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POSETS, NEAR UNANIMITY FUNCTIONS AND ZIGZAGS
LAszLS ZADORI

With every poset we associate a class of coloured posets called zigzags. By means
of sigzags we show that, if we delete a convex set from a finite lattice ordered set
then the resulting poset has the strong selection property. We give the complete
list of finite bounded irreducible posets admitting an n-ary near unanimity func-
tion, provided n < 6. We present some examples and classes of posets with full
descriptions of their zigzags.

1. INTRODUCTION

For n 2 3 an n-ary operation f on a set A is called a near unanimity function,

briefly a nuf, if it obeys the identity f(z,...,z, y ,z,...,z) =z forevery 1 <1< n.
t

If n =3, then f is called a majority function. We say that a poset P admits an n-ary
operation g, if g is monotone on P. In [1, 2, 5, 11] it is conjectured that a finite
bounded poset P admits a near unanimity function, if there exists a finite generating
set for the clone of all monotone operations on P. This conjecture is important for
the study of finite posets admitting a near unanimity function. In [3] Demetrovics,
Hanndk and Rényai proved that every poset obtained from a finite lattice ordered set
by deleting a convex subset admits a near unanimity function. In [8] Quackenbush,
Rival and Rosenberg proved that every finite poset with the strong selection property
admits a near unanimity function. We shall see that these results are easily proven by
means of zigzags. In fact, we show that the above mentioned posets of Demetrovics
et al. have the strong selection property. Due to a remark of Tardos in [9], zigzags
have turned out to be a powerful tool in the exploration of finite posets admitting a
near unanimity function. We list all the finite irreducible bounded posets admitting
an n-ary near unanimity function with n < 6. Also, we describe some classes of finite
posets with a full description of their zigzags. So we can easily decide whether or not
these posets admit a near unanimity function.

The basic notions concerning zigzags are given in {11] and we review the results we
need from this paper later in this section. We use boldface capital letters to denote a
poset throughout the paper. A poset is called bounded, if it has a largest and a smallest

Received 23rd December, 1991.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 $A2.004-0.00.

79

https://doi.org/10.1017/50004972700012284 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700012284

80 L. Zadori 2]

element. For a poset Q let <q denote the covering relation determined by <q. Let
P be a poset and let T be a subset of P U <p with P € T. We denote the poset
(P\T,(<plp\r) \T) by P\ T and we say that T is deleted from P. For two posets
P and Q, P+Q denotes their ordinal sum. We say that a poset Q is contained in
P if <QC<p. If Q is contained in P we write Q C P. We say that Q is properly
containedin P if QCP and Q #P.

Let P and Q be posets. A pair (Q, f) is called a P-coloured poset if f is a
partially defined map from Q to P. If f can be extended to a fully defined monotone
map f' : Q — P on Q then f and (Q, f) are called P-eztendible; otherwise f
and (Q, f) are called P-noneztendible. A P-zigzag is a P-nonextendible, P-coloured
poset (H, f), where H is finite and for every K, properly contained in H, the P-
coloured poset (K, f |k) is P-extendible. Roughly speaking, the P-zigzags are the
finite, minimal, nonextendible P-coloured posets. When it is clear what P is we omit
it in the terms such as P-zigzags, P-extendible, et cetera.

For two P-coloured posets (H, f) and (Q,g) we say that (H, f) is contained in
(Q,9) and we write (H, f) € (Q,g) if HC Q and f = g |u. Observe that every finite
nonextendible coloured poset contains a zigzag. Let (H,f) be a P-coloured poset
and let T be a subset of H U <g with H € T'. We denote the P-coloured poset
(H\T,f |H\T) by (H, f)\ T and we say that T is deleted from (H, f).

For a P-coloured poset (H, f) we define C(H, f) = {h € H: f(h) exists} and
N(H,f) = H\ C(H, f). We call the elements of C(H, f) coloured elements and the
elements of N(H, f) noncoloured elements. If C(H, f) and N(H, f) are nonempty
we define the posets C(H, f) and N(H, f) by the restriction of <m to C(H, f) and
N(H, f), respectively.

A figure of a P-coloured poset (H, f) consists of the covering graph of H and an
element of H is drawn as a small shaded circle or a small empty circle according to
whether f is defined or not defined on the given point. Every shaded point is labelled
by the value of f. For example, let P be the poset shown in Figure 1. Then (H, f) in
Figure 1 is a P-coloured poset. In fact, (H, f) is a P-zigzag.
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0

Figure 1. Poset P and a P-zigzag (H, f)

A P-coloured poset (H, f) is monotone if f is a monotone map on its domain,
otherwise (H, f) is nonmonotone. For any poset P the P-coloured two element chain
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in which the top is coloured by a and the bottom is coloured by b, where b £ ¢ in P,
is a nonmonotone P-zigzag and every nonmonotone: P-zigzag is of this form. In the
proofs included in the paper we need some properties of zigzags which are established
and proved in [11]. .

