
SOLUTION OF THE WORD PROBLEM FOR CERTAIN
TYPES OF GROUPS I

by J. L. BRITTON
(Received 12th December, 1955)

Introduction. The main result of this series of papers is a theorem on the free product of
groups (Theorem 1) which formed part of a doctoral thesis.f This theorem has an immediate
application to the word problem (Theorem 2). Usually the word problem refers to a finite
system of generators and a finite number of defining relations, but in this context it is more
natural to allow an infinite number of generators and defining relations. This (infinite) word
problem is not solvable in general (Example 2).

The results obtained consist roughly of an extension of the results of V. A. Tartakovskii
([7], [8], [9]) on the case of a free product of a finite number of cyclic groups with a finite
number of additional defining relations, to the case of a free product of a possibly infinite
number of arbitrary groups with a possibly infinite number of additional defining relations.

The method is entirely different. For the finite cyclic case it is found, in the notation of
Tartakovskii [8], that the condition S< 1/6 is sufficient for the word problem to be solvable.
The method does not however give a counterpart to the condition k>6.

In the case when all the constituent groups of the free product are cyclic, a result on the
infinite word problem has been obtained by Stender [6]. This result is not actually correct as
it stands (Example 3), but it can easily be made so by adding a further assumption (namely,

• (3) of Lemma 2-32), for it is then a consequence of Theorem 2.
Condition (2B) cannot be omitted from Theorem 2 because a system exists which satisfies

every condition of Theorem 2 except this one but for which the word problem is not solvable
(Lemma 2-33).

[Added 21st March 1956]
Condition (2A) cannot of course be omitted, but it is shown in the Appendix that (2C)

can in fact be omitted without destroying the validity of Theorem 2.
The present paper is concerned only with the application of Theorem 1 to the word

problem. The proof of Theorem 1 itself is postponed.

1. Preliminary definitions. Statement of the Main Theorem.
1 • 1. Let 77 be the free product of the set of groups {GY \ yeF} where the index set F may

be infinite. No restriction is placed on the groups Gy, which will be called the constituent groups
of 77. We denote elements of 77 by capital letters and write the group multiplicatively so
that the product of two elements X, Y is X. Y. Let I be the unit element. Every element U
of 77 except 7 has a unique representation, called the normal form of U, of the type

C/=Zy(1) . X«2) X^, (Ml)

where r ^ l , 7#Xy<,)e(?y(j) (» = 1, 2 r) and y(i)&y(i + l) (i = l, 2, ..., r -1 ) . We denote r
byl(U) and call it the length of U. The length I (I) of 7 is defined to be zero. Elements of unit

t Ph.D. thesis, with the same title as the present paper, presented to Manchester University (1953). I
am very grateful to Dr. B. H. Neumann who supervised the work for this thesis.
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46 J. L. BRITTON

length are called components and will be denoted by small letters. If x, y are elements of the
same constituent group we write x~y. If not we write X<-~J' y.

The Dot Convention
m

If X is a product X x . X2 Xm of elements of 77 and if I {X) =21 (X() we shall write

X =XtX2... Xm ; that is, we omit the dots. In particular the dots can be omitted from a
normal form. The expression (1-11) now becomes

C7=x x x (1*121

We shall also write
j . =In(f7) X^J \=Fin(C7) (1*13)

Now let X, Y be elements of 77 different from 7. We define the number /? (X, Y) of can-
cellations in the product X . Y and the number of amalgamations, written e (X, Y), as follows:

Let X = a-fii... am, Y = b^2 ... bn.

Then

"'X)~\P i f a m . 6 1 = 7 )

where j3 is the largest integer for which am_p+1... am . b^... bp=I, and

0 otherwise.

Put

a(X, Y)=p{X, Y)+z{X, Y) (1-14)
Note that

l(X . Y)=l{X)+l(Y)-2p{X, Y)-s(X, Y) (1*15)

1*2. In the following theorem, Q denotes a subset of 77 in which every element W has
length at least 2 and In(PF)-~'Fin(Tf). If W = a1ai... an, the n elements

a r a r + l ••• ° n a l a 2 ••• ar-\ (^ = 1> 2 , . . . , w)

are called the cyclic arrangements of W. Let Q* consist of the cyclic arrangements of all
elements in Q and their inverses. If UzQ *, write

a ( t / ) = M a x a ( ^ , V), (1*21)

where U is a cyclic arrangement of U, K = ± 1, VeQ* and U* . V #7, and all possible choices
of U, K and V are taken.

