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Nanoscopic silicon-compatible ferroelectricity in hafnia-based thin-films (1) has triggered vast amount of 

fundamental research and brought back the interest in ferroelectric materials in microelectronics. This 

ferroelectricity exists even at film thicknesses as low as 1 nm, and increases with decrease in size, a 

situation that was believed impossible and is opposite to the classical understanding of ferroelectricity. 

The spontaneous polarization observed in these films is ascribed generally to a metastable polar 

orthorhombic phase (Pca21, o-phase) (2). A higher energy rhombohedral phase (R3m/R3, r-phases) has 

been reported for epitaxial growth of Hf0.5Zr0.5O2 (HZO) on La0.67Sr0.33MnO3 (LSMO) buffered 

perovskite and on trigonal substrates (3), and on the former, remnant polarization (Pr) values as high as 

35 μC/cm
2
 were measured (4). The pronounced effects of particle size reduction, surface effects, dopants, 

oxygen vacancies (V̈o), epitaxial strain and residual stresses at nanoscale have all been investigated as 

possible reasons to stabilize these otherwise metastable phases in thin films. 

Vibrant research is being conducted on the mechanism of polarization switching. The dynamics of this 

switching are currently being explored by various authors through the lens of conventional ferroelectric 

switching. However, another feature of hafnia-based materials is that they also exhibit memristive 

hysteresis driven by oxygen conduction and associated redox reactions(5, 6). A few works have begun to 

explore the role of Vo
..
 migration and its possible role in ferroelectricity(7, 8). In other words, can extrinsic 

reasons such as Vo
..
 migration be the cause of this non-conventional ferroelectricity. 

In this regard, we resorted operando atomic scale electron microscopy investigations of the behavior of 

LSMO/HZO/LSMO capacitor stacks. These stacks were grown using pulsed laser deposition on 

conducting (Nb-doped) STO substrate under electric field. LSMO is a standard choice of bottom electrode 

in complex oxide devices and, thus, the findings reported here are relevant for understanding a wider class 

of devices. In situ biasing measurements were performed while simultaneously employing two scanning 

transmission electron microscopy (STEM) imaging modes: high-angle annular dark-field (HAADF) 

STEM and integrated differential phase contrast (iDPC) STEM. iDPC-STEM is currently the most robust 

atomic resolution imaging technique to measure simultaneously heavy and light elements. By directly 

imaging oxygen, we provide evidence of the reversible and hysteretic migration of V̈o from the bottom to 

the top electrode through the HZO layer. Associated with such migration, we show V̈o induced phase 

transitions in LSMO (bottom electrode) and HZO layers. In combination with ex situ microscopy and 

transport measurements on real devices we clearly show that polarization switching, and oxygen 

voltammetry are intertwined. 

[This work is currently published on https://arxiv.org/abs/2010.10849] 
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Figure 1. Figure 1: Deoxygenation of bottom electrode LSMO layer with increasing positive bias. (a) 

iDPC-STEM images of the entire 30 nm bottom LSMO region in the virgin state. Interfaces with Nb:STO 

(bottom) and HZO (top) layers are marked. Zoomed up image of a select region (black square) is shown 

in the inset. Select oxygen positions are marked in brown circles. Two adjacent MnO6 octahedra are 

overlaid, illustrating the δ-tilts. (b) iDPC-STEM images of at V= 2 V. Region enclosed in red is zoomed 

in the inset. Select oxygen positions are marked in brown circles. Brownmillerite (BM) precursor phase 

is illustrated by marking the displacement of a few Mn atoms from the octahedral centers (red arrows). 

(c) iDPC-STEM at 4 V. BM LSMO (zone axis :a, schematic in inset) signified by alternating MnO4 

tetrahedra and MnO6 octahedra. Scale bar, 1 nm for (a-c). (d) At 0V, BM phase is retained. Image shows 

two domains of BM LSMO, with zone axes, c and a respectively, (inset) schematic of BM phase visualized 

with c axis as the zone. Scale bar, 2 nm. (e) Plot of variation of c’ (La-La distance) parameter from the 

STO interface in perovskite (green), BM-precursor (blue) and BM phases (red). (f) Overview image of 

LSMO/HZO/LSMO capacitor with regions marked where oxygen content was quantified from EDS (g) 

at 0 V and 1.5 V. Scale bar, 5 nm in (f). 
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Figure 2. Figure 2: Reoxygenation of bottom electrode LSMO layer with increasing negative bias.a) 

iDPC-STEM images of one particular region at 0 and -1.3 V. At -1.3 V oxygen columns start to appear 

(marked) in positions. Boundary with the substrate is marked. Scale bar, 2 nm (b) BM phase transforms 

to BM precursor phase at -3 V and is retained so at 0 V (c), BM precusor phase also shows disorder in c’ 

parameter variation (d). Scale bar, 1 nm in (b-c). (e) Dynamics of evolution followed through HAADF-

STEM imaging within 120 seconds of ramping upto 3 V . A BM-precursor phase is imaged at 60 sec, BM 

phase is imaged at 120 sec. (f) Upon changing the bias to -3 V, a BM phase recorded at 30 sec (with 

superstructure spots in the FFT), changes to perovskite phase by 90 sec (disappearance of the 

superstructure spots). Scale bar, 2 nm, (e-f). (g) The intermediate BM-precursor phase recorded at 60 sec, 

converts to perovskite-like phase in about 6 sec, giving an idea about the time scales of Vo.. migration.  
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