CLAIM 1.1. Let (H,f) be a P-coloured poset, where H is finite. Then (H, f)
is a P-zigzag if and only if H is connected, (H, f) is not P-extendible and by deleting
any covering pair of (H, f) the resulting coloured poset is P-extendible.

CLAIM 1.2. Let (H,f) be a P-zigzag. The subgraph spanned by N(H, f) in
the covering graph of H is connected.

CLAIM 1.3. Let (H,f) be a monotone zigzag and let a € C(H, f). For every
b € H which satisfies a <b or b < a we have b€ N(H, f).

A monotone map between two P-coloured posets means a monotone map between
the two base posets which maps each a-coloured element to an a-coloured element and
each noncoloured element to a noncoloured element. We say that a P-coloured poset
(H, f) is a monotone image of a P-coloured poset (H', f'), if there exists a monotone
map from (H', f') onto (H,f). A coloured poset in which every coloured element
occurs in exactly one covering pair is called a standard coloured poset.

CLAIM 1.4. Forevery P-zigzag (H, f) there exists a standard P-zigzag (H', f')
such that (H, f) is a monotone image of (H', f').

CLAIM 1.5. Let (H,f) be a P-zigzag and let a and b be two different elements
of C(H,f). Let us suppose that there exists ¢ € N(H, f) with ¢ < a,b. Then
f(a) £ f(b).

CLAIM 1.6. Let (H,f) be a P-zigzag and let a,b € C(H, f), where a < b.
Then f(a) # £(5).

CLAIM 1.7. Let (H,f) be a P-zigzag. Let a,b € C(H, f) be two different
maximal elements of H for which f(a) = f(b). Then there exists a zigzag (H', f')
for which N(H', f') = N(H, f) and there is an onto monotone map from (H, f) to
(H', f') which identifies only a and b.

CLaIM 1.8. Let (H,f) be a P-zigzag. Every monotone map g: H — H that
is the identity map on C(H, f) has to be onto, that is, an automorphism of H.

Let Q be a finite poset. Then a € Q is called retractable if there is a non-onto
monotone map on Q that fixes each element different from a. An element a € Q is
called irreducible if there is a unique b € Q@ with a < b or b < a. Observe that every
irreducible element is retractable.

CLAIM 1.9. Let (H,f) be a P-zigzag. Then N(H, f) has no retractable ele-
ment of H.
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CraimM 1.10. If P = Q+1, then every maximal element of a P-zigzag (H, f)
is coloured.

CraimM 1.11. For a P-zigzag (H, f) the following hold.

(1) I|N(H,f)| =0, then (H,f) is a two element nonmonotone zigzag.

(2) I|N(H,f)| =1, then (H,f) is the first coloured poset shown in Figure 2,
where m and n are nonnegative integers such that m +n > 0 and
n,m # 1. Moreover, f is an order isomorphism on its domain.

(3) If [IN(H,f)| = 2, then (H, f) is the second coloured poset shown in
Figure 2, where k,l 2> 1 and m and n are nonnegative integers for which
m,n # 1. Moreover, any comparable pair in Range(f) not shown in the
figure is of the form d; < ¢j, ¢j < b, or a; < d; for some 1 i < k,
1<5€]l,1<s<mandl1tg

by ':z_ b
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Figure 2. Monotone zigzags with one and two noncoloured elements

The next proposition, the same as [11, Proposition 2.3], characterises via zigzags
the finite posets with the strong selection property. In this paper we take this proposi-
tion as a definition of a finite poset with the strong selection property. For the original
definition see [7].

PROPOSITION 1.12. A finite poset P has the strong selection property if and
only if every P-zigzag has at most one noncoloured element.

Tardos’s remark in [9], see also [11, Remark 2.4], describes via zigzags the finite
posets admitting an n-ary near unanimity function.

REMARK 1.13. Let n > 3. A finite poset P admits an n-ary near unanimity function
if and only if in every P-zigzag the number of coloured elements is at most n — 1.

2. FINITE POSETS WITH THE STRONG SELECTION PROPERTY

In this section we show that every poset obtained from a finite lattice ordered set
by deleting a convex subset has the strong selection property. Also, we show that the
finite posets admitting a nuf with arity at most 6 have the strong selection property.