We can now formulate the Main Theorem.
THEOREM 1. Let Qbea possibly infinite subset of a free product U in which every element W

has length at least 2 and In(W)~ 'Fin(TF). Let Q* be the set of the cyclic arrangements of the
elements of Q and their inverses. If, for every choice of elements U, V in Q*, either U . V =1 or

6a(f7, V)<Min(l(U),l{V)), (1-22)

then the elements of the normal subgroup [Q] of 77 generated by Q have the following properties :

A. Every element Y except I has length at least io=Min 1{W), and l[Y) =l0 implies YeQ*.
WtS)

In particular, the intersection of [Q] with any constituent group consists only of the unit
element I.
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B. The normal form of Y has a factorization Y = XKZ, where there exists an element V of
Q* luith normal form V = K'K and

l(K)^l{V)-3a.{V)-l (1-23)

Moreover, equality in (1-23) implies

In (if) ~ In (Z) (1-24)

and Fin(Z')~Fin(Z) (1-25)

C. The element X . K'-1. Z in [Q] has length strictly greater than l(Y). Thus

either l{K)>\l{V),
or l{K) = \l{V) and (1-24) or (l-25).holds,

or l{K) = \{l{V)-l)and both (1-24) and (1-25) hold.

An Alternative Condition (1-26)
The theorem remains true if we replace (1-22) by the weaker condition

l+4a(f7, V)<Min{l(U), l(V)) (1-27)
but at the same time restrict cancellations between certain sets of three elements of Q*.

The precise form of this restriction will not be given here because it is rather lengthy to
state and it will not be required in the present paper.

2. Application to the word problem.
2-1. Suppose that a set S of generators and a set R of defining relations are explicitly

given, where S and R may be infinite sets, and it is asked whether or not the word problem is
solvable for the system {S, R}. We shall see how the Main Theorem allows one to give a
positive answer when the system satisfies certain conditions, but let us first clarify the problem
a little.

An infinite set is regarded as explicitly given if a finite process f is provided for deter-
mining whether or not any given " mathematical object " is an element of the set. In the
system {S, R} the set S consists of certain identifiable symbols and the elements of R are
relations of the form w = l, where w is a word in these symbols, that is, a finite sequence of
symbols each with an index + 1 or - 1. A word w is called a defining word if it is the left hand
side of a defining relation. Let R be the set of defining words and let W be the set of all words.
We include in W the " empty word " which contains no symbols. Two words wu w2 are
called equivalent if one can be obtained from the other by a finite number of deletions or
insertions of words of the form x^ar 1 or x-xx+1 (xeS). The multiplication and inverse opera-
tions for words are defined in the usual way and if w is any word equivalent to a word of the

m

form II trhv'.'j'.Ui, where t,-eW, wHi)eR and e(i) = ± 1 , we say that the relation w = l follows from

the defining relations. We say that the word problem is solvable for the system {S, R} if there is
a finite process for deciding whether or not the relation w = 1 follows from the defining rela-
tions, where w is any given word.

It is known that there is a unique abstract group O(S, R) corresponding to any given set
S of generators with a set R of defining relations having the following properties :

(i) There is a mapping 6 of S into G(S, R) and G(S, R) is generated by all the elements
sd(seS).

t Defined in Post [5] and Turing [11]. An equivalent definition is given in Church [I].
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(ii) If w is a defining word, then w6 is the unit element of G(S, B), where wO is defined
in an obvious manner.

(iii) Any group H satisfying (i) and (ii) is a homomorphic image of G (S, B) and if 8' is
the mapping associated with 77, then s0 is mapped by the homomorphism onto sO', for all
5 in S.

(iv) w = 1 follows from the defining relations if and only if w8 is the unit element of
G(S,B).

