname{GL}\left(n, \mathcal{A}_{\theta}^{\infty}\right)$. Then

$$
\text { index } T_{X}=\int_{\mathbb{T}} \operatorname{Ch}(X)
$$

Proof We have two homomorphisms from $K_{1}\left(\mathcal{A}_{\theta}^{\infty}\right)$ to \mathbb{C} : the index homomorphism, and the map $\int_{\mathbb{T}} \mathrm{Ch}(-)$. By [Da, Example VIII.5.2], we know that $K_{1}\left(\mathcal{A}_{\theta}^{\infty}\right) \cong$ $K_{1}\left(\mathcal{A}_{\theta}\right)$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$, with generators z and V_{θ}. Thus to prove the theorem, it suffices to show that these homomorphisms agree on z and V_{θ}. First,

$$
\int_{\mathbb{T}} \operatorname{Ch}(z)=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \nu\left(z^{-1} d z\right)=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{d z}{z}=-1=\operatorname{index} T_{z}
$$

Second,

$$
\int_{\mathbb{T}} \operatorname{Ch}\left(V_{\theta}\right)=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \nu\left(V_{\theta}^{-1}\left(d 1 V_{\theta}\right)\right)=0=\operatorname{index} T_{V_{\theta}}
$$

because V_{θ} commutes with P.
Example 9 Let

$$
X=\left(\begin{array}{cc}
z V_{\theta}^{2} & z^{2} V_{\theta} \\
z V_{\theta} & 2 z^{2}
\end{array}\right)
$$

Then

$$
X^{-1}=\frac{1}{2-e^{2 \pi i \theta}}\left(\begin{array}{cc}
2 e^{-4 \pi i \theta} z^{-1} V_{\theta}^{-2} & -z^{-1} V_{\theta}^{-1} \\
-e^{-2 \pi i \theta} z^{-2} V_{\theta}^{-1} & z^{-2}
\end{array}\right)
$$

and

$$
d X=\left(\begin{array}{cc}
(d z) V_{\theta}^{2} & (2 z d z) V_{\theta} \\
(d z) V_{\theta} & 4 z d z
\end{array}\right)
$$

Thus

$$
X^{-1} d X=\left(\begin{array}{cc}
z^{-1} d z & \star \\
\star & 2 z^{-1} d z
\end{array}\right)
$$

and so

$$
\text { index } T_{X}=\int_{\mathbb{T}} \operatorname{Ch}(X)=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{3}{z} d z=-3
$$

We close with a question. A well-known fact about Toeplitz operators on the circle is that for all g, either $\operatorname{ker} T_{g}=0$ or $\operatorname{ker} T_{g}^{*}=0$ [Do, Proposition 7.4]; this immediately implies that $T \in \mathcal{T}(\mathcal{C}(\mathbb{T}))$ is invertible if and only if index $T=0$. The analogous statement about the kernels of Toeplitz operators with symbols in \mathcal{A}_{θ} is not true. For example, if we take $X=e^{-2 \pi i \theta} I-V_{\theta}$, then $f(z)=z$ is in the kernel of both T_{X} and T_{X}^{*}. This leaves the following open question:

Question 10 Are there Fredholm operators in $\mathcal{T}\left(\mathcal{A}_{\theta}\right)$ that have index 0 and are not invertible?

Acknowledgement The author thanks the referee for helpful suggestions.

References

[C] A. Connes, Noncommutative Geometry. Academic Press, San Diego, 1994.
[Da] K. Davidson, C^{*}-Algebras by Example. Fields Institute Monographs 6, American Mathematical Society, Providence, RI, 1996.
[Do] R. Douglas, Banach Algebra Techniques in Operator Theory.Second edition. Graduate Texts in Mathematics 179, Springer-Verlag, New York, 1998.
[RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55(1987), 431-474.

Department of Mathematics
Texas Christian University
Box 298900
Fort Worth, TX 76129
U.S.A.
e-mail: e.park@tcu.edu

[^0]: Received by the editors October 24, 2003; revised August 30, 2004.
 AMS subject classification: Primary: 47B35; secondary: 46L80.
 Keywords: Toeplitz operators, irrational rotation algebras, index theory.
 (C)Canadian Mathematical Society 2005.