Let L be a finite lattice ordered set. We note that L has no monotone zigzags.
A subset § of L is called a convez subsetof L if a,b € §, ¢c€ L and a <1, ¢ < b
imply ¢ € S. There is a well known result {3] of Demetrovics, Hanndk and Rényai
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which states that for a finite lattice ordered set L the poset P = L \ §, where S is
a proper, convex subset of L, admits a nuf. We will show that P, in fact, has the
strong selection property, that is, by Proposition 1.12, every P-zigzag has at most one
noncoloured element. So by (1) and (2) of Claim 1.11 the number of P-zigzags is finite.
Thus by Remark 1.13 the poset P admits a nuf. We note that the preceding argument
gives a proof of the result in [8] that a finite poset with the strong selection property
admits a nuf. We need the following technical lemma about zigzags.

LEMMA 2.1. Let (H,f) be a P-zigzag with |[N(H, f)| > 2. Then for every
a€ NH,f), a ¢ {b,c} C H with b <g c there exists a monotone P-zigzag (H', f')
such that H' C H, a,b,c € H', f' |Hl\{a}= I IHI\{B} and f'(a) is defined in such a
way that f(d) < f'(a) < f(e) for every d,e € C(H, f) with d <m a <g e.

PROOF: Since (H, f) is a P-zigzag and |[N(H, f)| > 2 there exist p € P and
a monotone partial map f" from H to P given by f" |cm,s= f and f"(a) = p.
For every such p we select one P-zigzag contained in (H, f") and we denote it by
(Hp, fp). Clearly, a € Hp. Let us suppose there is no p € P such that (b,c) € <m,-
Let Hy = H\ {(b,¢)}. Then Hy. C H and (Hs, f) is not P-extendible because

every monotone extension of (Hy, f) to a contains a zigzag (Hy, fp) for some p. But
this contradicts that (H, f) is a zigzag. Thus there is a po € P such that (b,c) €<n,, -

Taking (H', f') = (Hp,, fp,) We get the claim. 0

PROPOSITION 2.2. Let L be a finite lattice ordered set. Let S be a proper,
convex subset of L. Then P = L\ S has the strong selection property.

ProoF: By Proposition 1.12 it suffices to show that for every monotone P-zigzag
(H, f) we have |[N(H, f)| = 1. Let us suppose this is not true. Then there exists a
P-zigzag (H, f) such that |[N(H, f)| is minimal with respect to |[N(H, f)| > 2. Let
a#be N(H, f). By Lemma 2.1 there are two P-zigzags (H,, f1) and (H,, f2) such
that Hy,H; C H, {a,b} C Hy,H; and fi |#,\(a}= f lm\{a}> 2 lH\(3}= f |Ha\(8} -
Moreover f;(a) and fa(b) are defined in such a way that f(c) < fi(a) < f(d) for every
¢,d € C(H, f) with ¢ < a < d and f(¢) < f2(b) < f(d) for every c,d € C(H, f) with
¢ < b < d. The minimality of |[N(H, f)| > 2 implies that |N(H,, f;)| = |[N(Ha, f2)| =
1. Hence (2) in Claim 1.11 applies to (H,, f;) and (H2, f2). So by a,b € H,, the
elements a and b have to be comparable in H. Let us say a < b. Let A and V be
the join and meet operation of L. We define t = A{f(p) : p € C(H1,f1), b < p}
and u = V{f(p): p € C(Hz, f2), p < a}. Now, clearly, fi(a) < t and by the above
inequalities for fi(a), u < fi(a). Observe that ¢t and u have to be in S otherwise
(Hi, f1) or (Ha, f2) would be extendible P-coloured posets. Since S is convex we get
that fi(a) € S, which contradicts f(a) € P. 0

We remark that not every finite poset P with the strong selection property can be
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obtained from a finite lattice ordered set in the above way. Let P' = 1+4+2+2 41,
the poset in Figure 1, and let P = P’ x P'. Then P has the strong selection property
since P’ has it by Proposition 2.2 and if H and K have the strong selection property
then H x K has it too, see [7]. In [3] it is shown that P cannot be obtained from a
finite lattice ordered set by deleting a convex subset.

With the help of the next proposition we get a procedure how to construct all
zigzags of a finite poset. Although this procedure is not efficient it can be used to
determine all the zigzags of a small poset such as the one in Figure 7.