2-2. I t will be shown that the word problem is solvable for an explicitly given system
{S, B} satisfying the following conditions (1) to (5). This result will be proved, and the
conditions (1) to (5) summarized, in Theorem 2.

(1) S can be decomposed into a union of disjoint subsets SY(yer) and B into a union of
disjoint subsets B' and BY(yeF), where By consists of those elements of B, if any, which involve
only the elements of Sy. The sets B', By and SY are required to be given explicitly, and, given
seS, it is required that the set Sy which contains s can be obtained in a finite number of steps.

(2) The word problem is solvable for each system {SY, RY}.
In the remaining conditions, let Gy = G (Syt By) and let 77 be the free product of the groups

GY(yer). We shall say that a word in S (i.e., a word formed from the symbols in the set <S) is
II-reduced if it is a word of the form

(2-21)

where w > l and t«y(,) is a word in (Sy(l-) such that the relation wvW does not follow from the
defining relations in the set 72y(,-) and also y(i) &y(i + l) (i = l, 2, ..., w-1) .

Every word w in S represents an element W of 77. If we define the II-length of the word
iv to be l(W), it is clear that the word (2-21) has 77-length n. I t is easy to describe a process
Px which when applied to an arbitrary word w in S yields a word w' which represents the same
element of 77 and which is either 77-reduced or equivalent to the " empty word ". We first
bracket together the symbols in the word w so that all symbols in a bracket belong to the same
set SY and symbols in adjacent brackets belong to different sets. Let the symbols in the ith
bracket belong to <Sy(i) and form the word wt, so that w=WjW2 ...wk if there are k pairs of
brackets altogether. We next erase each wt for which the relation wt = 1 follows from the
defining relations in the set iJy(,). We can always do this because the word problem is solvable
for each system {Syt By}. After a finite number of repetitions of these steps we arrive at the
required word w'.

Two words wv w2 in S will be called conjugate if w1 is equivalent to t~lw2t for some word
t in S, and a 77-reduced word (2-21) will be called a short word if either « = 1, or w ^ l and
y (1) ̂  y (n). I t is easy to describe a finite process p 2 which when applied to a 77-reduced word
w' yields a short word w" such that w' and w" are conjugate.

We can now formulate the remaining conditions.
(3) If a denning relation w = 1 is in B', then the word w' = p x (w) is not equivalent to the

empty word, and the word w" = p 2 {w') has 77-length at least 2. Further, if Q denotes the subset
of 77 consisting of all elements represented by such words w", then condition (1-22) (or (1-26))
of the Main Theorem is satisfied.

We remark that the number of cancellations and amalgamations between two given
elements of Q* can always be calculated because of condition (2).

It is well known that IJ^G{S, A), where A =UBY(yer), and that TIj[Q]^G{S, B).
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(4) There is a finite process for deciding whether or not a given word in S represents
some element of the set iPj", defined as follows :

DEFINITION (2-22). In the notation of the Main Theorem, if UeQ*, denote by U1 the
product of the last r(U) components of the normal form of U, where

r(17) =Max (l(U) -3ct[U) -1, [#(#)]) •

Then Qf, is the set of all elements Ult for UeQ*.
We remark that U^ uniquely determines U, for if U, U'eQ* and U = VUlt U' = V'Ult then

«{U, J7'-1)^=2(?71)>[^(C/)]>a(?7). By the definition of a(17), this implies U.U'-1=I, so

(5) If a given word in S does represent an element of Q*, then there is a finite process for
determining some word which represents the corresponding element of Q*.

THEOREM 2. Let the conditions of the Main Theorem be satisfied, either with (1-22) or with
(1-26). Then the word problem is solvable for the group TIj[Q] provided that

(2A) the word problem is solvable for each constituent group Oy,
(2B) the elements of Qf are recognisable, where Q* has the meaning of Definition (2-22),
(2C) given any element of Q*, the corresponding element of Q* can be determined in a finite

number of steps.
Proof. Given any word w in the generators of 17j[Q], we have to give a finite process to

determine whether or not the corresponding element of IJ/[Q] is the unit element. Equiva-
lently, we may give a finite process to determine whether or not the corresponding element X
of 77 lies in \Q\.