PROPOSITION 2.3. Let P be a finite poset. Let (H,f) be a monotone P-
zigzag. Then for every h € N(H, f) there exist P-coloured posets (H;, f;) C (H, f),
i € I, for which h € N(H;, f;), and there exist p; € P, i € I, such that if h is coloured
by p; in (H,, f;) the resulting coloured poset is a P-zigzag and if h is coloured by p;j
in (H;, f;), 7 € I\ {i}, the resulting coloured poset is P-extendible. Moreover, for
every p € P there exists i € I such that, if h is coloured by p in (H;, f;) the resulting
coloured poset is not P-extendible.

PROOF: Asin Lemma 14, if we colour h by an element of P in (H, f) the resulting
coloured poset is still nonextendible so it contains some P-zigzags which must contain
h. Let X = {(G¢,g:): t € T} be the set of all zigzags which can be obtained in this
way. We assign a subset S; C P to every (Gy,g:), t € T, so that S; contains g:(h)
and all the elements of P by which recolouring h in (Gy¢,g:), the resulting coloured
poset is nonextendible. We select a subset I of T as follows.

(1) I is a minimal set with respect to U;esS; = P.

(2) I has the maximal cardinality with respect to (1).

(3) I satisfies S; U (Ujer\(s3S;) # P for every S that is a proper subset of
S;, where te T and 1 € 1.

For every i € I we select (G¢,g¢) such that S, = S; and G, is minimal with
respect to the containment of posets. For simplicity, we can assume 1 = . Then we
define H; = G; and f; = gi |g;\(s) for i€ I.

Let T; = S;\ (U,-GI\{,-} S;) for i € I. These sets are nonempty by (1). We claim that
every T;, 1 € I, contains an element p; such that, if & is coloured by p; in (Hj;, f;), then
we get a zigzag. Let us suppose this is not true. So there exists an i such that for every
p € T;, if h in (H;, f;) is coloured by p the resulting coloured poset is not extendible
but also not a zigzag. Hence it properly contains some zigzags. Let these zigzags be
(Gvy9v), where v € V C T. Observe that S, C S; and Uyev S, U (U,-GI\{;}S,-) = P.
Let us take a subset Vi of V minimal with respect to Uyevy Sy U (U,-ez\{.-} S,-) = P.
Clearly, Vo U (I\ {i}) is minimal in the sense of (1). Since [V5] > 1 and I satisfies (2),
Vo = {vo} for some vo. Then by (3), Si = Su. But G, is properly contained in H;
which contradicts the fact that H; is minimal. Now, (H;, f;) and p;, 3 € I, clearly
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satisfy the claims of the lemma. 0

By the use of Proposition 2.3 we can construct all P-zigzags of a finite poset
P. Let us suppose we have determined all P-zigzags with fewer than m noncoloured
elements. Then any P-zigzag (H, f) with m noncoloured elements can be obtained
as a monotone image of a P-zigzag (H', f'). The zigzag (H', f') is obtained from the
P-zigzags (Gi,g:), 3+ € I, with at most m — 1 noncoloured elements, by deleting the
colour of an h; € C(G4,¢:) in each (G;,g:), i € I, and sticking together the resulting
coloured posets at h;, ¢ € I. By Proposition 2.3 we can choose (Gy, g;) and h;, i € I in
such a way that the coloured poset (H', f') indeed is a zigzag and (H, f) is a monotone
image of (H', f').

The following definitions can be found in [4]. A representation of a poset P is a
family (P; |i € I) of posets such that P; is a retract of P for each i € I, and P is
a retract of [[..;P:. A poset P is irreducible if for every representation (P; |3 € I)
of P, P is a retract of P; for some 1 € I. If P is not irreducible then it is called
reducible. For example, the two element antichain, fences and crowns are known to be
irreducible posets, see [4].

Remark 1.13 gives a characterisation of finite posets admitting an n-ary near una-
nimity function. We would like to find a somewhat more constructive description,
similar to the result of Quackenbush, Rival and Rosenberg in [8], which states that
every finite poset admitting a majority function is a retract of a finite product of fences
and the two element antichain. Observe, the building elements here, that is, the fences
and the two element antichain, are irreducible posets admitting a majority function.
In general, we can expect a similar characterisation of finite posets admitting an n-ary
near unanimity function as the next proposition states.

PROPOSITION 2.4. The class of finite posets admitting an n-ary near unanim-
ity operation coincides with the class of retracts of finite products of irreducible posets
that admit an n-ary near unanimity operation.

PROOF: The retract and the product of posets preserve the existence of an n-ary
near unanimity operation. On the other hand, every finite poset has a finite represen-
tation by irreducibles, see [4]. These facts imply the claim. 0

We note that a similar claim is true for finite bounded posets admitting an n-ary
near unanimity function.

In the following proposition we list all the finite irreducible bounded posets that
admit a 6-ary near unanimity function.

PROPOSITION 2.5. The list of the finite irreducible bounded posets admitting
a 6-nuf is the following: 1, 1+ 1 with 3-nufs, S;+S¢ with a 5-nuf, S;4+S¢, S3+S¢
with 6-nufs, where S,, is the poset given by the Boolean lattice of n atoms without its
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top element and S¢ is the dual of S,,.

PROOF: Let P be a finite irreducible bounded poset with a 6-nuf. We show that
for every monotone P-zigzag (H, f), |[N(H, f)| = 1. Because of Claim 1.4 it suffices
to show this for a standard zigzag. So let us assume (H, f) is a standard sigzag and
IN(H, f)| 2 2. By Remark 1.13 we have |C(H, f)| < 5. By claims 1.9 and 1.10 every
maximal element of N(H, f) is covered by at least two coloured elements of (H, f)
and every minimal element of N(H, f) covers at least two coloured elements of (H, f).
These facts imply that N(H, f) has one maximal and one minimal element. Since
IN(H, f)| 2 2 there is a noncoloured element which covers the bottom element of
N(H, f). This noncoloured element must also cover a coloured element, for otherwise
it would be irreducible, which contradicts Claim 1.9. Dually, there is a noncoloured
element covered by the top element of N(H, f) which is also covered by a coloured
element. But then |C(H, f)| > 6 which is a contradiction.

So |[N(H, f)| = 1 and by Proposition 1.12, P has the strong selection property.
Now, we can invoke a result of Nevermann and Wille in [7] which gives a complete list
of the finite irreducible posets having the strong selection property. By using this result
and Remark 1.13 we get the list of posets mentioned in the claim. 1]

We note that there are finite irreducible bounded posets admitting a 7-nuf that
do not have the strong selection property. For example, the bounded posets in Figure
5 and Figure 7 in Section 3 admit 7-nufs by Remark 1.13 and are easily shown to be
irreducible by [10, Proposition 6.6]. Both posets have a zigzag with two noncoloured
elements. So, by Proposition 1.12, they do not have the strong selection property. We
do not know if there are infinitely many finite irreducible bounded posets which admit

a 7-nuf.

3. EXAMPLES OF ZIGZAGS OF SPECIAL POSETS

First we describe the zigzags of finite posets admitting a majority function. Then
in Theorem 3.3 we present a construction of posets from smaller posets and show that
for this construction it is easy to describe all zigzags if we know the zigzags of the
smaller posets. For example, by this construction we get locked fences, defined in [5],
and Tardos’s eight element poset in [9] from fences and the two element antichain,
respectively. The description of the zigzags of locked fences yields an easy proof that
each locked fence admits a near unanimity function, which result is mentioned in [5].

In a connected poset Q we define the up distance from a to b to be the least
positive integer n such that there is a subset {ag,...,a,} C Q with a = ag, b = a,
and ag € a; > a2 < -... We define the down distance from a to b dually. Let T (a,b)
and | (a,b) denote the up and down distance from a to b, respectively. We note that
by the definition T (a,a) =] (a,a) =1.
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PROPOSITION 3.1. Let P be a finite connected poset admitting a majority
function. Then every P-zigzag (H, f) is a P-coloured fence satisfying the following
properties. If a and b denote the endpoints of the coloured fence, then a and b are
the only coloured points and at least one of the inequalities T (a,b) <1 (f(a), f(3)) and
1 (ay8) <1 (F(a), £(8)) holds.

PRoOOF: Certainly, a P-coloured fence of the above form is a P-zigzag for any
poset P. Let us suppose now that P is a finite poset admitting a majority function
and (H, f) is a P-zigzag. We want to prove that (H, f) is of the above form. By
Remark 1.13 we have |[C(H, f)| = 2. Let C(H,f) = {a,b}. Then f(a) and f(b)
must be different otherwise (H, f) would be extendible. If at least one of T (a,b) <
T (f(a), f(3)) and | (a,b8) <] (f(a), £(b)) holds then there is a fence F between a and
b in H such that (F, f |r) is a zigzag of the above form. By the minimality of (H, f),
(H,f)=(F,f |r). So we have the claim.