We first determine a word w' which represents X and is either a 77-reduced word of the
form (2-21), with 77-length n, or is equivalent to the empty word. In the second case Xe[Q],
so we may assume that the first case is applicable.

Next we examine each " subword " of w' of the form vti = «V(,)U>y(>+i) • • •
 wv(i)an^ determine

whether or not it represents an element of Q%. If none of these sub words represents an
element of Qf, then, by the Main Theorem, X does not belong to [G]. If however the sub-
word vtj represents an element of Q*, we determine a word uif which represents the corre-
sponding element of Q*, and then determine the /7-length of the word

. WyM.

If for no such subword v{j, the /7-length of wit is strictly less than n, then, by the Main Theorem,
X does not belong to [Q).

Now wu represents an element of [Q] if and only if w' represents an element of [Q], so
that if the 77-length of w(i is less than n, we have reduced the problem of determining whether
or not w represents an element of [Q] to that of determining whether or not a word of smaller
77-length represents an element of [£?]. The process of repeating the steps described, each
time with a word of smaller 77-length, must eventually terminate.

This proves the theorem.

2-3. Examples illustrating the (infinite) word problem.

Example 1. An infinite system for which the word problem is solvable.
An obvious example is the system with generators xlt x2, x3, ... and defining relations

For the other examples we require the following result.
D G.M.A.
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LEMMA 2-31. There is a one-one mapping <f> of the set of positive integers into itself such that
the image <f> (n) of any given integer can be calculated, but there exists no finite process for deciding
whether or not any given integer is an image under </>.

Proofs The proof depends on the result, proved by both Church and Turing, that there
is no decision process for the restricted predicate calculus (cf. Kleene [3], p. 180 and p. 432).
The formulae of the calculus are words in a set of symbols which can be assumed finite. Thus we
can effectively enumerate the formulae fv /2, /3, ... and also the finite sequences Slt S2, S3, ...
of formulae. A sequence S{ may or may not constitute a " proof " in the calculus. No de-
cision process exists for determining whether or not any given formula/( can be " proved ".
Thus the function a given by

f n if Sm is a proof of/„,
\ 0 if Sm is not a proof,

has the property that no finite process exists for determining whether or not any given
positive integer is a value of a.

NOAV define $ as follows. Let *(r) be the number of terms in the sequence a(l), a(2),
... , a(r) which equal a(r) and put

(k(r) =2ff'r'3K'r'.

Then ^ is a one-one mapping of the set of positive integers into itself, and an integer of the
form 2*. 3, where t is a positive integer, is an image under <f> if and only if t is a value of a.
Thus <f> has all the required properties.

Example 2. An infinite system for which the word problem is not solvable.
Consider the system with generators

fn,gn,hn (w = l , 2 , 3 , . . . )

and defining relations

This system is explicitly given because every defining relation is of the form f,hr-l or
g, V 1 = 1 where r and s are positive integers, and if r and s are given, such a form is a defining
relation if and only if <f>(r), which can be calculated, equals s. The word problem is not sol-
vable, for fmgm = l follows from the defining relations if and only if J there exists n with
<f>(n) =m, and we have seen that there is no finite process for deciding this.

In the remaining examples, the systems considered satisfy the conditions of the Main
Theorem with (1-22) and the word problem is solvable for each constituent group. More
precisely, the systems satisfy conditions (1), (2), (3) of 2-2, where in (3) they satisfy (1*22).
Let us call such systems Wl-systems.

Example 3. An WH-system in ivhich

(i) every defining word has the same length,
(ii) no generator appears in more than two defining relations,

(in) the word problem is not solvable.

11 am indebted to the referee for this proof. It is preferable to the author's proof (based on a recent
result of Markov [4]) because it sets the lemma in its proper context.

X Here we use the result that if a generator x does not appear in the defining relations, and if w = 1
follows from the defining relations when x appears in to, then the sum of the exponents ( +1 or - 1) of x in
w is zero .
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Let p be an integer greater than 6 and take generators

/.(»)» 0.(»); *(») (s = l,2,...,p; n - 1 , 2, ... )

with defining relations

where <f> (n) has the same meaning as in Lemma 2-31. Property (iii) is verified as in Example 2.
Example 4. An MT-system with the properties of Example 3 and in which, in addition, every

generator appears in a defining relation.
In Example 3, add the generators

*.('. n), y,(t, n) {s, t = \, 2, ..., p ; w = l, 2, 3, ...)

and add the defining relations

fs{n) xs{l, n) xs{2, n) ... xa(p, n) =

Example 5. An MT-system in which

(i) every generator occurs in an infinite number of defining relations,
(ii) the Tl-lengilis of the defining words are unbounded,

(iii) the numbers of cancellations between pairs of defining words are unbounded,
(iv) the word problem is solvable.
Consider the system with generators

*B. Vn, *« (» = 1, 2, 3, ...),

and defining relations wn = \ (n = \, 2, 3, ...), where
otl otl o** *>fl " "

w = a ; ! 2/l ^1 2/1
I t is clear that I (wn) = 7?i., and that if Un and Um are cyclic arrangements corresponding to
iv*1 and t̂ m1 respectively, then a(Un, Um)^Min(n,m), so it is clear that the system is an
MT-system, and (i), (ii), (iii) are satisfied. To prove (iv), it is sufficient to show that conditions
(2B) and (2C) are satisfied (Theorem 2). Now a component of the form x^ or ym (u #0) occurs
in a defining word or its inverse if and only if there exists a positive integer n with the pro-
perties u = ± 2" and m^3n. But any segment of length n +1 of the normal form of an element
Un of Q* contains a component of this form ; hence so does a segment of length

r{Un) = 7n-3n-l.
Thus (2B) and (2C) are satisfied.

Examples 3, 4 and 5 show that the conditions given by Stender ([2], p. 101) are neither
necessary nor sufficient for the word problem to be solvable in an MT-system. The conditions
may be put in the following form :

(1) the 77-lengths of the defining words are uniformly bounded,
(2) every generator occurs in only a finite number of defining words.

However, a sufficient set of conditions is obtained by adding a further condition, as in the
following lemma.

LEMMA 2-32. The word problem is solvable in an MT-system satisfying the conditions (1)
and (2) and also
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(3) It can be decided whether or not a given generator x appears in a defining relation, and if
it does, then the (finite) set of defining relations in which it appears can be determined.

Proof. The elements of Qf are recognizable, because given any word w, we identify the
finite number of defining relations containing the generators appearing in w and it is then
straightforward to determine whether or not w represents an element of Qf. If it does, we can
easily determine the corresponding element of Q*. On applying Theorem 2, the lemma
follows.

Examples 6 and 7. Example 6 will be an MT-system in which all the defining words have
the same length I, where I may be taken arbitrarily large, and the word problem is solvable.
From this we shall obtain another system by altering at most one generator in each defining
relation. The new system (Example 7) will also be an MT-system, but the word problem will
not be solvable.

The interest of these examples is that they will show the necessity of condition (2B)
(Theorem 2), which we may express by saying that the final segments of length r(U) of the
elements U in Q* are recognizable.

Examples 6 and 7 are to be the first and second systems respectively in the following
lemma.

LEMMA 2-33. Let a, p be integers where <x>l,p>Q, and letl=p<x,r = l-3a-l. Thentwo
systems of generators and defining relations can be found with the following properties :

(i) Each system is an MT-system in which every element X of Q* satisfies the conditions

and every element of Qf, has length r.
(ii) Each system satisfies (2C) (Theorem 2).

(iii) In the first system, the final segments of length r of the elements in Q* are, recognizable
but the final segments of length r -1 are not recognizable. The word problem is solvable.

(iv) In the second system, the final segments of length r +1 of the elements in Q* are recog-
nizable but the final segments of length r are not recognizable. The word problem is not solvable.