Thus we assume (H, f) satisfies both T (a,b) >1 (f(a), f(5)) and | (a,d) >
L (f(a), f(b)). In this case we show that (H, f) is extendible, thereby obtaining a
contradiction. Without loss of generality, we assume that a shortest path between f(a)
and f(b) in P is given by f(a) = a3 < a3 > ...an = f(b), n > 2. Since the number
of coloured elements is two in every P-zigzag, (H, f) must be a standard zigzag. This
implies that a is maximal or minimal. If a is minimal, then by T (a,b) 21 (f(a), f(}))
the sets B; = {c€ H : | (a,c) =i}, 1 <i < n—1,and B, = H\UL} B; are nonempty.
Moreover, a € B, and b € B,,. Let f': H — P be the function that takes on the value
a; for every element of B;, 1 <1 < n. Now, f' is clearly a monotone function from H
to P and f' extends f to H. If a is maximal then the only problem that can occur
in the preceding argument is when b € B,_,. Because | (a,b) >| (f(a), f(b)), then
there exists a shortest fence given by f(a) =b; > b, < ...b, = f(b) in P. Hence we
have the dual of the case when ¢ was minimal. Thus, we can extend f to H. 0

We define the middle element of three elements of a fence as the one which is on the
path connecting the other two. It was noticed, see for example [8], that for every fence
the ternary function which assigns the middle element to each 3-tuple is a monotone
majority function. So by Proposition 3.1 we easily get all the monotone zigzags of
fences. For example, the four element fence has the five monotone zigzags shown in

NN A
VoV VA

Figure 3. The four element fence and its monotone zigzags

Figure 3.
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PROPOSITION 3.2. Let P be an antichain. Then the P-zigzags are the
coloured fences which are coloured on the two endpoints by different elements of P.

PROOF: Clearly, every coloured fence of the above type is a P-zigzag. On the other
hand, every zigzag has to contain at least two coloured points. Since every P-zigzag is
connected every P-zigzag contains a copy of a coloured fence mentioned in the claim.
Hence, by the minimality of zigzags we have the claim. 0

We remark that the notion of 2-hole defined in [6] concides with the one of zigzag in
the case of finite posets admitting a majority function. Moreover, 2.4, 3.2, the proof of
3.1, Proposition 10 and Corollary 11 in [10] yield a proof of a variant of {7, Theorem 1]
that every finite poset admitting a majority function is a retract of a finite product of
fences and the two element antichain.

By the use of the following theorem we can easily describe the zigzags of certain
posets constructed from fences and aatichains.

THEOREM 3.3. Let P be a finite poset and let A be a finite poset with the
strong selection property. Let P' = P+A. Then every monotone P'-zigzag is one of
the following form: a P-zigzag in which every maximal element is coloured, an A-zigzag
in which every minimal element is coloured or it can be obtained from a monotone P-
zigzag (H, f), such that above each noncoloured maximal element of (H, f) we place the
coloured elements of some A.-zigzag having a noncoloured minimal element. Moreover,
every P'-coloured poset of this form will be a P'-zigzag.

Proor: First, we prove the last claim. Let (H', f') be a P'-coloured poset of the
above form. If (H', f') is one of the first two forms, then the claim is obvious. So let
.us suppose that (H', f') is of the third form. Observe that H' is connected since H is.
The coloured poset (H', f') is not P’-extendible since any P’ extension of f' restricted
to H must lie in P and so it would be a P-extension of f to H. So by Claim 1.1 we
only have to show that by deleting any covering pair in (H', f'), the resulting coloured
poset is P’'-extendible. The only problem occurs if we delete a covering pair (h,h') not
in (H, f). Since h and the coloured elements covering it form an A-zigzag f' can be
extended to A in (H',f') \ {(h,h')} by an element from A. If we colour the other
elements of N(H', f') by a P-extension of (H, f) \ {h} restricted to N(H', f'), we get
a P'-extension of (H', f') \ {(k,4")}.

Let (H', f') be a monotone P’'-zigzag. By aninduction on |N(H', f')| we show that
(H', f') is of the above form. If [N(H', f')| = 1 the claim is obvious from Claim1.11. Let
|[N(H', f')] > 2. Let h be an arbitrary maximal element of N(H', f'). Let hy, ha,...,
denote the upper covers of h in (H', f'). So hy,ha,..., ki € C(H', f'). First we show
that f' does not have a monotone extension f'" to h defined by f"(h) = a for some
a € A. Let us suppose the contrary. We assume that a is a maximal element in A
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for which there exists a monotone extension f" of f' to h with f"(h) = a. Since
the coloured poset (H', f") is nonextendible it contains a monotone P’'-zigzag (Q,g).
By the minimality of (H', f') we get h € Q. Let A' be a lower cover of A in Q. So
k' € N(Q,g). Let h' be covered by the elements h = s,,83,...,8m in (Q,g). By the
induction hypothesis each s;, i =1,2,...,m, must be coloured from A so that the first
coloured poset in Figure 4 is an A-zigzag. By Claim 1.1 it is easy to check that second
coloured poset in Figure 4 is an A-zigzag, too. But this contradicts the fact that A
has the strong selection property.