Proof. The following system of generators and defining relations involves a function 0,
and the two systems required are obtained by taking

n for the first system, _
(j>(n) for the second system. ~

The system has generators

a^s, n), a2{s, n),... , a^s, n), }
b^s, n), bt(8,n), ... ,&„_!(*,»),

fca(s, n), h3(s, n), ... , hr(s, n),

and, in the notation

As{n)=a1{s, n)... a^s, n),'

iit\n) = ft2^a, n) nr\s,n),
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it has denning relations

Ax (n)x1 {n)...Ap {n)xv (n) = 1, j

B, («)-'*,_! (n)~*A t (n)xt (n)*Bt+1 (n)yc™tzv_t+1 (t (n)) H,_t+1 (^ (n)) yf%x = 1J

(« = 1, 2 , ... , j » ; w = l , 2 , 3 , . . . ) ,
w h e r e c(n)=2n, d{n)=3-2n

and xo{n)=xv(n), yo=yP, J?J)+1(w)=51(w).

We prove first that both systems are MT-systems. By the definitions of I and r, it follows
that every element of Q* has length I. To show that oc(U, F ) < « we proceed as follows. If
U, V have different arguments n, n', then no cancellations can occur in the product U. V, but
there might be an amalgamation between the generators ys, so a.{U, F ) < 1 . If U, V both
have argument n, then among the generators a,- (s, n) (or b( (s, n)) there can occur up to a - 1
cancellations, followed possibly by an amalgamation between generators xa(n) (or y,), but
among the generators x,(n), zs(ijj(n)), y8, h({s, (j>(n)) no cancellations can occur. I t is now
clear also that <x(X) = a. for XeQ*. The constituent groups are all infinite cyclic groups ;
hence the word problem is solvable for each of them.

We now prove (ii), (iii), (iv). The set of words HP_t+1 (<j>(n)) (< = 1, 2, ... , p ; w-=l, 2,
3, ...) is not recognizable, since a word of the form Hv_t+1(m) lies in the set if and only if m is
the image of an integer under <j>. On the other hand the set of words zv_M (n) Hv_t+i [<f> (w))
(t = l,2,... ,p; m = l ,2 ,3 , . . . ) i s recognizable because a word of the form Zj,_t+1 [n) Hv_t+1 (m)
lies in the set if and only if <f> (n), which can be calculated, equals m. I t will now be seen that
for the first system, the final segments of length r of the elements in Q* are recognizable but
the final segments of length r -1 are not recognizable. But the first system satisfies (20), so
Theorem 2 is applicable and shows that the word problem is solvable.

To establish the lemma, it is only necessary to prove that the second system satisfies
(2C) and the word problem is not solvable.

Now any element of Qf has length r, so a given element X of Q% either contains a gener-
ator of the form o,(s, n), bi(s, n) or xs(n) (or the inverse of such a generator), or a component
of the form y", where ± u = 2n or 3 - 2 " , or else it has the form

In the first case the integer n leads us to the element of Q* corresponding to X. In the second
case we must evaluate successively <f> (i) {i = 1, 2, 3, ...) until the integer n is reached for which
(j>(n) =m. This process will terminate because X is given to be an element of .Qf, so such an
n exists. Having found n, we can easily determine the required element of Q*.

By considering only the defining relations with a fixed value of n, we see that the relation

t-1

and hence the relation

fl

follow from the defining relations. But ^i{n)-<f>{n), so we can use an argument similar to
that in Example 2 to show that it is impossible to decide whether or not relations of the form
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ft zs(m) Hs(m)y3
s = l

«=i

foUow from the defining relations. Thus the word problem is not solvable for the second
system and the lemma is proved.

APPENDIX [added 21st March 1956]
Condition (2C) can be omitted from Theorem 2.
The meaning of condition (2C) was given in 2-2. Using the same notation, we have to

find a finite process Q which, applied to any word w representing an element U1 of Qf, deter-
mines a word representing the (unique) element U of Q* corresponding to Uv Let p be the
finite process which ensures that R' is explicitly given. By the meaning of a finite process
(§2-1, footnote) it may be assumed that the domain of p , that is, the set of objects which can be
tested by p , is a countable set which can be enumerated explicitly as a sequence, say Dlt

£)2 The required process (Q can now be described. We apply p to Dlt D2, • • • successively
and every time it is found that Dt is an element of R' we determine whether or not Di corre-
sponds to w. Thus writing D( in the form iv{ = 1 we consider all the cyclic arrangements of W{
and Wi'1 and determine whether or not any one of them represents the element U. Now
every element of R' occurs in the sequence Dlt D2> •••so the process does eventually terminate.
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