9(}1) g(h3) a(h)

a=g(n) g(22) g(am) ~_ oa2) 9(sa) o(am)

\o

Figure 4. Two A-coloured posets

Now, let us suppose that (H', f') has an element h' that is not maximal and
coloured from A. Since (H', f') is monotone we must have a maximal element h > A’
in N(H', f'). Because |[N(H', f')| > 2, f' is extendible to A by f"(h) = a for some
a € A. This is impossible as we saw in the preceding paragraph. So every A-coloured
element in (H', f') is maximal. Let now h' be an element covered by a A-coloured
element in (H', f'). Let us suppose that there is an element h € N(H', f') with A’ <h.
By the minimality of (H', f') there must be an element a € P’ such that, if we colour
h by a in (H', f') then the resulting coloured poset is monotone and it contains a
monotone zigzag in which h' < h. By the induction hypothesis, Claim 1.5 and Claim
1.9, a € A. This contradicts the claim in the preceding paragraph. So any A-coloured
element covers only maximal elements of N(H', ') in (H', f'). Also, by the claim in
the preceding paragraph every maximal element of (H', f') must be coloured. If every
maximal element of (H', f') is coloured from P then (H', f') is a P-zigzag and it is
of the desired form. For otherwise let k be a maximal element of N(H', f') such that
there is an upper cover of h coloured from A. Then by Claim 1.5 every upper cover
of h must be coloured from A. By the claim in the preceding paragraph the coloured
subposet determined by k and its upper covers in (H', f') is an A-zigzag. By deleting
the A-coloured elements from (H', f') we get a connected P-coloured poset (H,f).
Since (H', f') is P'-nonextendible (H, f) is P-nonextendible. By deleting a covering
pair in (H, f) we get a P-extendible coloured poset since, if we delete the same edge in
(H', f') then any monotone extension of f' restricted to N(H', f') must have its range
in P. So by Claim 1.1, (H, f) is a P-zigzag. Thus (H', f') is of the desired form. [

We can use the above theorem, its dual and the previous propositions to obtain the
zigzags of certain posets like the famous poset 1+2+2+2+1, or 1+2+P+2+1, where
P is a fence. The latter posets are called locked fences. In [5] McKenzie leaves it to the
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reader that locked fences admit near unanimity functions. In the case of a four element
fence a 7-nuf is given in [8]. In general, it follows from Proposition 3.1, Theorem 3.3
and Remark 1.13 that a locked fence with |P| =n > 2 admits a (2n — 1)-nufand 2n—1
is the smallest possible arity.

To illustrate the claims in this section we present some examples. In Figure 5 we
have two posets with all of their monotone zigzags. These posets are obtained from the
four element fence in such a way that Theorem 3.3 and its dual apply. Since they have
finitely many zigzags they admit a near unanimity function.

é\' .,.\O/a' L .c'“c o
NV \/< \><

5 b od de d'
QY
d d'
A /
a o’ b c be
3 o 5 d d d' \
\ a
b /
\ a® a’
° a a'

c CI

n
;]

~

Figure 5. Posets admitting a nuf and their monotone zigzags

In Figure 6 we have two posets constructed from the two element antichain. All
of their zigzags can be determined by applying Theorem 3.3 and its dual. They have
infinitely many zigzags. In fact, they admit no near unanimity function.

The poset P in Figure 7 is different. We need Lemma 2.1 and Proposition 2.3 to
prove that the list of the monotone zigzags in Figure 7 is complete. By the argument
below Figure 7 we show that {z,y} = {a,a'} and {v,z} = {d,d'}. There are sixteen
possibilities for ({p, ¢}, {r,s}). If {p,q} = {a,a'}, then {r,s} is {b,b'}, {b,c}, {c',c}
or {c',b'}. Dually, if {r,s} = {d,d'}, then {p,q} is {c,c"}, {c,b}, {¥",b} or {b",c"}.
I (p,r) = (b",c'), then (g,8) is (b,d), (b,d'), (a,d), (a,d'), (a,c), (a',d), (a',d')
or (a',c). For (u,t) there are four possibilities, (u,t) equals (c,b), (c,c'), (8"”,b) or
(", ¢').

https://doi.org/10.1017/50004972700012284 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700012284

(13] Posets and zigzags 91

VA
VAVEN

1
Q . \/°
1
[~
c Py b 'Y ] < /
b b and
/ / be b so on.

a o' a® o’ b 'Y

0

and
so on.

bl

XN

Figure 7. A poset with its monotone zigzags

First of all, it is easy to get all zigzags with exactly one noncoloured point by using
(2) of Claim 1.11. To obtain the zigzags with exactly two noncoloured elements we use
Lemma 2.1 and (3) of Claim 1.11. Let (H, f) be a zigzag with exactly two noncoloured
elements. We apply Lemma 2.1 to (H, f) and its two noncoloured elements. Then
(H, f) must contain a coloured poset (Q, g) with two noncoloured elements of the form
in Figure 7, where there is a monotone extension of g to each noncoloured point such
that the resulting coloured poset contains a zigzag with one noncoloured element of the
form in Figure 7. So by using the list of zigzags with exactly one noncoloured element
we have that {r,s} = {d,d'}, {p,q} = {b,8"} or {p,q} = {b,c} for one of the zigzags
and {p,q} = {a,a'}, {r,8} = {c,c'} or {r,s} = {c,b} for the other zigzag. From these
we get the four zigzags with exactly two noncoloured elements as listed above.

We show that there are no other monotone zigzags. Let us suppose there exists a
zigzag with more than two noncoloured elements. Then let (H, f) be a zigzag such that
|N(H, f)| is minimal with |[N(H, f)| > 2. By applying Proposition 2.3 for a maximal
noncoloured point & in N(H, f), there exist an index set I and h € (H;, f;) C (H, f)
and p; € P, i € I, with the properties given in 2.3. Let (G;,g;) be the zigzag obtained

https://doi.org/10.1017/50004972700012284 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700012284

92 L. Zédori [14)

by colouring h by p; in (Hj, f;), + € I. First we examine the case, when there is a
7 € I such that (Gj,g;) has two noncoloured points. Since h is maximal in (Gj,g;),
by looking at the above list of the zigzags with two noncoloured elements, p; must be
one of d,d’,c’ and b. The first three choices are not possible because, by claims 1.9
and 1.10, A is covered by at least two coloured elements in (H, f). By Claim 1.5 these
elements must be coloured by incomparable elements that, by 2.3, are greater than p;,
which is impossible. So p; must be b. Hence, by 2.3, only (Gj,g;) can have two
noncoloured elements.

Let (Gq,9:) be a zigzag with one noncoloured element. In (H;, f;) colouring h by
b we get an extendible coloured poset by 2.3. Now, from the above list of zigzags with
one noncoloured element (G, g;) must be one of the four zigzags with {p,q} = {a,a'}.
Similarly, a nonmonotone zigzag (Gi, gi) in which h is maximal, the minimal element is
coloured by one of b,a and &'. A nonmonotone zigzag (Gs, g;) in which h is minimal,
the maximal element must be coloured by d or d'. Here b and ¢' are not possible
otherwise (H, f) would contain a zigzag with exactly two noncoloured elements. Also
c" is not possible since h is covered by two elements coloured by incomparable elements
in (H, f). So we have determined the list of all possible (H;, f;). Observe that any of
these (Hj, f;) is extendible by a map that colours h by ¢"”. This contradicts 2.3.

So we can assume that each (Hj, f;) contains at most one noncoloured element.
In each (Gi,g:), h is maximal and it is covered by at least two coloured elements in
(H, f) with incomparable colours. So, by 2.3 and the above list of zigzags with exactly
one noncoloured element, the colour of h must be one of b,5' and ¢. All three cannot
occur together, since, by 2.3, these elements have to be incomparable. So we have b,c
or b,b’ as possible colours of h in two of the (G;,g:;). But then in a nonmonotone
(G;,9:), where h is minimal, the maximal element must be coloured by d or d'. There
does not exist a nonmonotone (G;,g;), where h is maximal since the colour of its
minimal element would be smaller than b,c or b,6'. So it would be a or a'. But
both a and a' occur as the colour of a minimal element in one of the (G;,g;) with
one noncoloured element. Then by sticking together the possible, and at the same
time necessary, (H;, f;) at h we get a zigzag (H', f') with exactly three noncoloured
elements.

Let us apply Proposition 2.3 to a minimal noncoloured element in (H', f'). Observe
that one of the resulting (Gq, g;) must have two noncoloured elements. By the dual of
the first part of this proof this is impossible. So there is no zigzag with more than two

noncoloured elements.
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